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ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence
information flow in neuronal circuits by activation of ionotropic P2X andmetabotropic P2Y receptors and subsequent modulation
of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors
in the brain.We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels,
and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum.The findings
discussed heremay explain howP2Y

1
receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer’s

disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y
1
receptors may have

therapeutic potential against cognitive disturbances in these states.

1. Introduction

Adenosine triphosphate (ATP), the general currency in
energy conversions within all living cells, was discovered
in 1929 in muscle tissue [1, 2]. In the same year, Drury
and Szent-Györgyi described that ATP and its metabolite,
adenosine, exhibit potent extracellular activity on the heart
and coronary blood vessels [3]. Follow-up studies revealed
that extracellular purines are involved in several central
and peripheral physiological mechanisms [4] and in the
early 1970s Burnstock suggested the existence of purinergic
neurotransmission with the release of ATP and its actions
on purinergic receptors [5, 6]. In the 1980s it was suggested
that ATP receptors, the so called P2 receptors, can be
pharmacologically separated into two subtypes: the P2X and
the P2Y receptors [7]. While P2X receptors are ligand-gated
ion channels permeable for Na+, K+, and Ca2+ [8, 9], P2Y
receptors are coupled to G proteins and activate different
intracellular cascades [10–12].

Eight different P2Y receptors (P2Y
1
, P2Y
2
, P2Y
4
, P2Y
6
,

P2Y
11
, P2Y
12
, P2Y
13
, and P2Y

14
) have been identified exhibit-

ing a different sensitivity to ATP (P2Y
11
), ADP (P2Y

1
, P2Y
12
,

and P2Y
13
), UTP/ATP (P2Y

2
and P2Y

4
), UDP (P2Y

6
), or

UDP-glucose (P2Y
14
) [13]. P2Y

1
, P2Y

2
, P2Y

4
, P2Y

6
, and

P2Y
11

receptors are coupled to Gq proteins, the activation
of which stimulates phospholipase C and subsequent release
of Ca2+ from intracellular stores and activation of protein
kinase C in response to inositol 1,4,5-trisphosphate and
diacylglycerol production, respectively [13, 14]. The P2Y

11

receptor can also couple to Gs stimulating adenylate cyclase
and increasing generation of cAMP [15]. P2Y

12–14 receptors
couple to Gi, effectively inhibiting adenylate cyclase and
decreasing cAMP production [13].

P2Y receptors are expressed ubiquitously in the body,
including the central nervous system (CNS) [16]. In the CNS,
they are localized on neurons, astrocytes, oligodendrocytes,
and microglia with physiological roles in neurotransmission,
neurogenesis, and glial cell communication [5, 17–20] while
they are also involved in a number of peripheral pathophysio-
logical processes, including inflammation, ischemia, and pain
[21–27].

ATP can be released from different cell types of the
brain such as neurons [28, 29], astrocytes [30], and microglia
[31, 32] through exocytotic release mechanism [33], con-
nexin/pannexin hemichannels [34], or P2X7 receptors [35].
After release of ATP, it takes approximately 200ms before
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Figure 1: Modulation of excitatory synaptic transmission by P2Y receptors in the CNS. The model synapse shows the main presynaptic
and postsynaptic effects of P2Y receptors described in different areas of the brain. For more details see text. AMPAR, AMPA receptor;
GIRK, G protein-coupled inwardly rectifying potassium channel; Glu, glutamate; KCa, calcium-activated potassium channel; LTD, long-
term depression; NMDAR, NMDA receptor, P2YR, P2Y receptor; P2Y

1
R, P2Y

1
receptor; TRP, transient receptor potential channel; VACC,

voltage-activated calcium channel.

it is hydrolyzed to adenosine in the extracellular space by
ectonucleotidases [36, 37]. Although it has been suggested
that ATP is involved in fast synaptic transmission in the
brain via postsynaptic P2X receptors [38–41], this form of
depolarization seems to be insufficient to trigger action
potentials in the postsynaptic cells suggesting that the main
effect of ATP is neuromodulation similar to other classical
neuromodulators such as monoamines and acetylcholine
[42]. In these neuromodulational effects of ATP P2Y recep-
tors play an important role. In this review we shall overview
the main effects of P2Y receptors on synaptic transmission
and plasticity with special emphasis on their network effects
and therapeutic potentials in cognitive dysfunction.

2. Modulation of Synaptic Transmission

2.1. Modulation of Neurotransmitter Release. P2Y receptors
have been shown to inhibit the release of a number of
neurotransmitters in the CNS [43] (Figures 1 and 2). In the
prefrontal cortex, P2Y

1
receptors have been colocalized with

synaptophysin and vGLUT3 suggesting that this receptor
subtype is expressed in presynaptic terminals releasing glu-
tamate [44]. P2Y

1
, P2Y
2
, P2Y
4
, P2Y
12
, and P2Y

13
receptors

were shown to inhibit glutamate release from the sensory
terminals in the spinal cord [45, 46], from Schaffer collateral

synapses of the hippocampus [47–49] and in the cerebral
cortex [50]. Underlying this inhibitory effect is most likely a
membrane delimited inhibition of N-type voltage-activated
calcium channels (VACCs) in the presynaptic terminals via
the G𝛽𝛾 subunit (see below) [45, 51]. GABA release from
basket onto Purkinje cells in the cerebellum was also found
to be inhibited by the activation of P2Y

4
receptors [52].

Noradrenaline releasewas blocked byP2Y
1
, P2Y
12
, andP2Y

13

receptors in the spinal cord [46], in the hippocampus [53, 54],
and in the cortex [55], possibly via inhibition of VACCs [56].
Similarly, serotonin release in the cortex was decreased after
P2Y receptor activation [57]. The modulation of dopamine
release by P2Y

1
receptors seems to be more complex [58–

60]; dopaminergic terminals in the prefrontal cortex (PFC)
do not contain P2Y

1
receptors suggesting that multisynaptic

mechanisms are involved [44]. In summary, presynaptically
located P2Y receptors affect the release machinery of gluta-
mate, GABA, and other neuromodulators. Although themost
likely mechanism is the reduction of the release probability
due to reduction of presynaptic calcium influx, alternative
explanations, such alteration of the fusionmachinery or other
effects on the pool of vesicles, cannot be entirely discarded.

2.2. Modulation of Neurotransmitter Receptors. Activation
of P2Y receptors has been shown to modulate numerous
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Figure 2: Modulation of inhibitory synaptic transmission by P2Y receptors in the CNS. The cartoon shows an idealized inhibitory
(GABAergic) synapse between an inhibitory interneuron and an excitatory principal cell. The effects of P2Y receptors have been described in
different brain areas. For more details see text. GABAAR, GABAA receptor; Glu, glutamate; LTP, long-term potentiation; P2YR, P2Y receptor;
P2Y
1
R, P2Y

1
receptor.

membrane receptors and channels in the CNS [61] (Figures
1 and 2). Relatively few data exist demonstrating that P2Y
receptors modulate other G protein-coupled receptors. The
internalization of the metabotropic glutamate receptor 1
(mGluR1), normally triggered by glutamate, can also be
triggered by activation of P2Y

1
receptors [62].

In addition, various interactions of P2Y receptors with
ionotropic receptors are known. Postsynaptically located
NMDA receptors were inhibited by P2Y

1
receptor activation

in layer 5 pyramidal cells of the PFC by the G𝛽𝛾 sub-
unit [63, 64] (Figure 1). On the contrary, P2Y

4
receptors

exerted positive influence on NMDA receptors. However,
this effect required the release of glutamate from astrocytes
via P2Y

4
receptors, which acts on postsynaptic group I

mGluRs to enhance the NMDA-mediated current [65]. The
sensitivity of postsynaptic GABAA receptors in Purkinje cells
was enhanced by P2Y

1
receptor activation through a Gq-

mediated increase in intracellular calcium concentration [66]
(Figure 2). P2Y

2
receptors enhanced currents through Ca2+

permeable transient receptor potential vanilloid 1 (TRPV1)
channels [67–69]. Although the interaction was found in the

peripheral nervous system, TRPV1 are also expressed in the
cerebral cortex and hippocampal pyramidal cells [70] and
exert a role in synaptic plasticity [71]. P2X receptors have
a Ca2+ permeability comparable to NMDA receptors [42,
72] that make them potential candidates for the induction
of synaptic plasticity. P2X receptors were inhibited by the
activation of P2Y

1
receptors [23, 24].

In summary, P2Y receptors differentially influence the
postsynaptic effects of neurotransmitters. Excitatory trans-
mission mediated by postsynaptic NMDA receptors is
inhibited by the activation of P2Y receptors, whereas
inhibitory transmission through GABAA receptors seems to
be enhanced.

2.3. Modulation of Voltage-Gated Ion Channels. A typical
downstream effect of G protein-coupled receptors is to
regulate activity of voltage-gated ion channels. P2Y receptors
modulated a number of channels expressed in the CNS and
that are critically involved in both synaptic transmission and
plasticity [61, 73] (Figure 1). VACCs are a common target of
P2Y receptors [74]. Almost all P2Y receptor subtypes have
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been shown to inhibit N-type VACCs [45, 51, 74–79] by
the 𝛽𝛾 subunit of the G protein binding to the channel in
a membrane delimited manner [45, 51]. In addition, P/Q-
type VACCs were inhibited by the activation of G𝛽𝛾 [74,
80], whereas the inhibition of the L-type channels seems
to involve diffusible second messengers and protein kinases
activated by G𝛼 [81–83]. N- and P/Q-type channels are
involved in fast presynaptic neurotransmitter release in the
CNS; L-type channels are rather localized postsynaptically
and regulate dendritic signal integration, neuronal excitabil-
ity, synaptic plasticity, and gene expression [84]. Thus, P2Y
receptors are able to affect all these neuronal processes by
interacting with different VACC subtypes (Figure 1).

Different types of potassium channels were shown to be
modulated by P2Y receptors [73] (Figure 1). Voltage-gated
KCNQ2/3 channels are located in the perisomatic region of
pyramidal cell dendrites and are typically closed by activation
of Gq-coupled receptors [85]. Almost all subtypes of P2Y
receptors have been shown to inhibit KCNQ2/3 channels by
activating Gq and intracellular Ca2+-dependent mechanisms
or by PIP

2
depletion [86–89]. KCNQ2/3 channels open

as neurons approach the threshold for action potential.
Because their activation is slow, they are not involved in the
repolarization but rather in the afterhyperpolarization thus
preventing burst firing of the cell [90].Their inactivation by a
G protein-coupled receptor such as P2Y facilitatesmembrane
excitability andmayhave a role in themodulation of dendritic
integration.

Gprotein-coupled inwardly rectifyingpotassium (GIRK1,2,4)
channels also contribute to the hyperpolarization of neurons
[91] and were found to be activated by P2Y

1
, P2Y
2
, and P2Y

12

receptors [92–96]. Interestingly, the fast activation of the
GIRK channels byG𝛽𝛾 and the subsequent hyperpolarization
of the membrane were followed in case of P2Y

1
and P2Y

2

receptors by a slower inhibition of the channel by G𝛼 and the
subsequent activation of soluble second messengers within
the following minutes [92, 95, 96]. While P2Y

4
and P2Y

6

receptors only inhibitedGIRK channels, P2Y
12
receptors only

opened them [96].The slower inhibition is also able to reduce
the activation of the channel by other GPCRs, for example, by
norepinephrine.The fast activation of the potassium channel
causes a stabilization of the resting membrane potential
around the potassium equilibrium potential, whereas the
slow inactivation is able to depolarize neurons expressing this
pathway. In addition, neuronal calcium-activated potassium
channels were shown to be activated by P2Y

1
receptors.

The increase in intracellular Ca2+ upon activation of Gq-
coupled P2Y receptors opens these potassium channels and
hyperpolarizes the membrane [97–100].

In conclusion, depending on the subcellular expression,
P2Y receptors acting on voltage-gated membrane channels
are able to inhibit neurotransmitter release, modulate den-
dritic integration, facilitate neuronal excitability, or affect
other various neuronal functions such as synaptic plasticity
or gene expression.

3. Modulation of Neuronal Circuits

A number of studies investigated the cellular and subcel-
lular distribution of P2Y receptors in the brain. In the

hippocampus, P2Y
1
receptors were located on somata and

apical and basal dendrites of pyramidal cells [54, 101, 102].
Additionally, interneurons close to the pyramidal cell layer
[101–103] or stratum radiatum interneurons expressing cal-
bindin or calretinin were also stained for P2Y

1
receptors

[104]. While activation of P2Y
1
receptors did not change

the membrane potential in pyramidal cells, their activation
on interneurons induced an inward nonselective cationic
current likely via activating TRP channels and suppressing
theK+ conductance (Figure 2) [103, 104].This depolarized the
interneuron membrane by ∼10mV and increased the firing
frequency of the cells resulting in increased IPSC frequency
in pyramidal neurons [103, 104]. In the cerebral cortex, P2Y

1

receptors were located on somata and dendrites of pyramidal
cells [44, 101], on axon terminals [44], and on parvalbumin
containing GABAergic cells in the PFC [44]. They were also
described on stellate-like cells in the sensory-motor cortex,
medial temporal cortex, and PFC [101]. P2Y receptors seem
to have similar roles in the cerebellar cortex, where, together
with P2X receptors, they were found to increase the activity
of inhibitory basket and stellate neurons projecting onto
Purkinje cells and thus decreased the main cerebellar output
activity [66, 105, 106]. Therefore, it can be concluded that
although purinergic P2Y receptors display an excitatory effect
on cell somata on the cellular level, they increase the overall
inhibition in two different circuits in the brain by selectively
stimulating inhibitory GABAergic interneurons [42].

Although tonic inhibition by volume release of GABA
represents one form of cortical inhibition [107], the diversity
of GABAergic interneurons in the cortex suggests that their
role in neuronal circuits cannot be entirely assigned to a
general inhibition. Rather, the role of interneuron firing has
to be understood in context of the circuit to which the
interneuron type contributes. Interneurons gate the informa-
tion flowwithin a circuit and are thus important to coordinate
networks [108]. Different interneuron subtypes have been
described, involved in different network functions such
as dendrite-targeting interneurons (modulation of synaptic
efficacy and plasticity of excitatory inputs onto pyramidal
cells), interneuron specific interneurons (inhibition of other
interneurons), and perisomatic interneurons (synchroniza-
tion of firing and generation of network oscillations) [109–
111]. To understand how P2Y receptors affect neuronal net-
works, the effects of P2Y receptors on identified interneuron
types need to be addressed. Therefore, more information is
needed in relation to which interneurons express functional
purinergic receptors and how this affects the activity of the
network.

The effect of P2Y receptors on neuronal networks was
investigated in the hippocampus [112], where P2Y

1
receptors

displayed a stimulatory effect on gamma oscillations in the
CA3 area. This was likely mediated by the depolarization
of parvalbumin containing perisomatic inhibitory basket
cells [103] known to be responsible for the synchronization
in the gamma band by rhythmic release of GABA onto
pyramidal cells [113]. However, the inhibitory effect of P2X
receptors on oscillations seems to be the dominating effect
of endogenously released ATP [112]. On the other hand,
P2Y receptors play no role in epileptic network activity
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[114]. Gamma oscillations are involved in higher cognitive
functions in the brain by functionally connecting neurons
within a local network and between assemblies in different
brain areas [115]. In addition, disturbed gamma oscillations
have been observed in a line of neuropsychiatric diseases
such as schizophrenia, autism spectrum disorders, and
Alzheimer’s disease (AD) [116, 117]. We suggest that P2Y

1

receptors, expressed on perisomatic interneurons, are in an
ideal position to effectively modulate gamma oscillations and
by this mechanism cognitive functions and the development
of psychiatric diseases.

In conclusion, P2Y receptors are expressed postsynap-
tically on dendrites of pyramidal cells and possibly on
glutamatergic terminals. In addition, they are present on
different types of interneurons in the cortex, including the
parvalbumin containing basket cells. It seems likely that, on
a network level, P2Y receptors selectively excite interneurons
in different cortical areas such as the hippocampus and the
cerebellum. Due to the diversity of cortical and hippocam-
pal interneuron subtypes and their physiological functions
within the circuit it is of great interest to better understand
the cellular distribution of purinergic receptors on different
interneuron types.

Gap junctions contribute to network synchronization and
are an essential part in the generation and modulation of
network activity [118]. Pannexin/connexin hemichannels, on
the other hand, are also involved in the release of ATP [119].
Pannexin 1 channels have been shown to be activated by
P2Y receptors [120] suggesting that P2Y receptors are able to
increase the fast electric communication between cells.

4. Involvement in Gliotransmission

The term tripartite synapse describes that, besides the
presynaptic nerve terminal and the postsynaptic part of
the neuron, processes of astrocytes also participate in the
synaptic signaling by bidirectional regulation of neuronal
communication [121–123]. Microglia also contact synapses
and oligodendroglia have additionally been found to express
receptors for neurotransmitters [124, 125]. Astrocytes detect
synaptic activity via ionotropic or metabotropic neurotrans-
mitter receptors [126] which cause changes of astrocytic
intracellular Ca2+ inducing the release of various signaling
molecules, such as glutamate, ATP, and D-serine [30]. Glio-
transmitters have been shown to act on neurons in a timescale
of seconds to minutes to regulate synaptic transmission and
plasticity. ATP has a twofold role in the bidirectional neuron-
glia communication. First, ATP released from neurons upon
activity or during pathological conditions stimulates astro-
cytes by activation of P2Y

1
receptors [123] (Figures 1 and

2). Second, ATP released from astrocytes can influence the
function of neurons via activation of P2X and P2Y neuronal
receptors [127] (Figures 1 and 2). Moreover, P2Y

1
receptors

on neighboring astrocytes are able to amplify the astrocyte
stimulation by mediating the propagation of Ca2+ waves
within the astrocytic network [128]. Bidirectional signaling
between glia and neurons occurs by volume transmission
[129, 130], and the concentration of the released transmitter
drops rapidly from the release site. For that reason, receptors

that are involved in neuron-glia-neuron communication,
such as purinergic receptors, must have a high affinity for its
agonist and a slow desensitization [122].

5. P2Y Receptors and Synaptic Plasticity

Several lines of evidence indicate that large amounts of ATP
released under pathological conditions such as brain injury or
ischemia are able to trigger synaptic plasticity by activation
of P2X receptors [131–136]. This plasticity was found to be
bidirectional depending on the amount and dynamics of Ca2+
influx through P2X channels [131, 132, 137]. Interestingly,
ATP released under more physiological conditions is also
able to modulate synaptic plasticity acting on P2X receptors.
This modulation was shown to be an inhibition of long-
term potentiation (LTP) via Ca2+-dependent inactivation of
NMDA receptors [138, 139] or a facilitation of LTP in the
hippocampus [134, 140]. It has been suggested that amoderate
and slow increase of intracellular Ca2+ generally induces
a depression of synaptic transmission via the activation of
protein phosphatases and the subsequent internalization of
AMPA receptors in the membrane, whereas stronger and
faster Ca2+ changes induce LTP by activation of protein
kinases [136].

Aside from P2X channels, P2Y receptors were also found
to have a modulatory role in synaptic plasticity. In the medial
habenula nucleus, a region involved in stress, depression, and
nicotine withdrawal [141], LTP of AMPA-receptor mediated
currents was observed after a 5-minute application of UTP or
UDP [142] via activation of presynaptic P2Y

4
receptors.

In the cerebellum, P2X receptors have been described
on Purkinje cells [143, 144], but ATP was not able to evoke
membrane conductances suggesting the absence of func-
tional P2X receptors [105, 106]. On the contrary, P2Y receptor
activation was shown to evoke Ca2+ transients [66, 145].
Accordingly, activation of P2Y receptors induced LTP of the
GABAergic transmission between cerebellar interneurons
and Purkinje cells via Ca2+-dependent increase of GABAA
receptor sensitivity [66] (Figure 2).

In the CA1 area of the hippocampus, ATP released
from astrocytes upon stimulation resulted in heterosynaptic
long-term depression (LTD) of synapses from untetanized
neighboring neurons. This was caused by the activation of
presynaptic P2Y receptors and the inhibition of glutamate
release [149]. Heterosynaptic LTD increases the spatial sharp-
ness of activity-dependent induced LTP.The findings indicate
thatATP release fromactivated astrocytes and the subsequent
activation of P2Y receptors are involved in this form of
plasticity.

In layer 5 pyramidal cells of the PFC, activation of P2Y
1

receptors decreased the proportion of cells that develop
LTD [64] whereas blockade of P2Y

1
receptors increased

the fraction of plastic cells. In the same cells, pairing a
low-frequency presynaptic stimulation with a postsynaptic
depolarization induced LTD of excitatory postsynaptic cur-
rents [150] (Figure 1). The induction of LTD was dependent
on the intracellular increase of calcium via mGluR1s and
VACCs. Activation of P2Y

1
receptors inhibited the induc-

tion of LTD. This blockade was absent in the presence of
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Table 1: Pharmacological or genetic P2Y
1
receptor intervention and cognition in animals.

Cognitive
domain

Pathological
model Drug/KO Effect on P2Y

1
R Appl. Species Behavioural task Effects Reference

Aversive
memory pMCAO MRS 2500 Antagonist i.c.v. Mice Passive

avoidance test n.s. [146]

Fear-based
learning

MCAO MRS 2500 Antagonist

i.c.v Mice

Contextual fear
conditioning

test

Reversal of
deficit [147]

MCAO P2Y
1
R KO Knockout

Contextual fear
conditioning

test

Reversal of
deficit [147]

Recognition
memory pMCAO MRS 2500 Antagonist i.c.v. Mice Object

recognition test
Reversal of
deficit [146]

Spatial memory

pMCAO MRS 2500 Antagonist i.c.v. Mice Morris water
maze

Reversal of
deficit [146]

Controlled
cortical impact

injury
MRS 2179 Antagonist i.c.v. Mice Morris water

maze
Reversal of
deficit [148]

Working
memory pMCAO

MRS 2500 Antagonist i.c.v. Mice Y-maze test Reversal of
deficit [146]

MRS 2365 Agonist Bilateral infusion
into PFC Rats DNMTP task Impairment [44]

Reversal
learning MRS 2365 Agonist Bilateral infusion

into PFC Rats Reversal
learning task Impairment [44]

Sensory-motor
gating MRS 2365 Agonist Bilateral infusion

into PFC Rats PPI of acoustic
startle response Attenuation [44]

Appl., application; DNMTP, delayed nonmatching to position; i.c.v., intracerebroventricular; KO, knockout; MCAO, middle cerebral artery occlusion; n.s.,
nonsignificant; P2Y1R, P2Y1 receptor; PFC, prefrontal cortex; pMCAO, permanent middle cerebral artery occlusion; PPI, prepulse inhibition.

selective antagonists and in mice lacking P2Y
1
but not P2Y

2

receptors confirming the sole involvement of P2Y
1
receptors.

P2Y receptors inhibited Ca2+ transients in apical dendrites
of pyramidal cells suggesting that this is the mechanism
responsible for the inhibition of LTD by P2Y

1
receptors. In

addition, ATP, released under hypoxia, was found to inhibit
LTD. This effect was mediated by P2Y

1
receptors because

application of a P2Y
1
receptor antagonist during hypoxia

allowed the induction of LTD [150].
These data suggest that effects of P2Y receptors on

synaptic plasticity in the hippocampus and cerebellar cortex
are different than those found in the PFC. While the effect of
P2Y receptors in the hippocampus and cerebellar cortex was
to develop both LTP and heterosynaptic LTD, the activation
of P2Y

1
receptors caused an inhibition of LTD in the PFC.

6. Pathophysiological Role of
Central P2Y Receptors

Among P2Y receptors, P2Y
1
receptors were suggested as

one of the predominant targets of ATP in mediating danger
signals in the brain during, for example, ischemia [22, 146,
151] or trauma [148, 152]. One of the main roles of P2Y

1

receptors under pathological circumstances is the modu-
lation of astrocytic networks by mediation of Ca2+ waves
and activation of astrocytes upon mechanical injury [153],
ischemia [154], or AD [155]. The Ca2+ waves evoked by
mechanical trauma depressed the activity of neural circuits

after mechanical injury [148]. Blockade or deletion of the
P2Y
1
receptors was shown to reduce the infarct volume

[22] and cell death in the hippocampus [148] suggesting
the mediatory role of the receptor in these processes. P2Y

1

receptors were found to colocalize with neurofibrillary tan-
gles and amyloid 𝛽 (A𝛽) plaques characteristic to AD [156]
and reactive astrocytes near A𝛽 plaques showed enhanced
P2Y
1
receptor mediated Ca2+ signaling [155]. The astrocytic

hyperactivity could be blocked by inhibiting the release of
ATP or by pharmacological antagonism of P2Y

1
receptors.

This suggests that substances that prevent the effect of ATP
on P2Y

1
receptors could be used as therapeutic tools for the

treatment of AD [157, 158].
On the contrary, activation of other P2Y receptors was

described to have neuroprotective effects in neuroinflamma-
tory processes such as AD [158].While activation of the P2Y

2

receptors stimulated neurite outgrow and nonamyloidogenic
processing of amyloid precursor protein [159] as well as
uptake of A𝛽 [160], knockdown of the receptors was shown
to increase AD pathology [161]. Similarly, P2Y

4
receptors

present on microglia were also found to play a role in the
uptake of A𝛽 [162] and P2Y

12
receptors were described

to stimulate microglial migration towards neuronal damage
[163]. Finally, activation of P2Y

13
receptors on rat primary

cerebellar neurons was shown to protect against oxidative
stress-induced neuronal death [164].

Emerging evidence indicates that P2Y
1
receptors are

involvedinthedevelopment of cognitive deficits after traumatic
brain injury or focal cerebral stroke (Table 1). Antagonism
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of P2Y
1
receptors improved cognitive deficits after con-

trolled cortical impact brain injury [148]. Short (45min)
middle cerebral artery occlusion (MCAO) caused long-
lasting sensory-motor and cognitive deficits in mice and rats
[147].While the neurological deficits recovered within weeks,
cognitive deficits persisted for long time representing the
main clinical problem after ischemia. In P2Y

1
knockout mice

and after antagonism of P2Y
1
receptors, the cognitive decline

afterMCAOcompletely failed, whereas the transient sensory-
motor symptoms were still present [147]. Similarly, perma-
nent MCAO induced neuronal damage, astrogliosis, and
microgliosis and decreased working and reference memory
performances [146]. P2Y

1
receptor antagonism attenuated

the neuronal damage and the cognitive performance without
inhibiting the astrocytic or microglial reactivity upon brain
injury [146] suggesting that neuronal mechanisms are pre-
dominantly involved in the neuroprotective effects of P2Y

1

receptor antagonism. Application of a selective P2Y
1
receptor

agonist into themedial PFC impaired cognitive performances
in working memory and learning tasks [44]. In the same
study, stimulation of P2Y

1
receptors was found to attenuate

prepulse inhibition of the acoustic startle reflex without
affecting the startle response amplitude [44]. Deficits of pre-
pulse inhibition indicate the reduced capability to filter out
unnecessary information that is observed in schizophrenic
patients [147].

All together, we suggest that the procognitive and neu-
roprotective effects provided by P2Y

1
receptor antagonists

may have two components. First, the reduction of glial
cell activation may inhibit the network depressing effect of
astrocytic calcium waves. Second, the modulation of neu-
ronal communicationmight influence synaptic transmission,
plasticity, and network activity such as neuronal oscillations.
The presented data indicate that P2Y receptors, particularly
P2Y
1
receptors, are emerging targets for the treatment of

pathological processes that involve cognitive dysfunction.
Antagonists of the P2Y

1
receptor may protect against cog-

nitive impairments after brain injury and have nootropic
effects. In contrast, activation of P2Y

2
, P2Y

4
, P2Y

12
, and

P2Y
13

receptors may have a protective effect and might be
beneficial in the treatment of neurodegenerative diseases.

7. Conclusion

P2Y receptors are activated by ATP released from astrocytes
and neurons upon increased neuronal activity or under
pathophysiological conditions. They are able to modulate
synaptic transmission and plasticity by interactions with
voltage-activated calcium and potassium channels, as well
as ionotropic receptors. In the hippocampus and the cere-
bellar cortex, P2Y receptors activate inhibitory GABAergic
interneurons playing a key role in timing and organization of
principal cell firing. The modulatory effects of P2Y receptors
on membrane channels and receptors are sufficient to influ-
ence synaptic transmission and plasticity which may sustain-
ably affect the connectivity between different excitatory and
inhibitory cell types and thus the network activity in different
brain areas. Therefore, P2Y receptors represent important
pharmacological targets to treat cognitive dysfunctions and

neuropsychiatric diseases, such as Alzheimer’s disease and
schizophrenia.
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“ATP inhibits glutamate synaptic release by acting at P2Y
receptors in pyramidal neurons of hippocampal slices,” Journal
of Pharmacology and Experimental Therapeutics, vol. 293, no. 1,
pp. 172–179, 2000.

[48] R. J. Rodrigues, T. Almeida, P. J. Richardson, C. R. Oliveira, and
R. A. Cunha, “Dual presynaptic control by ATP of glutamate
release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory
P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus,”
Journal of Neuroscience, vol. 25, no. 27, pp. 6286–6295, 2005.

[49] S. Koizumi, K. Fujishita, M. Tsuda, Y. Shigemoto-Mogami, and
K. Inoue, “Dynamic inhibition of excitatory synaptic trans-
mission by astrocyte-derived ATP in hippocampal cultures,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 19, pp. 11023–11028, 2003.



Neural Plasticity 9

[50] G. C. Bennett andM. R. Boarder, “The effect of nucleotides and
adenosine on stimulus-evoked glutamate release from rat brain
cortical slices,” British Journal of Pharmacology, vol. 131, no. 3,
pp. 617–623, 2000.

[51] A. K. Filippov, T. E. Webb, E. A. Barnard, and D. A. Brown,
“Inhibition by heterologously-expressed P2Y2 nucleotide
receptors of N-type calcium currents in rat sympathetic
neurones,” British Journal of Pharmacology, vol. 121, no. 5, pp.
849–851, 1997.

[52] R. Donato, R. J. Rodrigues, M. Takahashi et al., “GABA release
by basket cells onto Purkinje cells, in rat cerebellar slices, is
directly controlled by presynaptic purinergic receptors, mod-
ulating Ca2+ influx,” Cell Calcium, vol. 44, no. 6, pp. 521–532,
2008.
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[153] H. Franke, U. Krügel, R. Schmidt, J. Grosche, A. Reichenbach,
and P. Illes, “P2 receptor-types involved in astrogliosis in vivo,”
British Journal of Pharmacology, vol. 134, no. 6, pp. 1180–1189,
2001.

[154] J.-J. Sun, Y. Liu, and Z.-R. Ye, “Effects of P2Y1 receptor on glial
fibrillary acidic protein and glial cell line-derived neurotrophic
factor production of astrocytes under ischemic condition and
the related signaling pathways,” Neuroscience Bulletin, vol. 24,
no. 4, pp. 231–243, 2008.
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