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Abstract
Purpose To quantify the bias of shear wave speed (SWS) measurements in a viscoelastic phantom across six different 
ultrasound (US) systems and to compare the SWS with those from transient elastography (TE) and magnetic resonance 
elastography (MRE).
Methods A viscoelastic phantom of stiffness representing fibrotic liver or healthy thyroid was measured with nine (linear 
probe) and 10 (convex probe) modes of six different US-based shear wave elastography (SWE) systems using linear and 
convex probes. SWS measurements of three regions of interest were repeated thrice at two focal depths, coupling the probe 
to the phantom using a jig. An MRE system using three motion-encoding gradient frequencies of 60, 90, and 120 Hz and 
TE were also used to measure the stiffness of the phantom.
Results The SWS from different SWE systems had mean coefficients of variation of 9.0–9.2% and 5.4–5.6% with linear and 
convex probes, respectively, in viscoelastic phantom measurement. The focal depth was a less significant source of SWS 
variability than the system. The total average SWS obtained with US-SWE systems was 19.9% higher than that obtained with 
MRE at 60 Hz, which is commonly used in clinical practice, and 31.5% higher than that obtained with TE using the M probe.
Conclusions Despite the measurement biases associated with the SWE systems, biases were not necessarily consistent, 
and they changed with the probes used and depth measured. The SWS of the viscoelastic phantom obtained using different 
modalities increased according to the shear wave frequency used.
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Introduction

Quantitative elastography has been widely used to evaluate 
liver fibrosis or differentiate malignant from benign lesions 
in various organs. According to Evidence-based Clinical 
Practice Guidelines for Liver Cirrhosis 2020 (3rd edition), 

sufficient evidence has already been demonstrated, and the 
usefulness of elastography, including ultrasound (US) and 
magnetic resonance elastography (MRE), is considered basic 
knowledge in the diagnosis of cirrhosis [1]. Although tran-
sient elastography (TE), which is a one-dimensional US-
based elastography using a dedicated machine, has been the 
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gold standard for the measurement of liver stiffness, shear 
wave elastography (SWE), including point SWE (pSWE) 
and two-dimensional color-coded SWE (2DSWE), which 
can be performed with a standard ultrasonography device, 
is more often performed clinically to evaluate the stiffness 
of various organs other than the liver. MRE has also been 
used to measure liver stiffness as a robust and reproducible 
method that can evaluate a large area [2]. There is a good 
correlation between shear wave speed (SWS) obtained with 
SWE and those obtained with TE and MRE, which were 
used as a reference [3–6].

Many studies have evaluated the diagnostic performance 
of US-based SWE (US-SWE) technology for the assess-
ment of liver fibrosis or tumor malignancy and showed that 
US-SWE is a valid imaging biomarker for detection and, 
to some degree, staging of fibrosis [7] and differentiating 
between malignant and benign tumors [8, 9]. However, 
various optimal cutoff values have been proposed depend-
ing on the device, making it difficult to directly compare 
data obtained from different devices [10, 11]. Clinicians are 
uncertain whether they can use the cutoff value reported in 
studies using US systems other than their own. The major 
factor that causes bias is that the method of setting the region 
of interest (ROI) and the conditions for applying push pulses 
in SWS measurement vary among different SWE systems or 
among the software versions even in the same system.

Recently, some studies have evaluated the measurement 
bias between different US systems using phantoms and the 
human liver [12, 13]. Gilligan et al. [12] reported that the 
mean coefficients of variation (CV) across six 2DSWE sys-
tems were 2.2–4.4% in elastic phantoms and 6% in human 
liver, and Palmeri et al. [13] reported mean difference 95% 
confidence intervals (CIs) of 9.6% in elastic phantoms and 
15.3% in viscoelastic phantoms. These studies evaluated 
variabilities using a convex probe, because SWS is most 
often used for the diagnosis of liver fibrosis. However, clini-
cians examining superficial organs, such as the breast and 
thyroid, want to know the variabilities in the case of use of 
linear probes.

The Quantitative Imaging Biomarker Alliance (QIBA), 
founded by the Radiological Society of North America, pro-
posed a profile dedicated to standardizing MRE and SWS 
measurements by identifying bias in measurements and 
establishing a phantom suitable for characterization of data 
acquired from different systems [14, 15]. We have devel-
oped original multimodal phantoms for US and MRE and 
evaluated the agreement between SWS obtained from US 
and MRE [16]. We have also made a viscoelastic phantom 
of stiffness representing fibrotic liver or healthy thyroid that 
fulfills the QIBA acoustics specifications, which include 
speed of sound and attenuation coefficient [17, 18].

The aim of this study was to determine the bias in SWS 
measurements between commercially available US systems 

in a viscoelastic phantom and to compare them with the 
SWS obtained with TE and MRE.

Materials and methods

Phantom

A cylindrical viscoelastic phantom (diameter = 18  cm, 
height = 16 cm) for MR and US elastography was con-
structed using polyacrylamide (PAAm) gel [17]. It was 
composed of a three-dimensional network polymer and a 
large amount of liquid, which provided the MR signal. The 
storage modulus (G′) of the PAAm gel is mainly dependent 
on the acrylamide concentration, whereas the density of the 
three-dimensional network polymer is mainly dependent on 
the concentration of the cross-linker. Meanwhile, the loss 
modulus (G″) mainly depends on the ratio of glycerin to 
water. Aluminum oxide powder was added to the PAAm 
gel to generate US scattering. The tan δ (= G′/G″) of the 
liver was reported to be approximately 0.3 for both healthy 
volunteers and patients with liver fibrosis [19].

The phantoms for evaluation of the acoustic characteris-
tics were cylinders with a diameter of 11 cm and height of 
2 cm. The following substances and respective concentra-
tions were used to fabricate the phantom: 13 wt% acryla-
mide, 1 wt% glycerin, 82 wt% water, 3 wt% aluminum 
oxide powder, and a total of less than 1 wt% of cross-linker, 
polymerization accelerator, and polymerization initiator. 
The procedure employed for fabricating the phantom was 
as follows. First, degassing was performed while mixing the 
acrylamide, glycerin, and cross-linker in water. Next, this 
mixture was cooled to 6 °C, the aluminum oxide powder 
and polymerization initiator were then mixed into it, and 
the polymerization accelerator was finally added [17, 18].

The acoustic characteristics, speed of sound, and attenu-
ation coefficient were evaluated by analyzing the three-
dimensional (3D) radio frequency (RF) signals acquired 
using a laboratory-made ultrasonic scanner with a single-
element transducer with an aperture diameter of 6.35 mm 
and F-number of 5.25 (Model V310; Panametrics, WA, 
USA). The center frequency and − 6 dB bandwidth of the 
transducer were 5.0 MHz ± 2.0 MHz. The transducer was 
excited by a pulser/receiver (Model 5800; Panametrics, WA, 
USA) [20]. The energy level of the pulser was 12.5 µJ, and 
the cutoff frequencies of the low- and high-pass filters in the 
receiver were 1 and 35 MHz, respectively. The RF echo sig-
nals were digitized to 12 bits and sampled at 100 MHz using 
an oscilloscope (HDO6104; Lecroy, NY, USA). Two types 
of RF signals were acquired without a phantom (reference 
data) and with the phantom placed on an acrylic board in 
degassed water at 20 °C to calculate the speed of sound and 
the attenuation coefficient of the phantom. The transducer 
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was mechanically scanned in the lateral plane with a scan-
ning pitch of 100 µm using three-axis linear motor stages 
(MTN100CC; Newport, CA, USA). The collection volume 
for the 3D RF data was 4,096 samples in depth for each 
scan line, and 100 × 100 lines in the lateral plane. This gate 
length included the surfaces of the phantoms and the acrylic 
board. The speed of sound and attenuation coefficient for the 
phantom were evaluated using the reflector method [21]. 
The speed of sound v was calculated from the time of flight 
based on the propagation peak-to-peak delay time as follows:

where Cref is the speed of sound in degassed water at 20 °C; 
tref is the time of flight from the transducer to the reflec-
tor surface with no phantom; and tp1 and tp2 are the times 
of flight from the transducer to the phantom and reflector 
surfaces, respectively, with the phantom. The attenuation 
coefficient for the phantoms was calculated from the total 
attenuation αtotal (f, d) [dB/cm] computed from the normal-
ized power spectrum as follows:

where Sp(f , d) and Sref (f , d) are the power spectra of the 
echo signals from the phantom–reflector boundary with a 
phantom and the water–reflector boundary with no phan-
tom at a frequency f and a depth d. The attenuation coef-
ficient α0 was calculated as the slope of the linear equation 
αtotal(f , d) = a0f + b using the least-squares method with 
a − 6 dB bandwidth. The speed of sound and the attenuation 
coefficient were evaluated for each 3D scan line and aver-
aged as 1560 ± 0.9 m/s and 0.5 ± 0.01 dB/cm/MHz, respec-
tively. These acoustic characteristics satisfied the QIBA 
acoustics specification (speed of sound = 1540 ± 20 m/s, 
attenuation coefficient = 0.6 ± 0.2 dB/cm/MHz [14]). The 
viscoelasticity and acoustic properties of the phantom used 
in this study were adjustable, and the phantom could main-
tain physically stable properties for more than 18 months 
[17, 18].

Ultrasound examination

The commercial ultrasound systems used were the follow-
ing: Aplio i800 (Canon Medical Systems, Tokyo, Japan), 
ARIETTA 850 (FUJIFILM Healthcare, formerly Hitachi, 
Tokyo, Japan), LOGIQ E10 (GE Healthcare, Chicago, 
IL, USA), EPIQ Elite (Philips, Bothell, WA, USA), Aix-
plorer (SuperSonic Imagine, Aix-en-Provence, France), and 

v = Cref

(

tref − tp1

tp2 − tp1

)

,

�total(f , d) =
8.686

2d
loge
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Sp(f , d)

Sref (f , d)

)

,

ACUSON Sequoia (Siemens Healthineers, Mountain View, 
CA, USA). A FibroScan 430 mini (Echosens, Paris, France), 
a TE system, was used for comparison (Table 1).

For each device, measurements were performed using lin-
ear and convex probes, with the probe coupled to the phan-
tom on the acoustic absorber using a jig (Fig. 1). One ultra-
sound technician, with 26 years of experience in sonography 
and 14 years of experience assessing liver stiffness with US, 
fixed the probe to the phantom to give the same level of pres-
sure as in clinical examinations. For devices that have both 
pSWE and 2DSWE applications or have a phantom mode in 
addition to the clinical mode, measurements were performed 
using all these modes. Hence, the SWS was measured using 
nine modes with linear probes and 10 modes with convex 
probes. SWS was measured at depths of 2 and 3 cm with a 
linear probe, as well as at depths of 3 and 4 cm with a convex 
probe (Table 1). SWS measurements were acquired at three 
ROIs, i.e., at the center of the phantom and at both sides 
of the phantom at each depth of the phantom (Fig. 2), and 
the measurement was repeated three times. Consequently, 
nine data points were obtained for one depth of each mode. 
A circular ROI with a diameter of 1 cm for 2DSWE and 
a rectangular ROI of fixed size for pSWE were used. For 
FibroScan, M and XL probes were used, and the measure-
ments were repeated three times at the same three positions 
as other SWE systems. FibroScan displays liver stiffness as 
Young’s modulus, and they were converted to SWS using 
the following equation: Young’s modulus (Pa) = 3 ×  103 (kg/
m3) ×  SWS2  (m2/s2), assuming a tissue density of 1 g/mL and 
a Poisson’s ratio of 0.5.

All ultrasound examinations were performed on a sin-
gle day in April 2019 at the office of the Japan Society of 
Ultrasonics in Medicine at room temperature, which was 
maintained at 20 °C.

Magnetic resonance elastography examination

MRE examination was performed using a 0.3-T open MRI 
system [FUJIFILM Healthcare (formerly Hitachi), Tokyo, 
Japan] and a custom-made cylindrical passive pneumatic 
driver connected to a commercial loudspeaker, based on a 
design used in a previous study [22]. The passive driver was 
positioned at the center of the top surface of the phantom. A 
spin-echo echo-planar MRE sequence [a motion-encoding 
gradient (MEG) was added to spin-echo echo-planar imag-
ing using the sequence development environment of FUJI-
FILM Healthcare] was used to acquire coronal wave images. 
The imaging parameters were as follows: repetition time/
echo time = 3000/67 ms, imaging matrix = 116 × 116, field of 
view = 348 × 348  mm2, slice thickness = 3.0 mm, and num-
ber of slices = 15. Three frequencies (continuous sinusoidal 
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vibration) were selected for external excitation and MEG. 
The selected frequencies were 60 Hz (which is commonly 
used in clinical practice), 120 Hz (which is the highest fre-
quency the system can measure), and 90 Hz (which is an 
intermediate frequency between them). G′ and G″ were cal-
culated using a three-dimensional integral-type reconstruc-
tion formula [23]. MRE examination was performed 3 weeks 
after US examination, and the stiffness of the phantom was 
measured once.

Using the Voigt model for viscoelasticity, the SWS (m/s) 
for the MRE was calculated from G′ and G″ using the fol-
lowing equation [24]:

where ρ is the density of the material. An ROI was drawn 
in a circle with a diameter of 150 mm in the center of the 
phantom to avoid the peripheral area and thus avoid any 
error due to edge effects (Fig. 3).
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Fig. 1  Phantom and probe settings. A probe was coupled to the phan-
tom on an acoustic absorber using a jig

Table 1  Probes, measurement 
modes, and methods of six 
ultrasound systems using 
acoustic radiation force and 
one system using transient 
elastography

SWE shear wave elastography, 2D two-dimensional color-coded shear wave elastography, point point shear 
wave elastography

Vendor Equipment Probe Mode SWE method

Linear Convex

Canon medical systems Aplio i800 i18LX5 Breast 2D
i8CX1 Abdomen 2D

FUJIFILM healthcare 
(formerly Hitachi)

ARIETTA 850 L64 Thyroid Point
C252 Abdomen Point

GE healthcare LOGIQ E10 L2-9 Phantom 2D
L2-9 Breast 2D

C1-6 Phantom 2D
C1-6 Abdomen 2D

Philips EPIQ Elite eL18-4 Breast 2D
C5-1 Abdomen 2D
C5-1 Abdomen Point

SuperSonic imagine Aixplorer SL15-4 Breast 2D
SL15-4 Phantom 2D

XC6-1 Liver 2D
XC6-1 Phantom 2D

Siemens healthineers ACUSON Sequoia 10L4 Breast 2D
10L4 Breast Point

5C1 Abdomen 2D
5C1 Abdomen Point

Echosens FibroScan M, XL



147Journal of Medical Ultrasonics (2022) 49:143–152 

1 3

Fig. 2  Example of setting of region of interest: point shear wave elastography using a linear probe (a) and a convex probe (b) and two-dimen-
sional color-coded shear wave elastography using a linear probe (c) and a convex probe (d)

Fig. 3  Shear wave speed images obtained with magnetic resonance elastography at excitation frequencies of 60, 90, and 120 Hz, and the region 
of interest (red dashed circle) for the mean and standard deviation calculations (color figure online)
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Statistical analysis

The median, interquartile range (IQR), and IQR/median of 
nine SWSs from each mode were assessed, and the grand 
mean, standard deviation (SD), and CVc (% = SD/grand 
mean × 100) of the median SWS of 9 or 10 modes were 
calculated. The percentage of difference in SWS between 
the different measurement depths or different modalities 
is defined as 2 × (SWS1 − SWS2)/(SWS1 + SWS2) × 100, 
where SWS1 and SWS2 are the SWSs of different depths 
or different modalities. Because MRE was measured only 
once for each MEG frequency, the SWS of the MRE was 
described, with the mean and SD indicating spatial vari-
ation. The total average SWS obtained with the US-SWE 
systems using all modes, probes, and depths was compared 
with the SWS obtained with MRE at several frequencies 
and TE using the M and XL probes. Statistical analysis was 
performed using SPSS version 25.0 (IBM Corp., Armonk, 
NY, USA).

Results

The G′, G″, and tan δ of the phantom on MRE measure-
ments at 60 Hz were 3.1 kPa, 0.9 kPa, and 0.3, respectively. 
The median and IQR of the SWSs obtained from the SWE 
systems, TE, and MRE are summarized in Fig. 4 (linear 
probe) and Fig. 5 (convex probe). The horizontal dashed 

line in each plot represents the grand mean across all modes 
of the six SWE systems. The median SWS and IQR/median 
of each system and the grand mean, SD, and CV across all 
systems are summarized in Table 2. All IQR/median values 
were < 0.15, and the reproducibility of the measurement 
was considered to be high. The CVs were 9.0% and 9.2% 
at depths of 2 and 3 cm, respectively, for the linear probe 
and 5.4% and 5.6% at depths of 3 and 4 cm, respectively, 
for the convex probe. Most of the systems tended to yield 
a slower SWS in the deeper part than in the shallower part. 
The percentage of difference in SWS between the measure-
ment depths in the same SWE systems was 2.3% ± 3.6% for 
the linear probe and 3.6% ± 5.7% for the convex probe. The 
total average SWS obtained with US-SWE systems using all 
modes, probes, and depths was 2.2 m/s. The median SWS 
and IQR/median of TE were 1.6 m/s and 0.013, respectively, 
with the M probe and 1.7 m/s and 0.066, respectively, with 
the XL probe. The SWSs obtained with MRE at 60, 90, 
and 120 Hz were 1.8 ± 0.2, 2.0 ± 0.1, and 2.1 ± 0.2 m/s, 
respectively. Among the three different modalities, the SWS 
obtained with US-SWE was the highest, followed by the 
SWS with MRE, which was higher for higher frequencies 
among the three MEG frequencies, and the SWS with TE 
was the lowest. The SWSs obtained with US-SWE were 
19.9%, 9.4%, and 4.5% higher than the SWSs obtained with 
MRE at frequencies of 60, 90, and 120 Hz, respectively. 
They were also 31.5% and 26.1% higher than the SWSs 
obtained with TE using the M and XL probes, respectively. 

Fig. 4  Box and whisker plots showing the SWS measurements using 
linear probes for nine measurement modes from six ultrasound sys-
tems at two focal depths (2 and 3  cm), transient elastography, and 
MRE. The horizontal dashed line represents the grand mean across 
all of the modes. The SWS of MRE was described, with the mean and 

standard deviation indicating spatial variation. SWS shear wave speed, 
ph phantom mode, br breast mode, point point shear wave elastogra-
phy, 2D two-dimensional color-coded shear wave elastography, M M 
probe, XL XL probe, MRE magnetic resonance elastography
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Discussion

The present study, which quantified the bias of SWS meas-
urements in a viscoelastic phantom across six different US 
systems and compared the SWS with those from TE and MRE, 
revealed that the SWS measurement bias was associated with 
US-SWE systems, and that the CV of their medians was up to 
9.2% with a linear probe and 5.6% with a convex probe in vis-
coelastic phantom measurement. Because we measured SWS 
by fixing the probe to the phantom using a jig on an identical 
day in the same room, the factors of bias caused by aging of 
the phantom, room temperature, and operators were excluded.

A previous study of SWS measurement on an elastic phan-
tom with 2DSWE using a convex probe reported mean CVs 
ranging from 2.2% to 4.4% and a CV of 3.4% in a phantom 
with stiffness comparable to that of our phantom [12]. Consid-
ering that we measured the viscoelastic phantom with pSWE 
and 2DSWE, our CV of 5.4–5.6% using a convex probe is 
considered to be close to the previous results. In another study 
with pSWE and 2DSWE using a convex probe, the CV was 
not specified, but it could be calculated from the mean dif-
ference 95% CI described in the figure of the Tukey mean 
difference plot: the CVs were calculated as 4.9% for elastic 
phantoms and 7.8% for viscoelastic phantoms [13]. Consid-
ering that the US systems used were different and the SWE 
software has been improved, the results with the viscoelastic 
phantom are comparable to our result using the convex probe.

Although the SWS bias associated with each system 
exhibited some tendencies, these biases were not necessar-
ily consistent and changed with the probes used and depths 
measured. This is consistent with previous studies that 

reported that the bias changed across phantoms with dif-
ferent stiffnesses [12, 13]. Gilligan et al. [12] also disclosed 
vendor names in their paper, but the variability among the 
US systems was not completely consistent with those of our 
study. The bias due to measurement depth was a less signifi-
cant confounding factor than system variability, which was 
also similar to a previous study [13].

The SWS is independent of the shear wave frequency 
content in elastic media, but it depends on the frequency in 
viscoelastic media [19]. Viscosity causes dispersion in the 
propagating shear waves, which means that the resultant SWS 
is dependent on the frequency content of the shear wave, with 
the higher frequency components of the shear wave propa-
gating faster than the lower frequency components [13, 25]. 
The TE system generates a 50 Hz shear wave that is longitu-
dinally polarized along the ultrasound axis, whereas 60, 90, 
and 120 Hz were used for the MRE excitation frequency in 
our study. The frequency of SWS used for pSWE/2DSWE 
has not been revealed by the vendors, but it is believed to 
be 100–500 Hz [26]. In our study, the SWS obtained with 
SWE was the highest, followed by MRE and TE, and in the 
order of MEG frequency among the MREs. Our result was in 
agreement with the expected theoretical result for viscoelastic 
phantom measurement and consistent with previous studies 
comparing SWE with TE or MRE in the measurement of a 
viscoelastic phantom and the liver [10, 17].

There are many other causes of measurement variability 
between US systems in addition to frequency. For exam-
ple, the depth, shape, strength, and irradiation time of the 
push pulse; the three-dimensional spatial direction of shear 
wave propagation; the gate length of the detection pulse; 

Fig. 5  Box and whisker plots showing the SWS measurements using 
convex probes for 10 measurement modes from six ultrasound sys-
tems at two focal depths (3 and 4  cm), transient elastography, and 
MRE. The horizontal dashed line represents the grand mean across 
all of the modes. The SWS of MRE was described, with the mean and 

standard deviation indicating spatial variation. SWS shear wave speed, 
ph phantom mode, abd abdominal mode, point point shear wave elas-
tography, 2D two-dimensional color-coded shear wave elastography, 
M M probe, XL XL probe, MRE magnetic resonance elastography
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the characteristics of filters; and the shape and size of the 
ROI cause variability. Nevertheless, manufacturers do not 
completely disclose the processing algorithms and scanner 
sequencing used in their devices, which is considered an 
underlying factor of the problem; therefore, standardization 
among systems is required [10, 13].

In our study, the bias of SWS among different SWE sys-
tems was larger with a linear probe than with a convex probe 
even at the same depth of 3 cm. This may be due to the 
difference in the number of SWE modes used with linear 
and convex probes in our study, but the difference in the 
processing techniques between linear and convex probes, as 
described above, might have affected the results. Few studies 
have evaluated measurement bias using a linear probe, and 
further studies are needed.

There are some limitations to our study. First, we 
measured only one viscoelastic phantom. As in previous 
studies, the measurement variability might be different 
for measurements of harder or softer phantoms. We have 
established a method to create phantoms with different 
viscoelasticities [18], and we will investigate the influ-
ence of various viscoelasticities in the future. In the case 
of a linear probe, evaluation of its use in a shallow area 
with a depth of about 1 cm, which is commonly used in 
clinical settings, is also being planned for future studies. 
Finally, further research is also needed to examine SWS 
bias in measurement of the liver and other organs across 
different systems.

Table 2  Shear wave speed using linear and convex probes of six ultrasound systems

SWE shear wave elastography, 2D two-dimensional color-coded shear wave elastography, point point shear wave elastography, IQR interquartile 
range, SD standard deviation

Linear probes

Equipment Mode SWE method 2 cm depth 3 cm depth

Median speed (m/s) IQR/median Median speed (m/s) IQR/median

Aplio Breast 2D 2.40 0.017 2.35 0.009
ARIETTA Thyroid Point 1.99 0.005 1.97 0.036
LOGIQ Phantom 2D 2.21 0.009 1.97 0.137

Breast 2D 2.34 0.004 2.30 0.026
EPIQ Breast 2D 2.64 0.027 2.58 0.066
Aixplorer Phantom 2D 2.10 0.048 2.10 0.048

Breast 2D 2.10 0.048 2.10 0.048
ACUSON Breast Point 2.12 0.009 2.08 0.010

Breast 2D 2.16 0.056 2.16 0.065
Grand mean of medians ± SD 2.23 ± 0.20 2.18 ± 0.20
Coefficient of variation (%) 8.97 9.17

Convex probe

Equipment Mode SWE method 3 cm depth 4 cm depth

Median speed (m/s) IQR/median Median speed (m/s) IQR/median

Aplio Abdomen 2D 2.17 0.023 2.17 0.023
ARIETTA Abdomen Point 2.34 0.038 2.26 0.084
LOGIQ Phantom 2D 2.21 0.014 2.28 0.013

Abdomen 2D 2.32 0.004 1.95 0.015
EPIQ Abdomen Point 2.48 0.056 2.35 0.055

Abdomen 2D 2.19 0.023 2.15 0.028
Aixplorer Phantom 2D 2.10 0.000 2.10 0.000

Liver 2D 2.10 0.000 2.10 0.000
ACUSON Abdomen Point 2.13 0.023 2.07 0.043

Abdomen 2D 2.26 0.018 2.09 0.029
Grand mean ± SD 2.23 ± 0.12 2.15 ± 0.12
Coefficient of variation (%) 5.38 5.58
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Conclusion

Viscoelastic phantom measurements made across differ-
ent US-SWE systems had a CV of up to 9.2% with a linear 
probe and 5.6% with a convex probe. Although there were 
measurement biases associated with the different US-SWE 
systems, biases were not necessarily consistent, and they 
changed with the probes used and depth measured. The SWS 
of the viscoelastic phantom obtained using different modali-
ties increased according to the shear wave frequency used. 
This study provides clinicians with insight into the range of 
bias in different devices and modalities.
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