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Heat shock proteins (HSP) are a highly abundant class of molecular chaperones that can

be released into the extracellular milieu and influence the immune response. HSP release

can occur when cells undergo necrosis and exude their contents. However, HSPs are

also secreted from intact cells, either in free form or in lipid vesicles including exosomes

to react with receptors on adjacent cells. Target cells are able recognize extracellular

HSPs through cell surface receptors. These include scavenger receptors (SR) such as

class E member oxidized low-density lipoprotein receptor-1 (LOX-1, aka OLR1, Clec8A,

and SR-E1) and scavenger receptor class F member 1 (SCARF1, aka SREC1). Both

receptors are expressed by dendritic cells (DC) and macrophages. These receptors can

bind HSPs coupled to client binding proteins and deliver the chaperone substrate to

the pathways of antigen processing in cells. SR are able to facilitate the delivery of

client proteins to the proteasome, leading to antigen processing and presentation, and

stimulation of adaptive immunity. HSPs may also may be involved in innate immunity

through activation of inflammatory signaling pathways in a mechanism dependent on SR

and toll-like receptor 4 (TLR4) on DC and macrophages. We will discuss the pathways

by which HSPs can facilitate uptake of protein antigens and the receptors that regulate

the ensuing immune response.
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INTRODUCTION

Heat shock proteins (HSPs) are the major components of a primordial cellular responses to
proteotoxic stress, and the resultant production of many HSP species is collectively described
as the heat shock response (HSR) (1) (Table 1). Classic activators of the HSR such as heat
shock, lead to rapid denaturation of intracellular proteins resulting in dysfunctional intermediate
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TABLE 1 | Mammalian heat shock proteins.

HSP

type

Intracellular role Extracellular role Receptor References

Hsp27 Prevents protein Inflammatory TLRs (2)

Aggregation

Hsp60 Chaperonin inflammatory? TLR4? (3)

Hsp70 Initial stages of Inflammatory? SR, CD91 (4–7)

Protein folding immune TLR4? (8–10)

Hsp90 Folding to the Antigen chaperone SR, CD91 (11–13)

Functional state Cell motility (14, 15)

Hsp110 Chaperone Antigen chaperone SR (16, 17)

conformational states that are prone to aggregation. Cell survival
necessitates an almost immediate and abundant induction
of the HSPs that halt the aggregation cascade and permit
refolding of cellular proteins and restoration of normal protein
function (18). Beyond protein refolding, HSPs also function to
facilitate trafficking of their client substrates between subcellular
compartments and mediate protein-protein interactions. They
are hence referred to as molecular chaperones (18, 19). The HSP
family contains a number of members that belong to different
protein families, but each has in common a role in stepwise
protein folding (Table 1) (2, 4, 5). However, in addition to their
various intracellular functions, HSPs have also been detected in
the extracellular spaces and circulation. This phenomenon may
be the result of the death of stressed cells and release of the
highly amplified HSP cohort (6). Although HSPs lack the leader
sequences required for the classical secretion pathways (20) they
may be released from viable cells by non-canonical secretion
pathways (21). Alternative mechanisms of HSP secretion have
been described. These pathways include the secretion of free
Hsp70 by a pathway similar to that utilized for non-canonical
secretion of interleukin-1 beta, involving secretory lysosomes,
or alternatively HSPs may be packaged in lipid vesicles known
as exosomes and released to the extracellular milieu of tumors
and normal tissues (7, 21–23). The extracellular HSPs may
exert a number of effects on adjacent cells after their secretion,
such as activation of antigen-presenting cells (APCs), including
monocytes, dendritic cells (DC) and macrophages, as well as
causing increased mobility and metastasis in target cells as
has been observed in wound healing and cancer scenarios
(3, 24–26). Hsp70 and Hsp110 have been utilized effectively
in anticancer vaccines, in which they function as carriers of
antigenic peptides that can be efficiently taken up and processed
by APCs and presented to T lymphocytes (8, 9, 16, 17, 27–
29). Understanding how HSPs are bound by acceptor cells and
taken up is therefore important in determining the properties and
function of extracellular HSPs.

AN OVERVIEW OF HSP RECEPTORS

Most of the biological effects of extracellular HSPs identified
to date have involved their binding to surface receptors on
target cells prior to their internalization (10, 30). However, the
entire spectrum of dedicated high affinity receptors for the HSPs
have not been identified in studies carried out so far. The first

protein to be identified as an HSP receptor was CD91/alpha2
macroglobulin receptor, which is a low density lipoprotein (LDL)
binding protein currently known to be a highly versatile receptor
for over 30 other ligands (31). This multi-subunit protein appears
to be a common receptor for most of the HSPs involved
in immune responses. There was some controversy originally
regarding the significance of this finding, as CD91 was suggested
to be the receptor involved in antigen cross-presentation by DC
in response to HSP vaccines, although most types of DC do not
appear to express endogenous CD91 (11, 30). However, CD91
has since been shown to be a receptor for Hsp90α in wound
healing and cancer metastasis scenarios and signaling pathways
downstream from the receptor appear to mediate effects of the
chaperone on cell motility, a key property in wound healing and
metastasis (32). The class E and F scavenger receptors LOX-1
and SCARF1 are the major receptors for HSP-peptide complexes,
mediating antigen uptake and processing (10–12, 33) (Figure 1).
The scavenger receptors, although not structurally related, share
common functions including the binding, endocytosis and thus
detoxification of oxidized LDL by vascular endothelial cells (33,
34). They are key players in the removal of oxidized LDL from
the circulation and protection from themorbidity associated with
atherosclerosis (35). Both LOX-1 and SREC1 are also expressed
on DC and macrophages and play key roles in antigen cross-
presentation mediated by HSP- peptide complexes (HSP-PC)
(11, 36). In this review, we will describe the roles of these SR
members in mediating extracellular HSPs-triggered responses,
focusing mainly in their interaction with the Hsp90α. A really
puzzling feature of this system is that most SR members are not
structurally related but bind to a common ligand, while HSPs of
different chaperone families often bind to the same scavenger
receptor species, although also lacking structural relationship
(12, 33) (Figure 1, Table 1).

It is not clear which property of HSPs prompts their binding to
scavenger receptors. However, in addition to binding to oxidized
LDL, members of the scavenger receptor family can bind to
proteins with other modifications (acetylated LDL) as well as to
polyanionic ligands such as poly-IC, findings which may cast
some light on interactions with HSPs (11, 33). HSPs have been
shown to be phosphorylated and acetylated, modifications that
would increase their net negative charge (37, 38). Future studies
would be required to clarify this issue. When LDL particles are
oxidized, they assume a net negative charge and additionally
phospholipid moieties are added to the LDL particle protein
apolipoprotein B100 (39–41). These phospholipid residues fit
into a hydrophobic tunnel formed by surface LOX-1 dimers
(42). HSP binding to scavenger receptors may therefore involve
the ability of the chaperones to recognize hydrophobic patches
on client proteins as well as the charge interactions mentioned
above (5).

HSP RECEPTORS AND DETOXIFICATION
OF HSP-PEPTIDE COMPLEXES AND DEAD
CELLS

The primary role of the scavenger receptor family seems to
be removal of oxidized LDL from the circulation (35). It is
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FIGURE 1 | The domain structures of HSP binding and related cell surface receptors.

also possible that this role may be recapitulated in interactions
with HSP-PC, a complex which may flood the local circulation
after tissue trauma, a result of the large scale cell death by
necrosis that may ensue. Such complexes may be able to prime
immune and inflammatory responses in damaged tissues and it
may be incumbent on mononuclear phagocytes to rapidly bind
and endocytose such structures using the scavenger receptors
(43, 44). It is known that LOX-1 and SCARF1 can also bind cell
corpses and remove them from the extracellular spaces (45, 46).
Uptake of HSP-PC may thus be part of a general detoxification
process exerted by scavenger receptors, operating in damaged
tissues. The scavenger receptors could also be involved in uptake
and removal of HSP-containing exosomes given their abilities
to bind lipid structures such as oxidized LDL and cell corpses
(46). SCARF1 is a paralog of the cell corpse receptor CED-
1 expressed in C. elegans (35, 47). In addition, more closely
related paralogs of CED-1 have been unearthed and could be
putative HSP receptors. These include Drosophila gene draper
and the mammalian MEGF10, MEGF11, and MEGF12 (48–
51). Each of these proteins contains multiple EGF-like motifs
in the extracellular domain that may be recognition sequences
for apoptotic bodies and play roles in dead cell clearance
(Figure 1). Another protein with multiple EGF-like motifs in
its extracellular domain that can bind to HSPs and apoptotic
cell corpses is the Class H scavenger receptor FEEL-1/stabilin-1
(30, 33, 52) (Figure 1). Its role in responses to extracellular HSPs
is currently unclear.

PATHWAYS OF SCAVENGER
RECEPTOR-MEDIATED ENDOCYTOSIS

The properties of the SR as endocytic receptors with a wide range
of selectivity makes them effective intermediaries in sampling
the local extracellular milieu of APC for potentially antigenic
molecules. Thus, both LOX-1 and SCARF1 are expressed in
DC and other mononuclear phagocytes (11, 36). There are a
number of pathways by which extracellular molecules can enter
cells. These include endocytosis, a process which involves the
association of molecules with cell surface invaginations, uptake
in an actin-dependent manner, and then fusion of the engulfed
vesicles with intracellular endosomes. The major canonical
pathway is clathrin-mediated endocytosis, a process that involves
pit-like structures inserted into the plasma membrane which are
lined with clathrin, a trimeric protein that stabilizes the pits
(53). Molecules, sometimes associated with receptors, are then
engulfed in clathrin coated vesicles that are found in the majority
of cells. There is a second, less prevalent pathway, involving the
protein caveolin found in structures known as caveolae, 50 nm
invaginations that can also mediate endocytosis of extracellular
molecules (54). However, both LOX-1 and SCARF1 have been
shown to take up their ligands in a clathrin and dynamin-
independent manner, utilizing a more unconventional endocytic
pathway (36, 55). The mechanisms involved in endocytosis
mediated through LOX-1 seem to be currently unclear although
more information has accumulated regarding SCARF1. Upon
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ligand binding SCARF1 is internalized by DC via the GPI-AP
(glycophosphatidylinositol-anchored proteins) enriched early
endosome (GEEC) pathway (Figure 2) (56, 57). This pathway
is mediated by uncoated tubular vesicular structures called
clathrin independent carriers (CLICs) that mature into the
early endocytic compartment (GEECs) (58, 59). The pathway
is specialized for uptake of GPI-AP such as the folate receptor.
Thus, uptake of Hsp90α- peptide complexes was not inhibited
by antagonists of clathrin- and caveolin-dependent endocytosis,
characteristic of the GEEC pathway (36). Endocytosis of Hsp90α-
peptide complexes was however inhibited by blocking the activity
of Rho GTPase CDC42, a protein shown to be involved in
actin polymerization and uptake of GPI-AP through the GEEC
pathway. SCARF1 became co-localized, after binding to Hsp90α-
peptide complexes, with CD59, a marker GPI-AP protein that
utilizes the GEEC pathway (36, 60). Proteins internalized through
the GEEC pathway, such as GPI-AP are frequently associated
within plasma membrane microdomains such as lipid rafts (61).
These are regions of the membrane enriched in cholesterol and
glycosphingolipids that are immiscible with the bulk membrane
and appear to diffuse freely through this membrane (62, 63).
SCARF1 is not a GPI-AP protein even though it has been
shown to enter the GEEC pathway. However, another protein
modification that may target transmembrane proteins such as
SCARF1 to lipid rafts is S-acylation of cysteine residues close
to the transmembrane domain with saturated palmitate residues
capable of dissolving in the cholesterol and glycosphingolipid
milieu that comprises the partitioned microdomains. SCARF1
contains five cysteine residues (Cys - 440, 441, 443, 444, 445)
adjacent to the transmembrane domain (amino acids 422-
442) (35, 62, 63). Thus, cysteine palmitoylation, and perhaps
interaction with other proteins in the lipid rafts, may potentially
recruit SCARF1 to this region. The nature and extent of partner
proteins associated with SCARF1 in the rafts is not clear, although
the receptor was shown to interact with the non-receptor tyrosine
kinase c-Src (36). Although c-Src is likewise not a member of the
GPI-AP family, it also associates with the rafts after S-acylation
(63). Inhibition of c-Src activity prevented the cross-presentation
of antigens associated with Hsp90α suggesting a key role for
signaling through this tyrosine kinase in the antigen presentation
pathways (36). Phosphorylation of key tyrosine residues within
internalization motifs in the intracellular domain regulates the
endocytosis of many receptors, although consensus sequences
for internalization such as the NPXY motif found in CED-1
are not observed in the SCARF1 sequence (Figure 1) (35). The
mechanism of regulation of SCARF1 endocytosis by c-Src thus
remains to be defined. LOX-1 function has also been linked to
its entry into lipid rafts and cholesterol lowering drugs inhibit its
function (64).

SCAVENGER RECEPTOR-MEDIATED
ACCESS TO ANTIGEN PROCESSING
PATHWAYS

Binding of antigenic polypeptides to HSPs in DC allows them to
enter the pathway of antigen cross presentation and be processed

FIGURE 2 | Extracellular Hsp90 -triggered sorting of SCARFI into lipid rafts

and the GEEC internalization pathway.

in the cytoplasm and presented onmajor histocompatibility Class
I (MHC I) proteins (13). Most of the antigens presented on
MHC Class I proteins are derived from proteolytic processing
of intracellular proteins via the classical Class I pathway (65).
However, DC are specialized to take up extracellular antigens
using receptors such as Fc, CLEC9A, DC-SIGN, DEC205 and
mannose receptor, and thus funnel them into the Class I pathway,
permitting surveillance of the extracellular spaces (66–70). HSPs
can also bind external antigens and funnel them into the Class
I pathway through LOX-1 and SCARF1 (36). For instance,
following transit through the GEEC compartment, Hsp90α-
peptide-SCARF1 complexes are translocated to early endosomes
(36). In the case of full-length chaperoned proteins such as intact
ovalbumin, antigen processing is carried out after its digestion
in the proteasome in the cytoplasm and then antigenic peptides
are taken up into MHC class I molecules by TAP (transporter
associated with antigen processing) in the ER (36). This latter
process clearly requires the chaperoned protein to escape the
confines of the early endosome and enter the cytoplasm in
order to be taken up by the proteasome. Hsp90α is known to
facilitate this step as well as to maintain the client protein intact
until it reaches the proteasome (71). Hsp90α-peptide complexes
internalized in association with SCARF1 can also be processed
within the endosome and antigens loaded onto MHC class II
molecules prior to recycling to the plasma membrane (14). This
is an essential step in efficient activation of T cell immunity and
the activation of CD4+ T helper cells. Normally uptake of soluble
antigens into the Class I and Class II pathways involves separate
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FIGURE 3 | HSP-induced cell signaling and inflammation.

receptors (13). This scavenger receptor can therefore facilitate
antigen processing by APC through the two major antigen
presentation pathways and appears to play an integral role in the
functioning of HSP based immunity (13). LOX-1 also participates
in processing of HSP bound tumor antigens and approximately
50% of ovalbumin (sample antigen) cross-presentation appeared
to be mediated through this receptor (36). Although HSP-PC
binding to SCARF1 can facilitate antigen presentation through
the MHC class I and class I pathways it is not clear whether this
interaction can induce co-receptor induction in APC- a crucial
step in adaptive immunity. For instance, creation of efficient
anticancer vaccines employing large HSP family members has
employed fusion of the HSPs to prokaryotic danger signals to
boost inflammatory signaling and co-receptor induction (9).
Interestingly, SCARF1 expression and Hsp70 vaccine anti-tumor
activity is dependent on TLR2 and TLR4 function suggesting
upregulation in inflammatory conditions (28).

LIPID RAFTS AND CELL SIGNALING
AFTER HSP BINDING TO CELL SURFACE
RECEPTORS

In addition to the import of tumor antigens by DC, HSPs
may carry out key cell signaling roles within the lipid rafts
of mononuclear phagocytes. The association of proteins with

lipid rafts may permit them to concentrate at foci within the
plasma membrane. This property depends on the ability of the
rafts to diffuse within the bulk membrane and thus potentially
bring together cooperating signaling molecules (62, 63, 72). As
mentioned above, an example of this process is the association
of SCARF1 with c-Src after Hsp90α binding, an interaction that
may promote endocytosis and phagocytosis through activation
of the kinase, recruitment of Cdc42 and association with the actin
cytoskeleton (36) (Figure 3). SCARF1 entry into c-Src containing
lipid rafts was also required for inflammatory cytokine release
in mouse macrophages (73). This process involved association
of SCARF1 with the pro-inflammatory Toll Like Receptor 4
(TLR4) after exposure to bacterial lipopolysaccharides (15).
The association with SCARF1 in lipid rafts led to downstream
signaling through TLR4, activation of the c-jun kinase, p38
MAP kinase and NF-kB signaling pathways and upregulation
of interleukin 6 synthesis (73) (Figure 3). These inflammatory
signaling processes required cholesterol, actin polymerization
and CDC42 activity. SCARF1 and LOX-1 may also be able
to recruit other signaling molecules and exposure to outer
membrane protein A (OmpA) from Klebsiella pneumoniae led
to recruitment of TLR2 and cytokine synthesis by the scavenger
receptors (74). SCARF1 also cooperates with TLR2 in recognition
of hepatitis virus non-structural protein by DC (75). In a similar
vein, SCARF1 was shown to associate with TLR3 after exposure
of macrophages to double stranded RNA and stimulate signaling
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through the NF-kB, MAP kinase and the IRF3 pathways (76).
SCARF1 and LOX-1 may therefore play key roles in associating
with cell signaling molecules and creating activating foci through
the concentration of lipid rafts after binding eukaryotic or
prokaryotic ligands (73, 76–78).

SCARF1, LOX-1, AND INFLAMMATION

While it is clear that SCARF1 and LOX-1 can mediate immunity
by binding HSP-associated antigens and promoting antigen
cross-presentation, the effects of HSPs on inflammation are less
clear (79). Discrepancies in the field were originally ascribed
to the use by some investigators of purified HSPs associated
with bacterial PAMPs: indeed, HSP and endotoxins undergo
complex interactions that mediate inflammatory responses
(80). However, Hsp70—TLR4 association and subsequent
inflammatory signaling is regularly observed in vivo and under
conditions in which endotoxin contamination of the chaperones
seems unlikely [reviewed in (81)]. Nonetheless, in the case of
purified Hsp90α, it was shown that while both this chaperone
and LPS could bind to SCARF1 and lead the receptor to enter a
lipid raft compartment, only exposure to LPS led to significant
levels of pro-inflammatory signaling through this mechanism;
Hsp90α alone, although entering the lipid raft compartment did
not trigger inflammatory signaling (73). In addition, it has been
shown that some prokaryotic HSP paralogs tend to be anti-
inflammatory in contrast to the mammalian isoforms (82). The
answer to this conundrum appears to be at least partially that
another key class of HSP receptors is expressed on mononuclear
phagocytes—the sialic acid-binding immunoglobulin-type lectins
(Siglecs) (83, 84). The Siglec family of receptors bind to self-
sialic acid residues either in cis or in trans and this interaction
leads to suppression of inflammatory responses in mononuclear
phagocytes (83). Upon binding to the antigen, the intracellular
regions of the Siglecs become activated by phosphorylation
of immunosuppressive ITIM (immunoreceptor tyrosine-based
inhibition motif) domains that associate with phosphatases Shp-
1 and Shp-2, leading to immune suppression (85). Hsp70 has
been shown to bind to Siglecs after tissue damage suggesting a
mechanisms for the immunosuppressive roles of the chaperone
(86). A further complication to this scenario is that human cells
can express a receptor pair SIGLEC-5 and SIGLEC-14 that can
contain similar ligand binding domains and either ITIM or ITAM
(immunoreceptor tyrosine-based activation motif) sequences
and thus, dependent on context, are either immunosuppressive
(SIGLEC-5) or immunostimulatory (SIGLEC-14) (87). Clearly
further studies are essential to clarify the nature of the signaling
complexes on mononuclear phagocytes that determine response
to HSPs in terms of both endocytosis and inflammatory
cell signaling.

CONCLUSIONS

(a) The scavenger receptors LOX-1 and SCARF1 mediate
binding and endocytosis of HSPs such as Hsp70, Hsp90, and
Hsp110. The HSPs are taken up by a clathrin-independent
mechanism involving the GEEC pathway. At least in the

case of SCARF1, endocytosis requires the activity of the
c-Src kinase which can bind to the receptor in lipid
raft microdomains.

(b) Uptake by scavenger receptors may be a component of
the detoxification pathways, with the effect of removing
inflammatory and immune-stimulatory HSP-peptide
complexes, particularly in the context of tissue injury. This
process may also be beneficial in the activities of molecular
chaperone-based vaccines in which the HSPs enhance
antigen uptake, integrity and cross-presentation to CD8+
T lymphocytes.

(c) The scavenger receptors localize to lipid raft microdomains
on the mononuclear phagocyte cell surface after HSP
binding. This process may facilitate endocytosis through the
GEEC pathway by bringing the SR in close proximity to
c-Src and CDC42. In addition, concentration of scavenger
receptors in lipid rafts with TLR4 and other regulatory
proteins may trigger inflammatory signaling and cytokine
synthesis after HSP binding.

Three HSP binding receptors SCARF1/SREC-I, FEEL-1, and
LOX-1 are shown as well as related proteins. Locations of atypical
EGF-like domains are indicated in—CED-1, hSCARF1, hFEEL-
I/Stabilin-1 andMEGF10. Each share EGF-like consensus repeats
in the extracellular domains. Tyrosine-based sorting signals are
known to interact with the phospho-tyrosine domain of clathrin
adaptors (NPXY for CED-1, FXNPXY and YXXØ for hMEGF10)
are shown in the figure. SCARF1 does not contain these motifs
and is not internalized through clathrin-mediated endocytosis.
FEEL-1 is expressed mainly in intracellular compartments. A
dileucine based (DXXLL for hFEEL-1) sorting signal is present
in the cytosolic tails of hFEEL-1 and can also be found in
mannose 6-phosphate receptors that mediate sorting between
trans-Golgi network (TGN) and endosomes. LOX-1, although
sharing many properties with SCARF1, including HSP binding
and internalization, does not contain EGF-like motifs in its
extracellular domain extracellular domain and belongs to the
C-type lectin family.

Under resting conditions, SCARF1 is shown in the bulk
membrane domain containing a range of surface proteins which
are either transmembrane proteins such as SCARF1, GPI-AP
proteins or proteins anchored to the inside of the membrane
such as c-Src. Upon Hsp90α binding, SCARF1 becomes localized
into lipid raft domains and co-localized with c-Src. Within 5min
of ligand binding, Hsp90α–SCARF1 complexes enter the GEEC
compartment and are internalized (36). We also show proteins
that remain in the bulk membrane and are not internalized
through the GEEC pathway.

We show ligand (HSP) binding by SCARF1 leading to its
recruitment to lipid raft microdomains in the plasma membrane.
SCARF1 then coordinates interaction of c-Src, CDC42 and TLR4
and signaling through the NF-kB and MAP kinase pathways
upstream of inflammatory cytokine expression.
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