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Abstract: Calcium sulfate (CS) formulations are frequently implanted as antibiotically impregnated
bone substitutes in orthopedic and trauma surgery to prevent or treat bone infections. Calcium ions
have been discussed as candidates to accelerate blood coagulation. The goal of this study is to
evaluate substance-specific influences of CS formulations on blood coagulation. Specific ELISAs
were conducted to determine markers of activated blood coagulation after incubation of human
blood with CS beads. Additionally, wettability with freshly drawn human blood was measured.
Three different types of CS bone substitute beads were compared (CS dihydrate with tripalmitin,
containing Gentamicin (Herafill®-G: Group A) or Vancomycin (CaSO4-V: Group B); and a CS
hemihydrate with Tobramycin (Osteoset®: Group C)). Examinations were performed by ELISA
assays for F1+2, FXIIa and C3a. Our results prove that none of the CS preparations accelerated single
specific assays for activated coagulation markers. This allows the conclusion that neither Herafill®-G
(CaSO4-G) nor CaSO4-V alter haemostasis negatively. Blood samples incubated with Osteoset®

display an elevated F1+2-activity. The addition of tripalmitin in Herafill®-G shifts the original into
a significantly hydrophobic formulation. This was additionally proven by contact angle examination
of the three substances with freshly drawn human blood, showing that acceleration of plasmatic
coagulation is hindered by lipids and induced by surface effects caused by presence of rapidly soluble
calcium ions in the Osteoset® preparation.

Keywords: calcium sulfate formulations; calcium carbonate; tripalmitin; coagulation; in vitro;
Herafill®-G; Osteoset®, gentamicin; vancomycin; tobramycin; FXIIa; C3a; F1+2

1. Introduction

Infected bone defects are frequently addressed through implantation of various bone grafts,
often based on calcium sulfate preparations containing antibiotics. The clinical side effects of such

Materials 2018, 11, 935; doi:10.3390/ma11060935 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-5104-9881
https://orcid.org/0000-0002-1774-5194
http://dx.doi.org/10.3390/ma11060935
http://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/11/6/935?type=check_update&version=2


Materials 2018, 11, 935 2 of 8

formulations are highly relevant to usability, as well as to potential risks and opportunities in defect
healing situations.

In this study, two formulations which are commercially available in Germany, as well as
a third, prospective formulation containing vancomycin to address MRSA-infections, were compared,
regarding their specific effects on blood coagulation after implantation [1]. The blood coagulation
cascade requires calcium ions, and efficiently acts on the activation of platelets [2]. Three antibiotically
loaded [3] calcium-based formulations were compared for this experiment: Calcium Sulfate (CS)
dihydrate with tripalmitin, containing gentamicin (Herafill®-G: Group A) and vancomycin (CaSO4-V:
Group B); CS hemihydrate containing tobramycin (Osteoset®: Group C). CS is an inexpensive material
known for its high biocompatibility [4], and functions as a carrier material [5,6] by incorporation of
therapeutic substances. Calcium preparations are known to influence blood coagulation, rendering it
meaningful to compare the substances’ effects on human blood coagulation. Markers of activated
coagulation and of the complement system (also a serin protease system) were determined using
specific ELISA assays. Furthermore, a comparison of the wettability of the substances using contact
angle measurements allows conclusions to be drawn regarding superficial material-blood interaction.

2. Materials and Methods

For this controlled clinical trial, resorbable bone substitute materials consisting of CS dihydrate,
gentamicin and tripalmitin (Herafill®-G, Heraeus, Wehrheim, Germany), CS dihydrate, vancomycin,
and tripalmitin, as well as commercially available CS hemihydrate with tobramycin (Osteoset®,
Wright Medical Group Inc., Memphis, Tennessee, USA), were compared. The beads are composed
as follows: Herafill®-G has a 6.0 mm diameter, at 250 mg weight per unit, consisting of calcium sulfate
dihydrate (71.6%), calcium carbonate (17.9%), tripalmitin (8.8%), and gentamicin sulfate (1.7%). The second
group has a 3.0 mm diameter, at 35 mg per unit, consisting of calcium sulfate dihydrate (72.0%),
calcium carbonate (18.0%), tripalmitin (8.9%), and vancomycin hydrochloride (1.1%). Osteoset® has
a 4.8 mm diameter, with 107.5 mg weight per unit, consisting of a hemihydrate modification of calcium
sulfate (96.0%) and tobramycin sulfate (4.0%). The composition of bead implants is given in contents
per weight.

For the ELISA assays, all three substances were compared. For the contact angle measurement
a reduced comparison between Herafill®-G and Osteoset® as well as a glass control group
was conducted.

To understand the influence of calcium carriers on blood coagulation, samples were tested using
ELISA assays for quantitative detection of relevant coagulation factors in 16 samples of freshly drawn
human blood after contact with the bone substitute materials. The blood was drawn using a regular
polyethylene syringe without addition of any anticoagulation substances. Prior to blood drawing, two sets
of seven 15 mL falcon tubes were equipped with one bead and one additional pure blood control sample.
Subsequently, they were filled with 4 mL fresh, untreated human blood, and incubated for 8 min.
Incubation time was chosen in accordance with previous literature by Obermeier et al. 2012 [7].

Samples were then prepared for testing the markers of activated coagulation and complement
activation according to the workflow shown in Figure 1.
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Figure 1. Workflow of preparing blood samples for ELISA assays and testing markers of activated 
coagulation and complement system. 

ELISA assay (Enzygnost® F1+2 Assay, Dade Behring, Marburg, Germany) was used to measure 
the prothrombin activation quantitatively. To determine the degree of the activation of the extrinsic 
haemostasis pathway via Factor FXII activation into FXIIa quantitatively, an “amidolytic substrate 
assay” was used to measure the Factor XIIa-like activity (UNITEST, Haemochrom Diagnostica, 
Essen, Germany). Inside prepared human plasma, the FXIIa-like activity is measured by αXIIa bound 
to α2-macroglobulin using a chromogenic substrate. Photometrical measures determine the release 
of p-nitroanaline (pNA); with that, the amount of FXIIa-like activity can be calculated. Using the 
commercially available and reliable complement C3a-desArg-ELISA (PROGEN biotechnology, 
Heidelberg, Germany), the content of C3a-desArg, as a stable version of the short-lived C3a, is 
quantified in plasma. This ELISA is based on the H13 antibody, which blocks the short-living C3a, 
allowing us to determine its quantity in plasma [8]. This gives us an insight into the initial 
complement activation of novel formulated bone substitute materials. 

Contact angle measurements with freshly drawn human blood were conducted to evaluate the 
material specific wettability in comparison to that of untreated glass. For this purpose, bone 
substitute beads were crushed to fine powder using a mortar, and dissolved in 3 mL of 70% ethanol 
and 1 mL H2O. To achieve solutions of comparable mass contents or Herafill® G 4 beads were used; 
for Osteoset®, 10 beads were used. Subsequently, the calcium sulfate dispersions were homogenized 
with a ptfe pestle. Three hundred microliters of the resulting suspension were pipetted on glass 
slides and dried to achieve homogenous surface layers of the examined bone substitute materials. 
Ten microliters of freshly drawn blood were pipetted onto relevant test surfaces with a Herafill®-G 
or Osteoset® layer; as a comparison control surface, untreated glass was used. The contact angles 
were determined on eight independent samples per type of material by means of magnified 
photographs; the software ImageJ v1.47 (ImageJ, U. S. National Institutes of Health, Bethesda, MD, 
USA), in combination with the DropSnake plugin, facilitated contact angle measurements. 

Figure 1. Workflow of preparing blood samples for ELISA assays and testing markers of activated
coagulation and complement system.

ELISA assay (Enzygnost® F1+2 Assay, Dade Behring, Marburg, Germany) was used to measure
the prothrombin activation quantitatively. To determine the degree of the activation of the extrinsic
haemostasis pathway via Factor FXII activation into FXIIa quantitatively, an “amidolytic substrate assay”
was used to measure the Factor XIIa-like activity (UNITEST, Haemochrom Diagnostica, Essen, Germany).
Inside prepared human plasma, the FXIIa-like activity is measured by αXIIa bound to α2-macroglobulin
using a chromogenic substrate. Photometrical measures determine the release of p-nitroanaline (pNA);
with that, the amount of FXIIa-like activity can be calculated. Using the commercially available and
reliable complement C3a-desArg-ELISA (PROGEN biotechnology, Heidelberg, Germany), the content
of C3a-desArg, as a stable version of the short-lived C3a, is quantified in plasma. This ELISA is
based on the H13 antibody, which blocks the short-living C3a, allowing us to determine its quantity in
plasma [8]. This gives us an insight into the initial complement activation of novel formulated bone
substitute materials.

Contact angle measurements with freshly drawn human blood were conducted to evaluate the
material specific wettability in comparison to that of untreated glass. For this purpose, bone substitute
beads were crushed to fine powder using a mortar, and dissolved in 3 mL of 70% ethanol and 1 mL H2O.
To achieve solutions of comparable mass contents or Herafill® G 4 beads were used; for Osteoset®,
10 beads were used. Subsequently, the calcium sulfate dispersions were homogenized with a ptfe
pestle. Three hundred microliters of the resulting suspension were pipetted on glass slides and dried
to achieve homogenous surface layers of the examined bone substitute materials. Ten microliters of
freshly drawn blood were pipetted onto relevant test surfaces with a Herafill®-G or Osteoset® layer;
as a comparison control surface, untreated glass was used. The contact angles were determined on
eight independent samples per type of material by means of magnified photographs; the software
ImageJ v1.47 (ImageJ, U. S. National Institutes of Health, Bethesda, MD, USA), in combination with
the DropSnake plugin, facilitated contact angle measurements.
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3. Results

Fragment F1+2 is a peptide, being split from inactive prothrombin during coagulation, forming
the active thrombin. The amount of thrombin is proportional to the amount of F1+2, allowing us to
quantify the coagulation process. Figure 2 displays the F1+2–concentration, as well as the FXIIa and
C3a-desArg, after 8 min of incubation of human blood with the bone substitute formulations, as well
as the control groups consisting of untreated blood samples. The reference range for F1+2 concentration
was between 69 and 229 pmol/L. Reference values are below 150 ng/L plasma EDTA; values are
regarded as elevated if above 200 ng/L plasma.

Figure 2. Coagulation markers following incubation of blood with tested beads (n = 16). Levels of
significance used were **: p < 0.01.

The Osteoset® group showed the highest value of F1+2 activation; at 274.3 pmol/L, it was highly
significant (p < 0.01; **), compared to pure blood activation and outside the assay’s reference range.
Both tested calcium sulphate formulations containing tripalmitin (Herafill®-G and CaS04-V) remained
at 178.0 and 211.1 pmol/L, i.e., within the range of reference.

Activation of factor XII in the endogenous coagulation cascade leads, via the shedding of
fragment F1+2, to a development of prothrombin into active thrombin, catalyzing the formation
of fibrin. The reference range is between 14 and 27 u/L; all tested substances remained at a range of
between 10.5 and 12.2 u/L, i.e., below the reference range, and thus, without any influence on this
coagulation factor.

The complement C3a-desArg ELISA quantifies the content of C3a-desArg as a stable form of short
lived C3a in plasma. The results showed values between 132.8 and 158.0 ng/mL, i.e., all remaining
below the upper reference level of 200 ng/mL.

Contact angle measurements yielded statistically significant results, underlining the different
degrees of wettability. Herafill®-G displays the lowest degree of wettability (high hydrophobicity),
represented by the highest contact angle, followed by Osteoset® (medium hydrophobicity), and the
glass as negative control (highly hydrophilic). The specific results are displayed in Table 1 and Figure 3.
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Table 1. Blood contact angle measurement (n = 8) mean results in degrees (± standard deviations) and
p-values of student’s t-test referred to glass (Levels of significance used were ***: p < 0.001).

Interfaces Contact Angle (±SD) Significance

Glass 41.1 (±9.6)◦

Herafill®-G 119.6 (±10.4)◦ p < 0.001; ***
Osteoset® 86.6 (±8.4)◦ p < 0.001; ***
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Figure 3. Contact angle measurement in graphic comparison. Magnifications showing average contact
angles of fresh human blood on test surfaces (n = 8). White scale bar indicating 1 mm.

4. Discussion

Internal use of calcium sulfate (CS), also known as plaster of Paris, has been employed for
bone reconstruction for more than a century [1]. While offering high biocompatibility, its influence
on coagulation by dissociation has been discussed, but not examined thoroughly to date [9].
A surface-induced coagulation is triggered by factor XIIa, itself having further influence on the
complement system, as well as fibrinolysis.

The presented results prove that the tested dihydrate preparations do not accelerate the global
hemostasis, nor the tested specific markers of coagulation. Osteoset® samples yielded elevated
F1+2 concentrations, indicating elevated thrombin formation. Simultaneously, no elevated FXIIa
activity is measurable. The observed acceleration of plasmatic coagulation is triggered by the elevated
concentration of calcium-ions in the Osteoset® preparation. Addition of hydrophobic tripalmitate
renders the originally hydrophilic calcium sulfate formulation more hydrophobic. Thus, no relevant
quantities of calcium ions are dissolved into the blood, and coagulation processes are not relevantly
influenced. The observed contact angle measurement results clearly underline how the tripalmitate
addition increases the hydrophobicity, and thus, reduces wettability. Moreover, this could be a hint for
one root cause of delayed resorption of beads, as shown by Pförringer et al. [10].

Wettability and dissolution are closely related, and thus, in the observed setup play an important
role in the scaffold dissolving process, since contact angles are good indicators for dissolution transition
of solid dispersions [11]. In this context, lipid content plays a significant role, as it does in vital
body functions, to purposely influence interaction between liquids and solids [12], as shown in our
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experiment. Interaction between bone substitute material and the surrounding bone tissue has been
the focus of recent research, and deserves further attention [13]. The aqueous interaction has been
researched, and can partially be connected to the dissolution examination of the compared material [14].

The presence of blood, as well as hematoma, and their effects on the complex process of bone
healing, have been discussed in literature [15]. The effects of the presence and addition of platelet rich
plasma (PRP) with released growth factors have been tested and discussed, showing the importance
of the presence of a scaffold [16] for bone regeneration. Bone’s healing properties after trauma
have been investigated [17], yielding a multitude of influencing and decisive factors in the healing
process. Shiu et al. even propose that the bone healing response becomes dysregulated if the blood
response, and subsequent formation and properties of a hematoma, are altered [18]. Effects of calcium
compositions on osteoinduction and—conduction have been researched and described [10], yet the
co-influence of bleeding times remains to be tested.

5. Conclusions

Modulation of coagulation may influence bone healing. The underlying research compares
the interaction of freshly drawn human blood with two calcium dihydrates and one hemihydrate
formulation with differing calcium compositions and antimicrobial contents. The two dihydrates
showed no influence, while the hemihydrate significantly prolonged coagulation. This can partially
be accounted for by the reduced solubility of calcium through the addition of tripalmitate to the
formulation [10]. Further research may focus on the influence of coagulation on the resulting hematoma
and subsequent bone healing properties.
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