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RAGE displays sex‑specific differences 
in obesity‑induced adipose tissue insulin 
resistance
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Abstract 

Background:  The receptor for advanced glycation end products (RAGE) plays an important role in obesity-associated 
insulin sensitivity. We have also previously reported that RAGE deficiency improved insulin resistance in obesity-
induced adipose tissue. The current study was aimed to elucidate the sex-specific mechanism of RAGE deficiency in 
adipose tissue metabolic regulation and systemic glucose homeostasis.

Methods:  RAGE-deficient (RAGE−/−) mice were fed a high-fat diet (HFD) and subjected to glucose and insulin toler-
ance tests. Subcutaneous adipose tissue (sAT) was collected, and macrophage polarization was assessed by quantita-
tive real-time PCR. Immunoblotting was performed to evaluate the insulin signaling in adipose tissues.

Results:  Under HFD feeding conditions, body weight and adipocyte size of female RAGE deficient (RAGE−/−) were 
markedly lower than that of male mice. Female RAGE−/− mice showed significantly improved glucose and insulin 
tolerance compared to male RAGE−/− mice, accompanied with increased M2 macrophages polarization. Expres-
sions of genes involved in anti-oxidant and browning were up-regulated in adipose tissues of female RAGE−/− mice. 
Moreover, insulin-induced AKT phosphorylation was significantly elevated in adipose tissue in female RAGE−/− mice 
compared to male RAGE−/− mice.

Conclusions:  Our findings suggest that RAGE-mediated adipose tissue insulin resistance is sex-specific, which 
is associated with different expression of genes involved in anti-oxidant and browning and insulin-induced AKT 
phosphorylation.

Highlights 

•	 Female RAGE−/− mice showed significantly improved glucose and insulin tolerance compared to male RAGE−/− 
mice.

•	 Female RAGE deficiency promotes M2 macrophage polarization in adipose tissues.
•	 Female RAGE deficiency prevents oxidative stress in adipose tissues.
•	 Female RAGE deficiency protects insulin-AKT signaling in adipose tissues.
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Introduction
It is well established that estrogen regulates the meta-
bolic status of white adipose tissue (WAT) in females, 
but the mechanisms underlying this phenotype remain 
unknown. There are dominant sex differences in the 
association between adipose tissue distribution, insulin 
sensitivity, and the development of type II diabetes [1, 
2]. Although the relationship between adipose tissue and 
glucose homeostasis is well known, the role of sex differ-
ence and WAT in that relationship is far less defined.

Advanced glycation end products (AGEs) interact with 
their receptors (RAGE) in adipocytes [3]. RAGE was 
expressed in adipose tissues, which is down-regulated 
in patients with CAD [4]. There is a sex-specific differ-
ence in oxidative stress under different conditions [5, 
6]. RAGE appears to be involved in the progression of 
obesity, associated with inflammation, reactive oxygen 
species (ROS) production, and insulin sensitivity [7, 8]. 
Clinical studies confirm sex differences in adipose tissue 
function, remodeling, and inflammation response [9]. 
Our recent findings that RAGE-mediated adipose tissue 
inflammation and insulin signaling are potentially impor-
tant mechanisms, contributes to the development of 
obesity-associated insulin resistance [10]. However, sex 
differences concerning RAGE are not known.

Here, we report that female RAGE knockout mice are 
protected from high-fat diet (HFD)-induced obesity and 
adipose tissues-associated insulin signaling. Compared 
to wild type (WT) mice, RAGE-deficient mice showed 
reduced body weight gain and improved glucose and 
insulin tolerance. Furthermore, RAGE deficiency exhib-
its a reduced M1 polarization in WAT, promotes the 
adipose-related anti-oxidant genes, and increases the 
browning of WAT. Our results identify a sex-specific dif-
ference for RAGE in regulating adipose tissue-associated 
insulin resistance.

Materials and methods
Animals
RAGE−/− mice were purchased from the Jackson Labora-
tory (Bar Harbor, ME, USA). All protocols for animal use 
were reviewed and approved by the Animal Care Com-
mittee of Southwest Medical University following Insti-
tutional Animal Care and Use Committee guidelines.

HFD‑fed mouse model
Eight-week-old male and female RAGE−/−mice were fed 
a high-fat diet (HFD) (TP2330055A; calories fat 60%, 

carbohydrate 25%, and protein 15%; Trophic Animal Feed 
High-tech Co. Ltd, China) for 16  weeks, as described 
previously [10]. Age-matched male mice that were fed a 
standard chow diet (ND; TP2330055AC; calories fat 10%, 
carbohydrate 75%, and protein 15%; Trophic Animal Feed 
High-tech Co. Ltd, China) were used as controls. Group 
animal size was n = 6–8 per group. The exact group size 
is specially described in the figure legends.

Glucose and insulin tolerance tests
Following a 4-h fast, glucose (GTT) and insulin (ITT) 
tolerance tests were performed in response to intraperi-
toneal (IP) injection of D-glucose (Roth, Karlsruhe, Ger-
many) (2  g of glucose/kg body mass) or insulin (0.75 U 
insulin/kg body mass, respectively. Blood samples were 
obtained from the tail vein, and whole blood glucose lev-
els were measured at 0, 30, 60, and 120 min using a One 
Touch® Vita® glucometer (Lifescan, Zug, Switzerland).

Quantitative real‑time PCR
Subcutaneous adipose tissue (sAT) was collected and 
total RNA was extracted using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA). RNA samples were pre-treated 
with deoxyribonuclease I (Invitrogen Life Technologies, 
Carlsbad, CA, USA), and a SuperScript kit (Invitro-
gen Life Technologies, Carlsbad, CA, USA) was used to 
synthesize cDNA according to the manufacturer’s rec-
ommendations. qRT-PCR was analyzed using miScript 
SYBR Green PCR Kits (Qiagen). Levels of macrophage 
polarization and oxidative stress markers mRNAs 
were determined using an ABI PRISM 7700 cycler 
(Applied Biosystems, Foster City, CA). Fold changes in 
gene expression were determined using the 2 − ΔΔCT 
method. The values are presented as the mean ± SEM. All 
primers are listed in Additional file 2: Table S1.

Immunoblotting
sAT and visceral adipose tissues (epididymal adipose tis-
sues; eAT) lysates were prepared, and equal amounts of 
protein were subjected to SDS-PAGE and transferred 
to polyvinylidene difluoride membranes by electroblot-
ting. After blocking, the membranes were incubated with 
antibodies directed against phospho-Akt (Ser473), total 
AKT (Cell Signaling Technology, Massachusetts, USA). 
Secondary antibody was horseradish-peroxidase (HRP)-
conjugated goat IgG raised against IgG (Santa Cruz Bio-
technology). Blots were developed with ECL substrate 
(Pierce).

Keywords:  Obesity, Receptor for advanced glycation end products (RAGE), Sex, Insulin resistance, Adipose tissue
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Tissue ROS levels
sAT was isolated, lysed, and the total amount of ROS 
was determined using the dihydroethidium (DHE) probe 
according to the manufacturer’s instructions (bjbalb Inc. 
Beijing, China). All values were normalized to total cellu-
lar protein, determined using a BCA assay, and expressed 
as intensity/mg protein.

Histological analysis
sAT was isolated, fixed, embedded in paraffin, and seri-
ally sectioned (6  µm). Cross-sections were stained with 
hematoxylin–eosin. The images were captured using a 
microscope (Nikon). The percentage of positive cells/
total adipocytes was quantified in five microscopic fields 
in each of the three cross sections of each tissue using 
ImagePro Plus software.

Statistical analysis
Data are presented as the mean ± SEM of triplicate 
experiments. The significance of the differences among 
groups was analyzed by one-way analysis of variance 
with a post hoc test to determine group differences in the 
study parameters. All analyses were performed with SPSS 
software (version 24.0 for Windows; Armonk, NY, USA), 
and a level of p < 0.05 was defined as indicative of statisti-
cal significance.

Results
Female RAGE deficiency improved glucose and insulin 
tolerance
After 16  weeks on the HFD, the body weight of female 
WT-HFD as well as RAGE-HFD mice was signifi-
cantly lower as compared to their male counterparts 
(Fig.  1A). The male WT-HFD mice displayed a signifi-
cantly increased body weight than male RAGE−/−-HFD 
mice. There is no significant difference in body weight 
between female WT-HFD and female RAGE−/−-HFD 
mice. sAT adipocyte area was markedly decreased 
in female RAGE−/−-HFD mice compared with male 
RAGE−/−-HFD mice (Fig. 1B, C). Intraperitoneal glucose 
and insulin tolerance tests were performed to character-
ize the metabolic state of the animal groups. In WT mice, 
male WT-HFD feeding caused significantly impaired 
glucose tolerance and decreased insulin sensitivity 
compared with female WT-HFD (Fig.  1D–G). Female 
RAGE−/−-HFD mice showed significantly improved 
glucose and insulin tolerance compared with male 
RAGE−/−-HFD mice, which is similarly happened in nor-
mal diet mice (Additional file  1: Fig. S1A,B). Addition-
ally, the male RAGE−/−-HFD mice exhibited a significant 
improvement in GTT and ITT compared with the male 
WT-HFD mice. However, No differences were found in 

GTT and ITT between the female WT-HFD and female 
RAGE−/−-HFD mice D mice. These metabolic results 
suggested that female RAGE deficiency is associated with 
improved glucose tolerance and insulin sensitivity in 
HFD-induced obesity in mice.

Female RAGE deficiency promotes M2 macrophage 
polarization in adipose tissues
Since genetic deficiency of RAGE has been previously 
shown to prevent the effects of HFD on adipose tissue 
inflammation [8, 10], we next investigated whether the 
sex differences was involved in the phenotypic switch in 
macrophages polarization. We evaluated macrophage 
polarization in sAT by qRT-PCR. As shown in Fig.  2A, 
the mRNA levels of pro-inflammatory genes, includ-
ing IL-6, IL-1β, TNF-α, MCP-1, and CD11c, were sig-
nificantly decreased in sAT from female RAGE−/−-HFD 
mice compared with male RAGE−/−-HFD mice, indi-
cating that female RAGE deficiency significantly down-
regulates M1 macrophage pro-inflammatory genes. 
Similarly,  compared with male RAGE−/−-HFD mice, 
female RAGE−/−-HFD mice exhibited up-regulation of 
the mRNA levels M2 markers IL-10, YM1, TNF-β, and 
CD206 (Fig.  2B). These findings support our observa-
tion that female RAGE deficiency exhibits an attenuated 
inflammatory response compared with males due to M2 
macrophage polarization.

Female RAGE deficiency prevents oxidative stress 
in adipose tissues
Adipose oxidative stress is a major contributor to meta-
bolic dysfunction and is linked to sex differences [11]. 
We found that ROS production was decreased in sAT 
from female RAGE−/−-HFD mice compared with 
RAGE−/−-HFD mice (Fig.  3A).The expressions of anti-
oxidant genes in sAT were further evaluated by qRT-PCR. 
The female RAGE−/−-HFD significantly increased  cata-
lase (CAT),  superoxide dismutase 2 (SOD2), and glu-
tathione peroxidase 1 (GPX1) mRNA levels in sAT 
compared with male RAGE−/−-HFD mice. Collectively, 
these data indicate that female RAGE deficiency could 
protect obesity-related oxidative stress in adipose tissues 
compared with male RAGE deficiency.

Female RAGE deficiency protects insulin‑AKT signaling 
in adipose tissues
Methylglyoxal (MGO) is a critical precursor of AGEs, 
and is associated with the MGO-dependent inhibi-
tion of insulin receptor-mediated pathways in adipose 
tissue [12–14]. Our recent study demonstrated that 
RAGE mediates insulin sensitivity in WAT explants 
[10]. We further compared AKT activation responses 
by the stimulation of insulin (100 nM; 10 min) in sAT 
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explants. The levels of AKT Ser473 phosphorylation 
were significantly higher in both sAT and eAT in female 
RAGE−/−-HFD mice than in male RAGE−/−-HFD mice 
(Fig. 4A–D). However, the fold increase of Ser473 AKT 
phosphorylation were found to be significantly higher 
in sAT (Fig.  4A) compared with that in eAT (Fig.  4C) 
in female RAGE−/−-HFD mice, and the ratio of female 
over male in insulin-stimulated Ser473 phosphorylation 
of AKT was markedly less in eAT than in sAT, suggest-
ing there is a sex difference in insulin-stimulated AKT 
phosphorylation between sAT and eAT. We added the 
results in revised Fig. 4C, D. MGO could increase AKT 
signaling in adipose tissues under female RAGE defi-
ciency, not male RAGE deficiency. The pretreatment of 

MGO (10 µM) for 16 h had no inhibitory effect on insu-
lin-stimulated AKT phosphorylation in both female 
and male RAGE−/−-HDF mice.

The browning of white adipose tissues is associated with 
increased metabolic rate and improves insulin resistance 
[15, 16]. We further examined the markers of browning 
on sAT. As shown in Fig. 4E, female RAGE−/−-HFD mice 
exhibited significantly higher levels of the Ucp1, Pgc1a, 
Cited1 and Cox8b mRNAs than male RAGE−/−-HFD mice 
on sAT.

Fig. 1  Female RAGE deficiency improved glucose and insulin tolerance. Mice were fed HFD for 16 weeks. A Body weight was measured. n = 6–8 
per group; *p-values indicating significance of difference are indicated in the respective bar diagrams. B sAT sections were stained by hematoxylin. 
Representative histological images were obtained from RAGE−/−-HFD mice. Scale bars: 100 μm. sAT, Subcutaneous adipose tissue. C The area of 
adipocyte size is presented as graphs. n = 6 per group; *p < 0.05 vs. male RAGE−/−-HFD-M mice. All group data are shown as mean ± SEM. D, E 
Glucose tolerance tests (GTT) and Area under the curve (AUC) in each group. n = 6–8 per group. *p < 0.05 vs. female RAGE−/−-HFD-F mice. F, G 
Insulin tolerance tests (ITT) and AUC in each group. n = 6 per group. *p < 0.05 vs. female WT-HFD-F mice; #p < 0.05 vs. female RAGE−/−-HFD-F mice. 
*p-values indicating significance of difference are indicated in the respective bar diagrams
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Discussion
Our recent study has reported that AGE–RAGE axis 
has the potential to impact physiological and patho-
physiological metabolic responses in adipose tissues [10]. 
Interestingly, sex differences were associated with AGE 
accumulation in T2DM patients [17]. Indeed, adipose tis-
sue function and metabolic syndrome show sex-specific 

differences [9]. This study aimed to elucidate the sex-
specific mechanism of RAGE deficiency in adipose tissue 
metabolic regulation and systemic glucose homeostasis 
using male and female RAGE−/− mice fed HFD diet.

There are major sex differences in insulin sensitivity 
and glucose metabolism in adipose tissue regulated by 
physiological levels of sex steroids [18]. Estrogen stimu-
lates the expression of RAGE and is controlled mainly via 
estrogen receptor alpha and RAGE-dependent signaling 
[19, 20]. Soluble form of RAGE (sRAGE), which acts as a 
decoy for AGE, has been correlated with T2DM patients. 
It has been noted that plasma sRAGE levels were directly 
correlated with sex-dependent BMI, waist/hip circum-
ference ratio, and fasting glycemia between obese and 
non-obese individuals [21]. Accumulation of adipose 
tissue macrophage is strongly associated with insulin 
resistance. Our recent study has suggested that RAGE is 
involved in the development of macrophage recruitment 
and polarization in adipose tissues in obese [10]. In this 
study, after 16  weeks of HF feeding, qRT-PCR analysis 
showed decreased adipose tissue gene expression of M1 
polarization markers in female RAGE−/−  mice. Further 
studies are required to clarify how macrophage-mediated 
chronic inflammation in WAT contributes to insulin 
resistance in female RAGE−/− mice.

Our previous report demonstrated that RAGE defi-
ciency improved insulin sensitivity and glucose tolerance 
[10]. Under HF dietary conditions, female RAGE−/− mice 
showed significantly improved glucose tolerance than 
male RAGE−/− mice. Furthermore, body weight and adi-
pocyte size in female RAGE−/− mice were less significant 
than in male RAGE−/− mice. These different responses to 
HFD feeding between male and female RAGE−/−  mice 
are likely related to the secretion of estrogen and 

Fig. 2  Female RAGE deficiency promotes M2 macrophage 
polarization in adipose tissues. A, B Quantitative RT-PCR analysis of 
total RNA isolated from sAT for IL-6, IL-1β, TNF-α, MCP-1, and CD11c, 
IL-10, YM1, TNF-β, and CD206 mRNAs. Data were normalized by the 
amount of 18 s mRNA and expressed relative to the corresponding 
male RAGE−/−-HFD-M mice. n = 6 per group. *p < 0.05 vs. male 
RAGE−/−-HFD-M mice

Fig. 3  Female RAGE deficiency prevents oxidative stress in adipose tissues. A The level of ROS production in sAT from both male and female 
RAGE−/−-HFD mice. B CAT, SOD2, and GPX1 mRNA expression levels in sAT of RAGE−/−-HFD mice. Data were normalized by the amount of 18 s 
mRNA and expressed relative to the corresponding male RAGE−/−-HFD-M mice. n = 6 per group. *p < 0.05. All group data are shown as mean ± SEM
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sex-specific effects of sex hormones on adipose tissue 
distribution [22, 23].

The  AKT signaling  plays an essential role in glucose 
homeostasis  mediated by insulin, and obesity-mediated 
glucose metabolism reduces insulin-AKT phosphoryla-
tion. Our recent finding that insulin-induced AKT phos-
phorylation was impaired in adipose tissue from male 
RAGE−/−-HFD mice compared with WT-HFD mice [10]. 
The action of RAGE expression likely appears tissue-spe-
cific insulin sensitivity on a high-fat diet. In the current 
study, female RAGE−/−-HFD mice exhibit a significantly 
higher level of AKT phosphorylation in sAT than male 
RAGE−/−-HFD, which could account for the improve-
ment of glucose homeostasis.

Browning of white adipose tissue appears to posi-
tively affect energy expenditure, adiposity, and glucose 
homeostasis [16, 24]. Our previous report addressed 

that RAGE deficiency exhibits the browning of white 
adipose tissue under HF dietary conditions. In this 
study, in female RAGE−/− mice, we observed markedly 
increased mRNA expressions of genes for thermogen-
esis regulators, Ucp-1 and Pgc1a, mitochondrial com-
ponent, cox8b, and beige adipocyte marker, cited1. 
Ucp-1 has been demonstrated to protect from oxida-
tive stress by inhibiting mitochondrial ROS produc-
tion [25, 26]. Our study found that male RAGE−/− mice 
had a higher ROS production in adipose tissues than 
female RAGE−/− mice, suggesting that RAGE-regulated 
browning of adipose tissue is a female-specific mecha-
nism underlying insulin resistance improvement. The 
relationship between RAGE, sex hormones, and oxida-
tive stress is needed to elucidate the sex-specific effects 
of RAGE depletion.

Fig. 4  Female RAGE deficiency protects insulin-AKT signaling in adipose tissues. A, C The treatment of insulin (100 nM) for 10 min stimulated 
Ser 473 phosphorylation of AKT after pretreatment with MGO (10 µM) for 16 h in eother sAT (A) or eAT (B) explants from RAGE−/−-HFD mice. 
Representative immunoblots and quantification from RAGE−/−-HFD mice as indicated. B, D The graph corresponds to the adjacent blots above and 
represents densitometric analyses of 3 independent experiments. *p-values indicating significance of difference are indicated in the respective bar 
diagrams. ns indicates no statistical significance. All group data are shown as mean ± SEM. C Ucp1, Pgc1a, Cited1, and Cox8b mRNA expression levels 
in the sAT of male and female RAGE−/−-HFD mice. n = 6 per group; *p-values indicating significance of difference are indicated in the respective bar 
diagrams. All group data are shown as mean ± SEM
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Perspectives and significance
In summary, we found that the protective effect of 
RAGE deficiency from obesity-induced glucose home-
ostasis is sex-specific. Female RAGE-deficient mice 
had markedly improved glucose and insulin tolerance, 
insulin-AKT signaling, which was associated with a 
down-regulated M1 macrophage pro-inflammatory 
genes, an increase in anti-oxidant genes, and browning 
of subcutaneous adipose tissue. Our findings suggest 
that sex-specific dimorphic pattern plays an important 
role for RAGE in obesity-induced adipose tissue insulin 
resistance.
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