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1  | INTRODUC TION

In 2017, the Italian poultry sector has been involved in the highly 
pathogenic avian influenza (HPAI) epidemic caused by type A (H5N8) 

viruses of clade 2.3.4.4 that spread across 29 European countries from 
the winter of 2016 (Brown et al., 2017). In Italy, eighty-three outbreaks 
were confirmed in the domestic poultry during 2017, that peculiarly 
occurred in two distinct epidemic waves, affecting both the rural and 
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Abstract
Comprehensive understanding of the patterns and drivers of avian influenza out-
breaks is pivotal to inform surveillance systems and heighten nations’ ability to 
quickly detect and respond to the emergence of novel viruses. Starting in early 2017, 
the Italian poultry sector has been involved in the massive H5N8 highly pathogenic 
avian influenza epidemic that spread in the majority of the European countries in 
2016/2017. Eighty-three outbreaks were recorded in north-eastern Italy, where a 
densely populated poultry area stretches along the Lombardy, Emilia-Romagna and 
Veneto regions. The confirmed cases, affecting both the rural and industrial sectors, 
depicted two distinct epidemic waves. We adopted a combination of multivariate 
statistics techniques and multi-model regression selection and inference, to inves-
tigate how environmental factors relate to the pattern of outbreaks diversity with 
respect to their spatiotemporal and genetic diversity. Results showed that a combina-
tion of eco-climatic and host density predictors were associated with the outbreaks 
pattern, and variation along gradients was noticeable among genetically and geo-
graphically distinct groups of avian influenza cases. These regional contrasts may be 
indicative of a different mechanism driving the introduction and spreading routes of 
the influenza virus in the domestic poultry population. This methodological approach 
may be extended to different spatiotemporal scale to foster site-specific, ecologically 
informed risk mitigating strategies.
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the industrial sectors (Mulatti et al., 2018). The first wave, lasting be-
tween January and May 2017, comprised 16 cases in holdings located 
on the fringe of the densely populated poultry area (DPPA) in north-
east Italy. The large majority of affected premises (n = 14, 87.5%) were 
close to wetlands, where substantial populations of wild waterfowl 
were reported. Contact tracing reports did not identify at-risk con-
tacts between infected farms, and sequenced viruses revealed consid-
erable nucleotide differences (Fusaro et al., 2017; Mulatti et al., 2018). 
The second epidemic wave started in July, 50 days after the last re-
ported case. Sixty-seven farms in the DPPA located in the Po Valley 
were affected, with sparse incursions into western and central Italy. 
Up to late September, epidemiological and genetic characteristics 
of the cases were comparable to those of the outbreaks detected in 
the first wave. Contrarily, since October, assessment of the contact 
network highlighted that multiple contact types (e.g. neighbourhood 
risks, indirect contacts via contaminated vehicles, movements of feed 
lorries, contacts via shared personnel) occurred between infected 
farms. Moreover, phylogenetic analyses revealed 99%–100% similar-
ity between viruses isolated in those premises. Only a smaller fraction 
of outbreaks were reported occurring in proximity to wetlands (n = 39, 
58.21%) compared to the first wave. Notably, wild bird populations 
appeared to be only marginally involved during the entire epidemic, 
with only 12 H5N8 HPAI cases confirmed.

The transmission pattern during that epidemic was likely driven 
by distinct dynamic interactions between hosts and the environ-
ment where avian influenza (AI) viruses circulated, and these inter-
actions shaped the unique epidemiological characteristics of the 
first and second wave. Hence, in order to possibly improve control 
strategies, a better understanding of how ecological interactions 
among poultry populations, viruses and their environment can be 
related to the pattern of disease emergence is needed. In nature, 
distribution of (bio)diversity is highly non-random and the pattern 
that will result is often interpretable in terms of environmental gra-
dients, which impose some structure to the ecological communities 
(Worm & Tittensor, 2018). Empirically measured environmental con-
ditions can be related to both the driving factors that may cause a 
pattern to exist, and to the key mechanism(s) that limits or promotes 
diversity in coexisting populations of an ecological community. The 
complex systems studied in ecology and epidemiology are often re-
markably similar, with respect to the multifactorial interactions with 
the environment as a whole that shape the distribution, structure, 
abundance and demography of animals and plants communities as 
well as disease emergence and persistence. Therefore, studying the 
relationships between environmental factors and the pattern of in-
fectious disease events can provide clues to the mechanism(s) un-
derlying the pathogen introduction route(s) into the host community.

Avian influenza circulates in two main systems. The first is the 
wild bird ecosystem, where all influenza virus subtypes are main-
tained in the low pathogenic forms, characterized by a predomi-
nantly environmental transmission between hosts, especially within 
residential and migrating populations of the orders Anseriformes 
and Charadriiformes, through sharing foraging and breeding areas. 
The second is the poultry farms and their associated value-chain 

networks system, which forms a secondary system. In the latter, 
once the AI virus is introduced, its transmission is mainly related to 
human-mediated activities (Alexander, 2007). Environmental cor-
relates of avian influenza virus occurrence and persistence have 
been broadly studied at local and global scale, both in wild birds 
and domestic poultry populations, by means of spatiotemporal 
and niche suitability modelling, especially for the H5N1 HPAI virus, 
which has spread extensively and for more than a decade worldwide 
(FAO, 2019). Several spatial analytical studies were reviewed by 
Gilbert and Pfeiffer (Gilbert & Pfeiffer, 2012 and references therein). 
These authors highlighted three main categories of factors, whose 
pattern associated with H5N1 HPAI presence showed to be consis-
tent worldwide: (a) high poultry density, with a specific indication 
of the domestic waterfowls productive type; (b) anthropogenic vari-
ables (human population density, distance to roads and cities, which 
can be a proxy for indirect contacts due to human-mediated activ-
ities, movements of poultry, poultry products, personnel, manure, 
equipment); and (c) presence of water or indices of habitat suitable 
for waterfowl. Besides, AI occurrence has been found associated to 
a wide range of values of eco-climatic variables (e.g. vegetation in-
dices, temperature, precipitation) aggregated over different periods 
(month, year, season), reflecting the plasticity of this virus in nature 
and supporting the hypothesis that, for a directly transmitted dis-
ease, such factors did not represent a constraint. Land cover and 
land use were rarely systematically included and, if so, they define 
a combination of previously described factors (environment suit-
able for wild birds’ ecology or human related activities) (Gilbert & 
Pfeiffer, 2012). Finally, low altitude values were found as well con-
sistently associated to HPAI outbreaks occurrence (Loth et al., 2011; 
Mannelli, Ferre, & Marangon, 2006). Conversely, for the H5Nx vi-
ruses of clade 2.3.4.4 there is a notable paucity of such studies and 
most of them have a focus on local production systems (Dhingra 
et al., 2016; Guinat et al., 2019; Guinat et al., 2018; Kim et al., 2018), 
largely because at the time of publication, extensive data on these 
viruses potential range were not yet available. The most noticeable 
difference concerned the prevalent effect of host distribution, es-
pecially of extensively reared poultry, on H5N1 HPAI outbreaks oc-
currence, versus the association of H5Nx clade 2.3.4.4 viruses with 
a mixture of environmental, managerial (biosecurity practices) and 
host distribution variables, especially chicken intensively reared.

It is hypothesized that in domestic poultry populations, the risk of 
introduction is determined by the farm's neighbourhood characteris-
tics, contact network and the levels of biosecurity. Therefore, if wild 
birds act as the main source of infection for domestic poultry, then the 
disease pattern is expected to be strongly associated to eco-climatic 
and physical environmental factors that directly or indirectly promote 
the availability of shelter and food for waterfowl. Contrarily, any anthro-
pogenic, managerial and demographic aspects or their surrogate mea-
sures that are found associated to outbreaks occurrence or outbreaks’ 
features could be deemed as a robust indication that a secondary trans-
mission between domestic premises is at the origin of the infection.

Recently, it was postulated that assembling methodologies from 
diverse disciplines (ecology, epidemiology and phylogenetics) can 
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advance the understanding of emerging infectious diseases, which 
are inherently difficult to study because of ecological interactions 
among animal populations, viruses and their environment (Plowright, 
Sokolow, Gorman, Daszak, & Foley, 2008). The combined application 
of statistical techniques from multivariate data analysis (ordination 
and clustering methods) and classical regression modelling, proved 
well suited to serve that aim for avian influenza (Carrel, Emch, Nguyen, 
Todd Jobe, & Wan, 2012; Mughini-Gras et al., 2014). Data reduction 
is the first step in a complete analysis of ecological information, usu-
ally preceding the possibility to examine the ordination-environment 
relationship(s). Ordination is a well-established strategy for reducing 
the dimensionality of a multivariate data set by condensing a large 
number of original variables into a smaller set of new dimensions with 
a minimum loss of information. It has long been used in ecology for 
both data presentation and to reveal important and interpretable en-
vironmental gradients associated with the community data (Legendre 
& Legendre, 2012). By means of ordination, ecological community at-
tributes can be summarized and plotted in a multidimensional graph, 
which can help us see whether the community data are structured or 
contain patterns. These patterns may reflect a community's response 
to multiple environmental changes or more subtle biological interac-
tions. Besides, with the advent of phylogeography, integrating the ge-
netic evolution dimension in the study of the ecological system within 
which AI viruses occur and evolve became easier.

Our goal in the present study was twofold. Firstly, to determine 
whether it was possible to identify a pattern in the Italian H5N8 
HPAI outbreaks diversity, with respect to their peculiar spatiotem-
poral and genetic features, using multivariate statistical methods. 
Secondly, to reveal whether the pattern of the outbreaks community 
could be related to eco-environmental variables gradients, through 
multi-model regression selection and inference. Once the pattern of 
H5N8 HPAI outbreaks in Italy will be related to environmental fac-
tors variation, this may prove useful in developing site-specific risk 
mitigating measures.

2  | MATERIAL S & METHODS

2.1 | Outbreaks data

The data set used to explore the environmental correlates of AI out-
breaks pattern consists of the 83 H5N8 HPAI cases confirmed in the 
domestic poultry in Italy in 2017. Table 1 summarizes the main features 
of each outbreak as derived from the epidemiological investigation and 
genetic characterization of the virus isolates, which have been thor-
oughly described by Mulatti et al., (2018) and by Fusaro et al., (2017).

2.2 | Environmental data

By reviewing relevant literature, in particular for viruses of the H7 
and H5 subtypes (such as H5N1 and H5NX clade 2.3.4.4), we identi-
fied factors, as well as proxies for some of these, known to define 

area suitability for HPAI outbreaks (Belkhiria, Alkhamis, & Martinez-
Lopez, 2016; Dhingra et al., 2016; Guinat et al., 2019), or that best 
relate to virus occurrence or virus introduction and spread in do-
mestic poultry and wild birds, both at local or global-scales (Gilbert 
& Pfeiffer, 2012; Si, de Boer, & Gong, 2013; Si et al., 2010). This 
information was then combined with an assessment of data avail-
ability, so that seventeen eco-environmental factors were selected 
as inputs for our data analysis. Those variables were grouped into 
three main categories: host, land cover and eco-climatic variables. 
For each factor/group of factors, corresponding data sources, trends 
relative to AI virus spread or risk of introduction, rationale for model 
inclusion, and references are described below and summarized in 
Table 2.

Host variables include the densities of human population, of do-
mestic poultry holdings and of their respective poultry population. 
Poultry farms and poultry population densities were considered a 
surrogate for the risk of virus spread from farm to farm associated 
to densely populated poultry areas, where the high direct and in-
direct contact rates in an immunologically naïve hosts’ community 
influence disease flare-ups with known major detrimental effects 
(Marangon, Capua, Pozza, & Santucci, 2004). We used the official 
poultry census data, which were derived in 2017 from the National 
Animal Registry, coupled with actual census data, collected during 
each outbreak investigation. Densities were computed for each out-
break for a buffer radius of 3 and 10 km, in relation to the protection 
and surveillance zones put in place during an outbreak. The number 
of holdings that fell within the buffer zones and were in operation up 
to two weeks preceding the date of onset of symptoms (considered 
as the maximum incubation period for AI in a flock (Swayne, 2016), 
as well as their maximum stocking capacity, were included in the cal-
culation. Human population density was included as a proxy for any 
human-mediated transmission mechanisms, and was based on the 
data provided by the Italian National Institute of Statistics (ISTAT) at 
the level of municipal census block for the year 2017.

Land cover and eco-climatic variables were extracted from 
a system developed at the Istituto Zooprofilattico Sperimentale 
delle Venezie (Legnaro, Italy; https://www.izsve nezie.com/) named 
Environmental data for Veterinary Epidemiology (EVE), which allows 
managing data from different sources, both in raster and table for-
mat. Different agro-ecological conditions summarized by land cover 
and land use or cropping intensity areas have been found asso-
ciated to the presence of AI or the risk of avian influenza spread 
(Hogerwerf et al., 2010; Iglesias, Muñoz, Martínez, & Torre, 2010; 
Loth et al., 2011). By offering a cardinal proxy for locally expected 
biodiversity and ecological processes, land cover mimics, with other 
habitat determinants (such as climate), the interface between human 
activities and natural environments. For the land cover data, we cal-
culated the percentage of the classes included in the Corine Land 
Cover (CLC) 2012 data set (https://land.coper nicus.eu/pan-europ 
ean/corin e-land-cover /clc-2012), which are grouped in a three-level 
hierarchy (https://land.coper nicus.eu/user-corne r/techn ical-libra ry/
corin e-land-cover -nomen clatu re-guide lines /html), and we assigned 
those values to the buffer area of 1 km around each outbreak. In 

https://www.izsvenezie.com/
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
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our analyses, we used the five first-level categories ‘artificial sur-
faces’, ‘agricultural areas’, ‘forest and semi-natural areas’, ‘wetlands’ 
and ‘water bodies’ in order to capture coarse environmental gradi-
ents associated with the Italian HPAI H5N8 outbreaks. In addition 
to those classes, we considered the third-level class category ‘rice 
fields’ (in the lowest hierarchical level of ‘agricultural areas’), as this, 
in the same way as permanent water bodies or surface water, was 
consistently found correlated to AI virus occurrences, because it im-
plies the availability of natural resources for wild waterfowl (Gilbert 
& Pfeiffer, 2012; Si et al., 2010).

Eco-climatic variables comprise two vegetation indices (Normalized 
Difference Vegetation Index—NDVI and Enhanced Vegetation Index—
EVI), precipitation, elevation and distance to the nearest wetlands. 
Vegetation indices, although with inconsistent values across coun-
tries and studies, are necessary markers of the environment in which 
AI viruses may spread, especially in combination with other environ-
mental factors such as altitude and precipitation anomalies (Gilbert & 
Pfeiffer, 2012). NDVI and EVI mean values for the two weeks preced-
ing the onset of symptoms were computed for a buffer of 1 km around 
each outbreak location. In EVE, vegetation index data sets across 

Italian territory are modelled from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite-derived data (https://lpdaac.
usgs.gov/produ cts/mod13 a2v00 6/). Meteorological data, such as rain-
fall, were suggested to influence viral prevalence or persistence as well 
as wild birds behaviour (e.g. breeding ecology) (Gilbert & Pfeiffer, 2012 
and references therein). Two measures concerning precipitation were 
considered: cumulative rainfall (totals mm) over two weeks preceding 
the onset of symptoms within 1 km buffer around each outbreak loca-
tion, and the number of rainy days (i.e. a rainy day is considered any day 
with ≥1 mm rain as measured in 24 hr by a rainy gauge) in the same two 
weeks. For Italy, EVE’s precipitation data were derived from the daily 
GPM v.6 data set (https://www.nasa.gov/missi on_pages /GPM/main/
index.html). The average elevation of outbreak location (in a 1 km buf-
fer area) was included, as it governs various types of vegetative growth, 
as does the degree and direction of slope, and can be considered an 
indicator of land cover. High-elevation areas are usually dominated 
by forests-like and permanent vegetation compared to low-elevation 
areas, where grasses and herbaceous plants grow, where wetlands, 
rivers and canals lie, and where there is a mixture of intensive uses 
of the lands. Elevation data were acquired from the 20-m resolution 

TA B L E  2   List of the seventeen eco-environmental predictors included in the regression model

Category Description of variables Measure computed Source

Eco-climatic variables Vegetation indices

EVI 2 weeks mean value MODIS

NDVI 2 weeks mean value MODIS

Elevation m above sea level DTM

Precipitation

Cumulative precipitation amount 15 days
prior to onset of symptoms

total mm Global Precipitation
Measurement mission

Number of days with ≥ 1mm rain in 15 days
prior to onset of symptoms

number of days Elaboration on GPM data

Geodesic distance to the nearest wetland m to nearest wetland GIS data manipulation

Land cover variables Land cover class (level 1)

Artificial surfaces Per cent Corine Land Cover 2012*,2

Agricultural areas Per cent Corine Land Cover 2012*,2

Rice fields (level 3) Per cent Corine Land Cover 2012*,2

Forest and semi-natural areas Per cent Corine Land Cover 2012*,2

Wetlands Per cent Corine Land Cover 2012*,2

Water bodies Per cent Corine Land Cover 2012*,2

Host variables Poultry population density 3 km buffer zone heads/km2 National Animal Registry (BDN); census 
data during outbreak investigation

Poultry population density 10 km buffer zone heads/km2 National Animal Registry (BDN); census 
data during outbreak investigation

Poultry farm density 3 km buffer zone farms/km2 National Animal Registry (BDN); census 
data during outbreak investigation

Poultry farm density 10 km buffer zone farms/km2 National Animal Registry (BDN); census 
data during outbreak investigation

Human population density people/km2 Italian National Institute of Statistics 
(ISTAT)†,1 

†Data processed by Urbistat S.r.l (http://ugeo.urbis tat.com/Admin Stat/en/it/demog rafia /dati-sinte si/italy /380/1). 
*Corine Land Cover 2012 v18 (version 18 was updated in 2016). 

https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://www.nasa.gov/mission_pages/GPM/main/index.html
https://www.nasa.gov/mission_pages/GPM/main/index.html
http://ugeo.urbistat.com/AdminStat/en/it/demografia/dati-sintesi/italy/380/1
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Digital Terrain Model from the Italian National Geoportal (http://www.
pcn.minam biente.it/mattm /en/). Lastly, geodesic distance of each out-
break location to the nearest wetlands (open water such as sea or in-
land water points such as rivers, lakes, wetlands or canals) was used as 
a measure for water proximity to quantify potential direct or indirect 
contacts with wild birds. Values were derived from GIS data manipula-
tion (QGIS Development Team, 2009, version 2.18).

2.3 | Phylogenetic analysis

Pairwise evolutionary distances between domestic cases were cal-
culated from the branch lengths of phylogenetic trees estimated 
using an alignment comprising one virus sequence associated with 
a bird belonging to each case. Aligned haemagglutinin (HA) gene se-
quences and dates of onset of symptoms were used to reconstruct 
time-measured phylogenetic trees inferred using the program BEAST 
v1.10.4 (Suchard et al., 2018). Prior to implementation in BEAST, 
models of nucleotide evolution were compared using BIC and AIC 
calculated using jModelTest v2.1.7 (Darriba, Taboada, & Doallo, 
2012). This indicated that sequence evolution should be modelled 
using the general time reversible model with a proportion of invari-
ant sites and a gamma distribution describing among-site rate varia-
tion with four categories estimated from the data (GTR + I + Γ4). This 
model was implemented in BEAST with a relaxed molecular clock 
with branch rates drawn from a lognormal distribution (Drummond, 
Ho, Phillips, & Rambaut, 2006). This model, where branch-specific 
rates of evolution are drawn from a lognormal distribution, was fa-
voured over a strict molecular clock and a relaxed model with branch 
rates drawn from an exponential distribution through comparison 
of AICM. A flexible Bayesian skyride demographic model with time-
aware smoothing (Minin VN & Bloomquist EW, 2008) was chosen 
over simpler coalescent models that make greater assumptions of 
population size through time (e.g. constant size, exponential growth). 
Phylogenies were constructed using an alignment of 83 sequences 
from each domestic case and a further ten sequences from wild birds 
cases and, alternatively, using an alignment of domestic cases only. 
For each alignment, two independent MCMC chains consisting of 
30,000,000 steps were run and sampled every 3,000 steps. Samples 
were combined after removing 10% of samples as burn-in. To account 
for phylogenetic uncertainty, pairwise evolutionary distances were 
calculated for each of 100 trees drawn from these posterior samples 
of trees using the function cophenetic.phylo from the ape R package 
v5.4 (Paradis & Schliep, 2019). Mean pairwise evolutionary distances 
were calculated averaging across these and used for further analysis.

3  | DATA ANALYSIS

3.1 | Ordination and cluster analysis

The ordination of H5N8 Italian outbreaks was achieved using non-
metric multidimensional scaling (NMDS). This is a distance-based 

method, which attempts to represent as closely as possible the 
pairwise dissimilarity between objects, expressed by ranks. Thus, 
rather than object A being x units distant from object B and x + 1 
units distant from object C, object B is the ‘first’ most distant 
from object A while object C is the ‘second’ most distant. In the 
final ordination graph, the closer the points are (in the present 
study the points are the outbreaks), the more similar.Rank-based 
methods are generally more robust for data that do not have an 
identifiable distribution. Any dissimilarity coefficient or distance 
measure may be used to build the distance matrix used as input 
for NMDS (Borcard, Gillet, & Legendre, 2011). The goodness-of-
fit criterion, which measures the degree of distortion of the or-
dination with respect to the original input data, is called stress. 
Conventionally, stress values < 5% indicate a good fit for the data, 
whereas stress values > 20% give unreliable results. NMDS is also 
known as unconstrained ordination or indirect gradient analysis, 
as any information about the environment is not directly included 
in the analysis, but can be used afterwards as an interpretative 
tool of the final configuration graph.

We summarized the dissimilarities between the H5N8 outbreaks 
by computing an Euclidean distance matrix with respect to three 
main features: the geographical location (space), date of onset of 
symptoms (time) and HA gene sequence (genetic) of virus isolates. 
Geographical coordinates serve as input for the space feature and 
pairwise evolutionary distances, calculated as the sum of branches 
lengths from the reconstructed time-measured phylogenies (see 
Phylogenetic analysis), accounted for both temporal and genetic dif-
ferences between outbreaks. Ordination and corresponding plot 
were obtained using the metaMDS function in the R vegan package 
v2.5-4 (Oksanen et al., 2019).

An agglomerative hierarchical cluster analysis (function hclust in 
R)—with an unweighted group-averaging linkage method—was ap-
plied to the same distance matrix used as input in NMDS. A cophe-
netic correlation coefficient has been calculated as a measure of how 
accurately a dendrogram reflects the pairwise distances between 
the original unmodelled data points. If this value is high, it derives 
that the dendrogram is an appropriate summary of the data. Optimal 
number of clusters was chosen based on the graph of silhouette 
width (function silhouette R package cluster), coupled with the eco-
logical interpretability of the groups, as suggested by Borcard and 
colleagues (Borcard et al., 2011). Clustering and ordination analyses 
were compared to check the adequacy and mutual consistency of 
both representations. Once identified, the clusters were used as a 
categorical outcome variable in the last step of the data analysis, 
consisting of a multivariable regression. The ordination and clus-
ter analysis were repeated with the phylogenies calculated using 
an alignment of the 83 domestic cases sequences only, to check 
whether the inclusion of wild birds cases would affect the results.

We used box and whisker plots to illustrate the variability of 
each environmental variable among the clusters and tested the dif-
ferences using Kruskal–Wallis test (KW) and post hoc pairwise com-
parisons based on Dunn test (Dt) with Bonferroni's adjustment of 
the p-value.

http://www.pcn.minambiente.it/mattm/en/
http://www.pcn.minambiente.it/mattm/en/
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3.2 | Multivariable regression: multi-model 
selection and inference

When faced with a biological question, such as to determine which 
covariates are driving an ecosystem, one of the most difficult aspect 
of the data analysis is probably how to deal with collinearity, which 
implies that two or more regressors are conveying the same informa-
tion (Zuur, Ieno, & Elphick, 2010). Before running the multivariable 
regression, we addressed this issue by sequentially dropping the co-
variate with the highest variance inflation factor (VIF), recalculate the 
VIFs and repeat this process until all VIFs were smaller than 5. When 
the variable with the highest VIF had an alternative measure of the 
same predictor (e.g. EVI and NDVI), then the more biologically plausi-
ble variable from this pair, or the one which gives a better measure of 
the relative quality of the regression model for a given set of data (i.e. 
lower Akaike information criterion, AIC), was chosen to be retained. 
Then, a multinomial logistic regression model was generated with the 
package nnet v7.3-12 (Venables & Ripley, 2002) with the putative pre-
dictor non collinear variables as covariates, and the clusters of HPAI 
H5N8 outbreaks identified with the cluster analysis as the outcome 
variable. Cluster one was used as reference category. Model selection 
was based on Information Theoretic approach using the corrected 
Akaike Information Criterion (IT-AICc) (Burnham & Anderson, 2004). 
This inferential approach, known as multi-model selection, is in-
creasingly recognized as an alternative to the use of null hypothesis 
testing (Burnham & Anderson, 2004; Grueber, Nakagawa, Laws, & 
Jamieson, 2011). It allows exploring a comprehensive set of potential 
models obtained as a result of multiple combinations of the explana-
tory variables. So, instead of considering a unique final ‘best’ model, 
as it is the case in classical forward, backward, or stepwise model 
selection procedures, with multi-model selection it is possible to 
identify a set of ‘top models’ that can be ranked and weighted accord-
ing to information criteria. In case of uncertainty in model selection, 
model averaging within this set of top models provides quantitative 
measures of each variable's relative importance and allows obtaining 
robust parameter estimates while addressing the uncertainty associ-
ated with them (Burnham & Anderson, 2004). This methodology can 
be particularly appropriate in the study of complex ecological sys-
tems, where multiple interactions take place, and the interest is in 
finding strong and consistent predictors of a particular outcome.

Once the global model (i.e. the multinomial logistic regression 
model) has been supplied, a set of potential models, obtained 
as a result of all possible combinations of the explanatory vari-
ables, was generated. For each model, the Akaike weight (wAICc), 
a measure of the probability that a model is the most likely, was 
computed and used to make comparison with the other models. 
Within the set of all the potential models, only those whose total 
cumulative Akaike weights (wAICc) was at least equal to 0.95 were 
selected for model averaging. By doing this, it can be inferred that 
the selected models include the AIC-best model with a probabil-
ity of 0.95. In the model with averaged coefficients, variable im-
portance is calculated as the cumulative wAICc of the models in 
which the variable was included as predictor. This value can be 

interpreted as the probability that the variable in included in the 
best model. Multi-model selection of the multinomial model was 
performed using the dredge function from the package MuMIn 
v1.42.1 (Barton, 2018) in R statistical software v3.5.3 (R Core 
Team, 2019). The package AICcmodavg v2.2-2 (Mazerolle, 2019) 
was used to estimate model-averaged parameters, unconditional 
standard errors and 95% CIs.

To find evidence of fine-scale spatial variation that was not ac-
counted for in the model, plots of the empirical variogram of the 
standardized residuals for each of the multinomial models whose 
total cumulative wAICc was at least equal to 0.95 were examined. 
This was coupled with the computation of envelopes using data per-
mutation (simulations n = 999) under the assumption of no correla-
tion. If the variogram plot falls within the envelopes, the model is 
presumed to have considerably reduced spatial autocorrelation. The 
empirical variogram and the variogram envelopes were estimated 
using the geoR package in R.

Lastly, to visually examine the gradient of effect of the variables 
included in the best-ranked regression models across the ordination 
graph, smooth surface thinplate splines were fitted using the ordisurf 
function in R package vegan. This procedure uses generalized addi-
tive models (GAMs) to overlay a smoothed response surface to the 
ordination space, which allows a more detailed visual interpretation 
and reveals more complex patterns than just a linear relationship.

4  | RESULTS

4.1 | Outbreaks ordination and cluster assignment

The NMDS analysis produced a two-dimensional solution with 
a final stress value of 1.29%, indicating that the ordination repre-
sented well the spatiotemporal and genetic differences among the 
83 H5N8 HPAI outbreaks. The ordination graph, given in Figure 1, 
shows a clear pattern of the outbreaks included in the first and 
second epidemic waves and, within the latter, a clear separation of 
two groups. The first wave outbreaks are located in the lower left 
quadrant of the plot forming a Y shape. The second wave outbreaks, 
which encompasses all cases where Italy A and Italy B viruses were 
isolated, laying in the left (Figure S1 & S2) and in the right quadrants 
(Figure S2), respectively. They comprise as well the four clusters of 
secondary cases as detailed in Table 1: Man: Mantova; Vic: Vicenza; 
Ber: Bergamo; Bre: Brescia, and highlighted in Figures S2 and S3. As 
the results did not change significantly with the use of phylogenies 
calculated using sequences of domestic cases only, no further re-
sults are shown for that data analysis.

The outbreaks were assigned to three clusters based on the 
silhouette width and ecological interpretability. Cluster 1 included 
outbreaks confirmed between January and April (first epidemic 
wave), at the time when the India/Poland/Croatia-like viruses were 
circulating in holdings located on the skirts of the DPPA. Cluster 2 
and 3 included outbreaks confirmed from May to December (second 
epidemic wave), in holdings where Italy A and Italy B virus groups 
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were isolated, respectively. Figure S4 shows the final dendrogram 
with boxes around the three clusters. A cophenetic correlation coef-
ficient of 0,95 indicates that the cluster analysis well represent the 
original distance matrix. Clusters 1, 2 and 3 are arranged by colour 
code and superimposed on the ordination plot in Figure 2, showing a 
consistent representation of the spatial, graphical output of ordina-
tion and the hierarchical cluster assignment.

In Figure S5, box plots of the variables distribution that differ 
between clusters are displayed. Examining the differences: (i) dis-
tance to the nearest wetlands (KW, p = .031), was significantly 
higher in cluster 3 than cluster 1 (Dt, adjusted p = .025); (ii) NDVI 
vegetation index (KW, p < .001) was significantly higher in cluster 2 
and 3 compared to cluster 1 (Dt, adjusted p < .001 and p = .012, re-
spectively); (iii) poultry density and poultry farm density within 3 km 
(KW, p < .001) was significantly higher in cluster 2 and 3 compared 
to cluster 1 (Dt, adjusted p < .001); (iv) poultry population density 
within 10 km (KW, p < .001) was significantly higher in cluster 2 and 
3 compared to cluster 1 (Dt, adjusted p > .01 and p < .001); (v) poultry 
farm density within 10 (KW, p < .001) was significantly higher in clus-
ter 3 and 2 compared to cluster 1 (Dt, adjusted p < .001); (vi) cumu-
lative rainfall (KW, p < .01) was significantly higher in cluster 2 than 

in cluster 1 (Dt, adjusted p < .01) and in cluster 3 compared to cluster 
2 (Dt, adjusted p = .02); (vii) the number of rainy days (KW, p < .001) 
was higher in cluster 2 than in cluster 1 (Dt, adjusted p < .01); and 
(viii) elevation (KW, p < .001) was higher in cluster 3 compared to 
cluster 1 and 2 (Dt, adjusted p < .01).

Within 1 km around each outbreak locations, the dominant 
land cover class is agricultural areas, followed by artificial surfaces 
(well-developed roads and railways) and a relatively higher percent-
ages of forest and semi-natural areas in the third cluster, with the lat-
ter feature resembling the higher percentage of outbreaks involving 
the rural sector, located in more hilly areas. None of the land cover 
classes resulted significantly different between clusters.

4.2 | Regression analysis

Multi-collinearity was high (VIF > 5) among variables representing 
alternative measurements of animal host density, as well as within 
the group of eco-climatic variables, as well as between land cover 
variables and elevation. The two vegetation indexes were highly col-
linear. We decided to keep the NDVI because it is a better predictor 

F I G U R E  1   Non-metric multidimensional scaling (NMDS) plot (Euclidean distance-based) of H5N8 HPAI outbreaks in Italy in 2017. 
NMDS1, non-metric multidimensional scaling dimension one; NMDS2, non-metric multidimensional scaling dimension two
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of the plants growth traits compared to EVI. Amount of precipita-
tion and number of precipitation days were as well highly collinear; 
the latter was kept because it was a better predictor than the previ-
ous. At last, elevation was found highly collinear with two land cover 

classes: with agricultural areas, showing a negative correlation coef-
ficient (−0.629), and with forest and semi-natural areas, showing a 
positive correlation coefficient (0.923). However, elevation was pre-
ferred because it was repeatedly found associated with a lower risk 

F I G U R E  2    NMDS plot with data points (outbreaks) colur-coded on a grey scale. Cluster 1 = black, includes India, Croatia and Poland-like 
viruses; Cluster 2 = dark grey, includes Italy A virus group; Cluster 3 = light grey, includes Italy B virus group
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Candidate models AICc†,1  ∆AICc*,2 wAICc3 

poultry density 3 km, elevation, NDVI, no. 
rainy days

129.58 0.00 0.43

poultry density 3 km, elevation, NDVI 129.82 0.24 0.38

poultry density 3 km, distance to wetlands, 
elevation, NDVI, no. rainy days

133.16 3.58 0.07

poultry density 3 km, artificial, elevation, 
NDVI, no. rainy days

133.39 3.80 0.06

poultry density 3 km, artificial, elevation, 
NDVI

133.59 4.00 0.06

1AICc: corrected Akaike Information Criterion. 
2∆AICc: change in AICc. 
3wAICc: AICc weight. 

TA B L E  3   Ninety-five per cent 
confidence set of best-ranked regression 
models (the 5 models whose cumulative 
Akaike weight, wAICc, is ≤0.95)
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of AI occurrence in the literature (Gilbert & Pfeiffer, 2012; Mannelli 
et al., 2006; Si et al., 2010) and because it better predict the outcome 
variable in the regression analysis compared to the combination 
of agricultural areas and forest and semi-natural areas land cover 
classes. The following variables were omitted from further analysis 
in order from first to last: EVI, poultry farm density within 10 km, 
forest and semi-natural areas, poultry density within 10 km, human 
density and poultry farm density within 3 km, amount of precipita-
tion, water bodies, rice fields, wetlands and agricultural areas.

The multinomial regression model included 6 predictor variables: 
poultry population density within 3 km, artificial surfaces, distance 
to the nearest wetlands, elevation, NDVI and the number of precip-
itation days.

Sixty-four models were built considering all the possible combi-
nation of variables. The highest ranked model had a wAICc of 0.43, 
and 5 models were required to reach a cumulative wAICc of 0.95 
(Table 3). Within the multi-model inference framework, it was pos-
sible to quantify the relative variable importance, by estimating the 
probability that a given explanatory variable is included in the best IT 
model (Table 4). The model with averaged parameters showed that 
only few factors suffice to discriminate the outbreaks observed in the 
H5N8 epidemic of 2017: host density, vegetation index (NDVI) and 
elevation, which were always included in the top 5 models (out of a 
set of 64) that accounted for a cumulative wAICc ≤ 0.95. The climatic 
variable ‘number of rainy days’ was included only in 3 out of 5 models. 
In contrast, the other factors considered (the percentage of land cov-
ered by artificial surfaces and the distance to the nearest wetlands) 
were of relatively low importance (Table 4), as can be inferred from 
their lower probability of being included in the best AICc model.

Pattern of community similarity, for both Italy A (Cluster 2) and 
Italy B (Cluster 3), was strongly and positively influenced by the host 
density, precipitation and NDVI, compared to outbreaks of the first 

wave (Cluster 1), the reference category. Diversity between clusters is 
reflected as well in the altitude. An increase in altitude can be found as-
sociated to Cluster 3 compared to Cluster 1, but conversely for Cluster 
2 compared to Cluster1. Artificial surfaces and distance to the nearest 
wetlands contribute to explain the pattern of AI outbreaks, but with 
a lower relative importance. A higher percentage of artificial surfaces 
and increasing distance to the nearest wetlands are associated to the 
probability of belonging to Cluster 2 and 3 than to Cluster 1. The same 
relationship holds for the distance to the nearest wetlands, for which 
a higher probability of belonging to Cluster 2 and 3 than to Cluster 1 is 
associated to a greater distance to the nearest wetlands.

The variograms of the residuals for the 5 models whose cumu-
lative wAICc was 0.95 were all contained by their envelopes, which 
suggests that no spatial autocorrelation greater than that which 
might be expected by chance remained after adjusting for the co-
variates. Therefore, models that account for spatial dependency 
were not explored in this study.

The GAM approach revealed a complex pattern in the relation-
ship between the outbreaks and most of the environmental vari-
ables, with the exception of precipitation days and percentage of 
artificial areas, for which the algorithm fitted a linear trend. Figure 
S6 shows how those variables (response surfaces) changes across 
the space of the NMDS graph, where the ordinated outbreaks are 
plotted. A decreasing gradients of the variables values can be ob-
served when moving from the left and from the right side of the 
graph, where Cluster 2 (Italy A) and Cluster 3 (Italy B) lays, respec-
tively, towards the centre, where lays Cluster 1 (India/Poland/
Croatia-like). Explained deviance was ~40% for the elevation, NDVI 
and poultry population density, suggesting that the models have a 
relatively high explanatory power and predictability. These variables 
were also the ones with the highest importance according to the 
multi-model selection inference. Lower values of explained deviance 

TA B L E  4   Multinomial logistic regression with averaged parameters estimates, 95% CI, standard error (SE) and variable importance

Outcome Coefficient Estimate 95%CI SE Importance

Cluster 21  (intercept) 2.13 −0.55; 4.82 1.37

Poultry population density 3 km 4.02 0.97; 7.07 1.56 1

Elevation −3.36 −7.17; 0.44 1.94 1

Distance to nearest wetlands 0.95 −0.51; 2.42 1.28 0.07

Artificial surfaces 0.44 −0.37; 1.25 0.41 0.12

NDVI 2.31 0.89; 3.72 0.72 1

No. of rainy days 1.28 0.09; 2.47 0.61 0.56

Cluster 31  (intercept) 3.63 1.12; 6.14 1.28

Poultry population density 3km 3.73 0.71; 6.75 1.54 1

Elevation 1.34 −0.61; 3.29 0.99 1

Distance to nearest wetlands 0.60 0.61; 1.82 0.97 0.07

Artificial surfaces 0.17 −0.60; 0.94 0.39 0.12

NDVI 1.12 −0.15; 2.38 0.65 1

No. of rainy days 1.00 −0.12; 2.12 0.57 0.56

1Cluster 1 is the reference category. 
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were obtained for distance to the nearest wetlands (22.6%), number 
of precipitation days (11.2%) and artificial surfaces (7.08%). The fit-
ted response surfaces were significant for all the models.

5  | DISCUSSION

Framing avian influenza outbreaks features against variations in 
eco-environmental variables is a first and necessary step towards 
identifying whether different contexts might support distinct epi-
demiological processes underlying viral introduction and spread in 
a naïve poultry population. In the present study, the integration of 
different dimensions of the ecological system (space, time and HA 
genetic variability), within which H5N8 HPAI occurred in the domes-
tic poultry in Italy in 2017, have been considered and analysed with 
a combination of multivariate statistical and regression techniques 
adopted from the field of environmental and ecological sciences. 
The composition of the outbreaks was hypothesized to vary along 
gradients of eco-environmental factors as the underlying introduc-
tion and spreading mechanisms of AI virus changed.

The ordination and cluster analysis consistently discriminated 3 
groups within the outbreaks community, which resulted associated 
to opposite environmental gradients in the multinomial regression 
analysis. In the ordination diagram (Figure 1), outbreaks belong-
ing to the first wave, with the exception of the last one recorded 
in May (outbreak ID: 16 in Table 1) that clusters with the Italy A 
group, are more distant from each other and hence more dissimilar 
compared to the outbreaks of the second wave. In fact, those two 
groups differed in a number of ways (Mulatti et al., 2018). Firstly, 
in terms of time frame (date of onset of symptoms), outbreaks of 
the first wave did not follow the typical avian influenza pattern 
of occurrence, with few cases reported per week. Secondly, they 
were located in the fringes of the DPPA (not in close proximity 
to each other). Thirdly, genetically they include viruses related to 
three different introductions occurred in Italy at the beginning of 
the Italian H5N8 HPAI epidemic: H5N8-A/wild duck/Poland/82 
A/2016-like, H5N8-A/painted stork/India/10CA03/2016-like, 
H5N8-A/mute swan/Croatia/70/2016-like (Fusaro et al., 2017). 
In the NMDS space, a high degree of distinctiveness between 
Italy A and Italy B groups of outbreaks is well represented (they 
are located in two different and opposite quadrants) along with 
a clear separation from the outbreaks of the first wave (located 
in between the Italy A and Italy B groups). Indeed, genetic analy-
ses (Fusaro et al., 2017) and further integrated phylogenetic and 
phylodynamic analyses (Harvey et al., 2019), suggested that Italy 
A and Italy B groups likely originated in Italy and emerged when 
the H5N8 virus was already circulating in this country, prior to 
the first case of the second wave. In addition, the outbreaks as-
cribed to Italy A and Italy B differed in the geographical locations 
where they occurred, which never overlapped during the epidemic 
(Mulatti et al., 2018). Italy A was isolated in outbreaks affecting 
the eastern part of the DPPA, while Italy B circulated mainly in the 
western part of that area, with sparse incursions in the southern 

regions involved in the epidemic in 2017. Contrarily, the similarity 
shown in the ordination graph within the Italy A and Italy B groups 
is very high, and it is possible to pinpoint multiple areas where 
points overlapped. Those correspond to the 4 different clusters 
inferable as such by Mulatti and colleagues (Mulatti et al., 2018) 
for the high number of connections (proximity between cases, ge-
netic similarity and/or trade of living poultry).

Using multi-model selection, a combination of host density and 
eco-climatic variables, rather than land cover predictors, appeared to 
best model the probability of belonging to one of the three clusters 
of outbreaks identified in this study, with a ruling effect of poultry 
population density within a 3km radius, NDVI and elevation, fol-
lowed by precipitation, presence of artificial surfaces and distance 
to the nearest wetlands. In addition, the response surfaces produced 
for each factor using additive models, showed that outbreaks be-
longing to the first epidemic wave (Cluster 1) are consistently as-
sociated to lower values (decreasing gradients) for predictors such 
as poultry density within 3 km, NDVI, elevation, distance to the 
nearest wetlands and artificial surfaces percentage (Figures S6). This 
strongly contrasts with the highest values (increasing gradients) of 
the same variables that resemble the ordination pattern of Italy A 
and Italy B type outbreaks in the second wave (Cluster 2 and 3).

Resuming the conceptual framework that tries to relate avian in-
fluenza outbreaks pattern to different drivers of the pathogen intro-
duction and spreading routes, it posits that if AI virus is introduced 
into the domestic poultry via wild birds, the outbreaks pattern could 
be found related with features that promote wild bird host ecology 
(i.e. breeding and feeding habits). On the contrary, when the pat-
tern is related to human related activities or some proxies for that, 
a secondary between holdings transmission hypothesis can be cor-
roborated (Si et al., 2010, 2013). In the present study, by relating epi-
demic-wide gradients of the eco-environmental factors to outbreaks 
community, findings suggested that first wave outbreaks ecologies 
are more capable of supporting AI potential incursions from wild 
birds into the domestic poultry sector. As opposite, ecologies of the 
second wave outbreaks more likely support a predominant lateral 
spread mechanism (farm-to-farm).

Importantly, environmental correlates of the Italian H5N8 
outbreaks dissimilarity pattern match earlier observations made 
for defining H5N1 HPAI virus persistence and area suitability 
(Belkhiria, Hijmans, Boyce, Crossley, & Martínez-López, 2018; 
Gilbert & Pfeiffer, 2012; Wang et al., 2014; Ward, Maftei, Apostu, & 
Suru, 2008), while giving further evidence to the more recent study 
by Dhingra and colleagues (Dhingra et al., 2016). The latter indeed 
concluded that a combination of host distribution and eco-environ-
mental variables define a better suitability model for the H5Nx clade 
2.3.4.4 AI viruses, compared to the model for the H5N1 HPAI, which 
includes host distribution variables only.

Notwithstanding, it is possible to pinpoint factors—elevation, 
distance to nearest wetlands and number of rainy days—with re-
spect to whose gradients, Italy A and Italy B can be discriminated 
as a sort of sub epidemics. Higher altitudes, have always been found 
negatively associated to the risk of outbreaks occurrence (Gilbert & 
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Pfeiffer, 2012; Mannelli et al., 2006; Si et al., 2010), possibly because 
of increased geographical isolation, which implies local environmen-
tal conditions less suitable for virus spread. In the present study, ele-
vation resulted positively related to outbreaks of Italy B type. While 
there is no apparent explanation, this condition may simply reflect 
the higher percentages of outbreaks belonging to the rural poul-
try sector where this genomic groups was isolated and that were 
located at a relative higher altitude than the median of the same 
group. Besides, it should not be forgotten the fact that elevation 
showed a high and positive correlation with land cover class ‘forest 
and semi-natural areas’ and a negative one with ‘agricultural areas’, 
which simply convey the same information as the elevation variable 
does. Vegetation characterized by larger plants such as bushes and 
forest trees (as in the forest and semi-natural areas) are not suitable 
for waterfowl feeding behaviour, thus strengthen the hypothesis 
that those outbreaks were more likely related to a secondary farm-
to-farm transmission.

Variables indicative of the presence of water, although always 
associated with HPAI outbreaks, have usually lower statistical sig-
nificance levels compared to host or human densities factors (Si 
et al., 2010, 2013; Wang et al., 2014). However, the ‘distance to 
nearest wetlands’ variable shows the direction of maximum increase 
towards the Italy B genomic group outbreaks and the model sur-
faces overlay the Bergamo cluster (Figures S3 and S6). This cluster 
comprised all rural farms showing as well higher values of altitude 
variable.

A positive gradient of the number of rainy days in the 15 days 
preceding the onset of symptoms is found associated to out-
breaks of Italy A type. Rainfall patterns may importantly deter-
mine breeding opportunities and are therefore linked to wild bird 
numbers (Si et al., 2010). This subsequently can influence the age 
structure of that community, which may well affect AI dynamics. 
However, we cannot rule out that rainfall may also have a direct 
effect on AI dynamics, as AI virus is generally highly persistent 
in water (Stallknecht, Shane, Kearney, & Zwank, 1990). These 
findings contrast with the hypothesis that relates cluster of Italy 
A type outbreaks to variables that are proxies for a secondary 
farm-to-farm transmission. However, phylogenetic and temporal 
distances have already suggested the persistence of the Italy A 
genetic group in wild birds, with a higher number of primary incur-
sions into domestic poultry compared to what was reconstructed 
for Italy B virus group (Harvey et al., 2019). The results of the ap-
proach used in the present study provide further evidence that 
the role of wild birds during the Italian epidemic was significantly 
greater than apparent.

Surprisingly, of all the land cover variables considered, with 
the exception of artificial surfaces, showing a relatively low im-
portance in model prediction, none was retained in the best sub-
set of models. Most probably, this result reflects a limitation of 
our choice in defining the buffer area for data extrapolation. One 
kilometre buffer could have been a too small area to capture rel-
evant features that can be related to a source of infection due to 
proximity. This translated as well in strong discontinuities along 

the data set of such variables. In cases like this, methods which 
set a threshold (e.g. regression or classification trees) would have 
been better at describing the relationship between these predic-
tors and the clusters than linear models does (Ouellette, Legendre, 
& Borcard, 2012).

This study offered the opportunity to explore the peculiarities 
of the Italian H5N8 HPAI epidemic using a disease ecology per-
spective. The results corroborate the hypothesis that, in Italy, the 
H5N8 HPAI epidemic occurred within the domestic poultry popu-
lation in 2017, owed their distinctive marks to different epidemi-
ological processes that shaped the virus introduction and further 
spread (Harvey et al., 2019; Mulatti et al., 2018). However, to date 
the processes linked to the emergence in the winter and recrudes-
cence in summer of 2017 of the H5N8 HPAI in Italy remain diffi-
cult to unravel, not least for the lack of recent and updated data on 
consistency and distribution of waterbirds populations wintering 
in this country, as well as data related to the residential waterfowl 
populations. This makes it difficult to establish whether important 
changes, if any, have occurred with regard to the populations’ size 
and species habits, and whether these, along with local environ-
mental changes, exerted an impact on the spread of the disease. 
Suggestive evidence of the potential role of residential wild birds 
in maintaining and spreading influenza viruses can be found in the 
annual waterbirds census carried out in the lagoons of Venice, un-
dertaken every year as part of the IWC (International Waterbirds 
Census), which reported a seven fold increase in the migratory wa-
terfowl population from 1993 to 2018 (personal communication 
Scarton F.; SELC Soc. Coop www.selc.it).

One important advantage in our study is that outbreaks com-
munity patterns were derived from empirical data, rather than 
spatially extrapolated on the basis on environmental relation-
ships or assumed ecological niches. Besides, phylogenetic data 
were integrated in order to consider virus evolution during the 
epidemic as a pivotal dimension of the epidemic ecological sys-
tem. The present study has considerable potential, and its insights 
could be applied to initiate diverse modelling approaches in order 
to more accurately predict disease occurrence at different space 
and time scales associated to ecological variation, which are often 
mediated by complex, large-scale processes that are not immedi-
ately amenable to traditional approaches to causal inference. Two 
steps should be undertaken in any follow-up. Firstly, with more 
phylogeographic studies becoming available, it should be possible 
to separate true persistence in a country from new introductions, 
which would enhance our capacity to identify the areas most sus-
ceptible to those events. In conjunction with the recent advent 
of phylogenetic trait-based approaches, other ecological analysis 
frameworks may be considered to tackle ecological data assess-
ment, when the relationship between a main explanatory data set 
and the response is non-linear (Ouellette et al., 2012; Zuur, Ieno, 
& Smith, 2007), such as niche modelling, multivariate regression 
trees or classification trees and their extensions (i.e. boosted re-
gression trees). Secondly, we could have more finely estimated 
risk indices at farm level. For example, biosecurity practices, trade 
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activities and inbound and outbound movements data often hide 
considerable within country variation. It can be anticipated that 
they may prove useful in refining several site-specific conditions 
where AI control efforts may be targeted. Similarly, it would also 
be important to consider how biological and climatic processes 
that help explaining outbreaks pattern in domestic poultry, inter-
act with the dynamics of AI infection in the wild bird population, 
and the practical applications of this for surveillance programmes.

Importantly, eco-environmental conditions are dynamic and so 
are the interactions between hosts and the environment where 
avian influenza (AI) viruses circulate. Expanding temporal and spa-
tial coverage to historical data of Italian LPAI and HPAI epidemics 
or to the European H5N8 HPAI most recent epidemic data may help 
identify trajectories over which some countries, or peculiar poultry 
production systems develop greater risk for AI incursions and per-
sistence, and to fully describe the environmental gradients in which 
influenza viruses may evolve.
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