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Abstract

With the recent approval by the FDA of the first disease-modifying drug for Alzheimer’s Dis-

ease (AD), personalized medicine will be increasingly important for appropriate manage-

ment and counseling of patients with AD and those at risk. The growing availability of clinical

biomarker data and data-driven computational modeling techniques provide an opportunity

for new approaches to individualized AD therapeutic planning. In this paper, we develop a

new mathematical model, based on AD cognitive, cerebrospinal fluid (CSF) and MRI bio-

markers, to provide a personalized optimal treatment plan for individuals. This model is

parameterized by biomarker data from the AD Neuroimaging Initiative (ADNI) cohort, a

large multi-institutional database monitoring the natural history of subjects with AD and mild

cognitive impairment (MCI). Optimal control theory is used to incorporate time-varying treat-

ment controls and side-effects into the model, based on recent clinical trial data, to provide a

personalized treatment regimen with anti-amyloid-beta therapy. In-silico treatment studies

were conducted on the approved treatment, aducanumab, as well as on another promising

anti-amyloid-beta therapy under evaluation, donanemab. Clinical trial simulations were

conducted over both short-term (78 weeks) and long-term (10 years) periods with low-dose

(6 mg/kg) and high-dose (10 mg/kg) regimens for aducanumab, and a single-dose regimen

(1400 mg) for donanemab. Results confirm those of actual clinical trials showing a large and

sustained effect of both aducanumab and donanemab on amyloid beta clearance. The

effect on slowing cognitive decline was modest for both treatments, but greater for donane-

mab. This optimal treatment computational modeling framework can be applied to other sin-

gle and combination treatments for both prediction and optimization, as well as incorporate

new clinical trial data as it becomes available.

Author summary

Although personalized therapy will likely play a major role in the appropriate manage-

ment and counseling of patients with AD in the future, there are currently no clinically
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utilized markers that can easily distinguish among the different clinical trajectories of

individual patients, nor provide personalized treatment plans. The mathematical model

developed in this paper, based on current theories of AD pathophysiology, enables predic-

tion of disease trajectory under a natural history scenario in individual patients with a

clinical diagnosis of AD or late MCI (L-MCI) using current clinically validated biomark-

ers. This analytical approach also provides an in-silico method to simulate and optimize

treatment at an individual level, thereby accelerating the development of personalized

treatments. By accessing longitudinal biomarker data from the ADNI database, we vali-

date our computational modeling approach to identify patient-specific disease trajectories

and optimize individual treatments for two anti-amyloid-beta therapies, aducanumab and

donanemab, in proof-of-principle clinical trial simulations. Simulation results show that,

with the optimization, the effect on slowing cognitive decline is greater for doneneumab

than aducanumab for a 10-year treatment regimen, although the effect on amyloid beta

clearance is similar for both drugs.

Introduction

Alzheimer’s disease (AD) affects more than 5 million people in the U.S. and is recognized as

one of the leading global health priorities of the 21st century [1]. On June 7, 2021, the U.S.

Food and Drug Administration (FDA) granted accelerated approval for the first-ever disease-

modifying therapy for AD, aducanumab, a monoclonal antibody directed against amyloid-

beta protein. This therapy has been shown to effectively remove amyloid plaques from the

brain. Still, however, questions remain regarding the efficacy of removing amyloid plaques for

preventing or delaying cognitive decline [2]. This uncertainty, combined with the 99% failure

rate of trials of other classes of AD treatments, is rooted in an incomplete understanding of the

complex mechanisms resulting in AD, and how disease trajectory and response to treatment

may vary individual-to-individual. It is likely, therefore, that personalized treatment will need

to play a central role in the future management and counseling of patients with AD [3, 4]. Tai-

lored approaches to treatment will be facilitated by the growing availability of electronic data

in AD subjects and those at risk. Two components are necessary to realize this idea: first, an

abundance of longitudinal data to cover many physiological aspects of individuals when they

are healthy and possibly into disease [5]; second, computational methods and models capable

of analyzing and integrating this data on a large scale [6].

Although computational modeling is still an emerging field in the study of AD, several

mathematical models have been developed based on systems biology approaches to AD molec-

ular and cellular patho-physiologic mechanisms. Our group, for example, built a model based

on AD signaling pathways using a system of partial differential equations (PDEs) [7]. This

model has been used to simulate and validate at a cellular level the mechanisms underlying the

failure of several drugs in recent clinical trials. Because the variables in this and similar mecha-

nistic models cannot be measured directly in living subjects, simulated treatment studies can

only be performed at the population, rather than individual patient, level. Treatment dosage

and regimen, therefore, might not be optimal for each individual. Over the past two decades,

several clinical biomarkers of AD patho-physiologic progression have been developed to track

disease progression in patient-oriented research. Broadening our previous mathematical

modeling approach, based on molecular and cellular mechanisms, to these key AD clinical bio-

markers, we developed a sparse cascade model to include pathologic hallmark biomarkers
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(amyloid beta and tau), neuronal loss biomarkers, and cognitive impairment using a system of

ordinary differential equations (ODEs) [8].

In this paper, we develop a novel personalized treatment optimization framework based on

a mathematical modeling approach. Our contribution is the following:

• we develop a sparse empirical cascade model of AD progression to include only clinical bio-

markers of beta-amyloid and taupathology, neuronal degeneration, and cognitive

impairment;

• we parametrize the model on a multicenter dataset with available cerebrospinal fluid (CSF),

MRI and cognitive biomarkers to build a personalized model for each individual;

• we perform personalized therapeutic simulation studies for AD and late mild cognitive

impairment (LMCI) subjects via application of optimal control theory and corresponding

numerical results with our mathematical model.

We apply this modeling framework to conduct in-silico clinical trials of two anti-amyloid-

beta treatments using personalized optimal treatment regimens for each individual. This opti-

mal control application allows for time-varying controls [9] to achieve a desired goal to mini-

mize cognitive impairment and the level of amyloid in the brain while minimizing side effects,

particularly early in the treatment when they are more likely to occur. Although this approach

has been used in various disease treatment models, [10–12] this is a novel application of opti-

mal control theory to treatment of Alzheimer’s disease employing personalized regimens. The

flowchart of the personalized optimal treatment study is shown in Fig 1.

Materials and methods

Mathematical model

In this paper, we develop a cascade model including four AD clinical biomarkers: pathologic

hallmark biomarkers (amyloid beta and tau), neuronal loss biomarkers, and cognitive

impairment. The pathophysiological network of AD starts with amyloid beta in soluble form

and in plaques. This promotes the abnormal phosphorylation of tau protein, leading to neuro-

degeneration, and finally, via large-scale brain network disruption, to cognitive impairment

shown in Fig 2.

Amyloid beta equation. The sentinal event in AD is thought to result from an imbalance

in Aβ production and clearance, leading to amyloid plaque accumulation. Aβ accumulation is

Fig 1. Flowchart of personalized optimal therapeutic study: Starting with the ODE cascade model, we calibrate

individual parameters using longitudinal biomarker data for each subject in the ADNI dataset. Optimal control

theory is then applied to the personalized models with treatment as a control function to simulate both short-term (78

weeks) and long-term (10 years) optimized digital clinical trials initiated at chronological ages 60 and 70. Trials are

conducted for the anti-amyloid-beta agents, aducanamab at two different doses, and for donanemab at a single dose.

https://doi.org/10.1371/journal.pcbi.1010481.g001
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modeled by logistic growth [13], namely,

dAb

dt
¼ lAb

Ab 1 �
Ab

KAb

 !

with AbðT0Þ ¼ A0; ð1Þ

where A0 is the initial condition of amyloid beta at age T0 and may vary for different patients.

Here KAb
is carrying capacity and lAb

is the Aβ growth rate. The analytical solution of Aβ is

obtained by solving the differential equation, namely,

AbðtÞ ¼
KAb

C1e
� lAb

ðt� T0Þ þ 1
where C1 ¼

KAb

Ao
� 1:

Tau equations. Numerous studies of the pathological changes that characterize AD show

that amyloid beta accumulation initiates phosphorylation of tau protein [14, 15]. Thus we take

the equation of phosphorylated tau, τp, as

dtp
dt
¼ ltAb 1 �

tp

Ktp

 !

with tpðT0Þ ¼ tp0: ð2Þ

Moreover, there may also be nonamyloid-dependent tau accumulation, in which case the

cascade mainly depends on comorbidities, e.g., aging and/or suspected non-Alzheimer pathol-

ogy (SNAP) via nonamyloid-dependent tauopathy, τo. We assume that τo linearly grows with

respect to age and take

dto
dt
¼ lto with toðT0Þ ¼ to0: ð3Þ

Fig 2. The biomarker cascade in AD starts with amyloid beta pathology. This leads to amyloid-related tau

pathology, neuronal dysfunction/loss and subsequent cognitive impairment.

https://doi.org/10.1371/journal.pcbi.1010481.g002
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Neurodegeneration equation. Tau deposition within cells disrupts microtubules, impair-

ing axonal transport. P-tau impairs mitochondria and translocates into the nucleus [13, 16].

Thus the total tau induces the neurodegeneration, N, accordingly, we have the following equa-

tion for N

dN
dt
¼ ðlNto

to þ lNtp
tpÞ 1 �

N
KN

� �

with NðT0Þ ¼ N0: ð4Þ

Cognitive decline equation. Initiation of cognitive decline, C, is directly determined by

both neurodegeneration, N and tau pathology [17, 18]. Therefore we have the equation for C
below

dC
dt
¼ ðlCNN þ lCttpÞ 1 �

C
KC

� �

with CðT0Þ ¼ C0: ð5Þ

Thus we summarize the mathematical model (for our state variables) as a system of ODEs

below

dAb

dt
¼ lAb

Ab 1 �
Ab

KAb

 !

dtp
dt
¼ ltAb 1 �

tp

Ktp

 !

dto
dt
¼ lto

dN
dt
¼ ðlNto

to þ lNtp
tpÞ 1 �

N
KN

� �

dC
dt
¼ ðlCNN þ lCttpÞ 1 �

C
KC

� �

with ¼

AbðT0Þ ¼ A0

tpðT0Þ ¼ tp0

toðT0Þ ¼ to0

NðT0Þ ¼ N0

CðT0Þ ¼ C0

:

8
>>>>>><

>>>>>>:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð6Þ

Parameter estimations via ADNI dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), a multicenter, prospective, natural-

istic study, began in 2003, comprises four sequential studies—ADNI-1, ADNI-GO, ADNI-2,

and ADNI-3—which followed subjects between 5-15 years, using genetic, blood- and CSF-

based, imaging, and cognitive biomarkers (adni.loni.usc.edu). In this paper, we use biomarker

data from a subset of the ADNI dataset, ADNI-1 which enrolled 819 subjects with LMCI, early

AD, and cognitively normal elderly controls. The study included baseline MRI, CSF, and cog-

nitive data plus 10 years of follow-up at various intervals for the different biomarkers. CSF

beta-amyloid peptide (Aβ42), total tau, phosphorylated tau levels at baseline and follow up

every 2 years up to 10 years are available in ADNI-1 in a subset of approximately 300-400 sub-

jects to estimate parameters in the equations of Aβ, τp, and τo. Volumetrics, such as hippocam-

pal volume, and neuropsychological tests, such as the Alzheimer’s Disease Assessment Scale

(ADAS13) score, are available at one year and six-month intervals, respectively, and are used

to estimate parameters in the equations of N and C, respectively.

In order to illustrate the numerical algorithm of parameter estimations, for simplicity, we

write the ODE system as

dx
dt
¼ Gðx; pÞ; where x ¼ ðAb; tp; to;N;CÞ

T
2 R5 ð7Þ
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and p denotes all the parameters and initial conditions. We estimate the parameters for each

patient via solving the optimization problem below:

min
p

XN

i¼1

kxðti; pÞ � ~xðtiÞk
2

2
; ð8Þ

where ~xðtiÞ stands for the available longitudinal CSF biomarker, volumetrics, and ADAS13

data at some measuring time points ti and x(ti; p) is the solution of the ODE model for given

parameter p at ti. The optimization (8) is a non-convex optimization on high dimensional

parameter space thus the initial guess for optimization algorithms is very sensitive to find a

good local minimum. In order to find a good initial guess, we estimate the parameters sequen-

tially, namely, equation-by-equation [19], because the ODE model is a natural cascade model.

More specifically, we first estimate the parameters in the equation of Aβ, namely, lAb
;KAb

, and

the initial condition, A0, by using CSF amyloid beta42 biomarker data to solve the sub optimi-

zation problem below

min
lAb

;KAb
;Ao

X

i

ðAbðti; lAb
;KAb
Þ � ~AbðtiÞÞ

2 with AbðT0Þ ¼ Ao ð9Þ

Of note, CSF levels of Aβ peptide go down with increasing disease burden, and therefore are a

surrogate for Aβ accumulation in the brain. Once the parameters of the Aβ equation are esti-

mated, we perform the similar procedure for τp, τo, N, and C equations. In this case, this “equa-

tion-by-equation” procedure, following the cascade progression of AD, gives a good initial

guess of the original optimization problem (8) compared to random initialization. In fact, (8)

achieves 0.01 by using the “equation-by-equation” procedure while the best value is 0.03

among 100 random initializations. More details of the parameter estimation are shown in

Algorithm 1. The optimization solver is fmincon in Matlab used for solving each sub optimi-

zation problem.

Algorithm 1 Parameter estimation by solving the optimization problem (8).
Input biomarker datapoints ~xðtiÞ at time ti for one patient.
1: Solve (9) to obtain a local minimizer for parameters l

0

Ab
;K0

Ab
and the

initial condition A0
0
;

2: Fix l
0

Ab
;K0

Ab
; and A0

0
and solve

min
lt;Ktp ;tp0

X

i

ðtpðti; lt;Ktp
Þ � ~tpðtiÞÞ

2

to obtain the parameters l
0

t
;K0

tp
and the initial condition t0

p0
;

3: Solve the optimization problem

min
lto ;to0

X

i

ðtoðti; ltoÞ � ~toðtiÞÞ
2

to obtain the parameter value l
0

to
and the initial condition t0

o0
;

4: Solve the following optimization for

min
lNto ;lNtp ;KN ;N0

X

i

ðNðti; lNto
; lNtp

;KNÞ �
~NðtiÞÞ

2

to obtain the parameter values l
0

Nto
; l

0

Ntp
;K0

N and the initial condition N0
0
;

5: Solve the following optimization for

min
lCN ;KC ;C0

X

i

ðCðti; lCN;KCÞ �
~CðtiÞÞ

2

to obtain the parameter values l
0

CN ;K
0
C and the initial condition C0

0
;
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6: Solve the optimization problem (8) by using all the parameters
obtained in the previous steps as an initial guess.

Output p�.

Personalized optimal anti-amyloid-beta treatment study

In ongoing clinical trials, researchers have developed and are testing several major classes of

AD interventions, including anti-amyloid-beta, anti-tau, neuroprotective and cognitive

enhancing interventions. In this study, we model current anti-amyloid clinical trial agents for

AD and provide a personalized optimal anti-amyloid-beta treatment plan via the ODE model.

This approach can be also applied to other treatment plans. In this section, we perform the

optimal control for both the AD and LMCI groups in ADNI by using the personalized parame-

ters for each subject. More specifically, we represent anti-amyloid-beta therapy, as control

function u(t), as follows in the first state equation:

dAb

dt
¼ lAb

Ab 1 �
Ab

KAb

 !

� uðtÞAb: ð10Þ

The optimal anti-amyloid-beta intervention is chosen to minimize both cognitive impairment,

C and side-effects over the treatment interval [T1, T2] as well as minimize cognitive

impairment and the level of amyloid by the end of the treatment, as represented in the follow-

ing objective function:

min
u2U

JðuÞ≔ a1AbðT2Þ þ a2CðT2Þ þ

Z T2

T1

CðtÞdt þ
Z T2

T1

εðAbðtÞ; tÞu
2ðtÞdt; ð11Þ

with the control set,

U ¼ fuðtÞ 2 L1ð½T1;T2�Þ j0 � uðtÞ � umaxg:

The term, ε(Aβ(t), t)u(t)2 represents the side-effects of the anti-amyloid-beta treatment relative

to its benefit over time. More specifically, ε(Aβ(t), t) depends upon both the level of amyloid

beta and the time duration of the treatment. The most serious side-effects of anti-amyloid-beta

treatment are brain edema and hemorrhage which are thought to result from the removal of

amyloid plaques from the walls of blood vessels [20]. This leads to leakage at the endothelial

junctions and breakdown of the blood-brain barrier. The extent of these gaps in the blood ves-

sel walls is likely related to the overall amyloid burden of the patient and the rate of removal of

amyloid, the latter a function of the drug dosage [21]. Because the side effects of aducanumab

are more likely observed if a high dose is given in patient with a high amyloid burden [22], we

also assume the side effects decay with the time of treatment, in keeping with clinical trial data,

and represented by

εðAbðtÞ; tÞ ¼ ε0AbðtÞe
� gt:

We seek to find an optimal control u? such that

Jðu?Þ ¼ min
u2U

JðuÞ:

Note that the controls and the state variables and their derivatives are uniformly bounded

in L1 and the problem is convex in the control, which can used to obtain the existence of an

optimal control, [23, 24] and thus we can apply Pontryagin’s Maximum Principle for the nec-

essary conditions below [25].
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By denoting f(t, C(t), Aβ(t), u(t)) = C(t) + ε(Aβ(t), t)u2(t), we introduce the Hamiltonian

based on optimal control theory [9, 25],

Hðt; xðtÞ; uðtÞ;ΛðtÞÞ ¼ f ðt;CðtÞ;AbðtÞ; uðtÞÞ þ ΛðtÞTGðt; xðtÞ; uðtÞÞ;

where the adjoint vector is Λ = (Λ1, Λ2, Λ3, Λ4, Λ5)T. The state system is denoted by x0 = G(t, x,

u(t)). Using Pontryagin’s Maximum Principle [25], we obtain

dLi

dt
¼ �

@H
@xi

;

and the system of adjoint equations with its final time conditions,

dL1

dt
¼ � ε0e

� gtu2 þ 2
lAb

KAb

Ab � lAb
þ u

 !

L1 � lt 1 �
tp

Kt

� �

L2

dL2

dt
¼
ltAb

Kt

L2 � lNtr
1 �

N
KN

� �

L4 � lCt 1 �
C
KC

� �

L5

dL3

dt
¼ � lNto

1 �
N
KN

� �

L4

dL4

dt
¼
lNto

t0 þ lNtr
tr

KN
L4 � lCN 1 �

C
KC

� �

L5

dL5

dt
¼ � 1þ

lCNN
KC

L5

ð12Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

with Λ1(T2) = α1, Λ2(T2) = Λ3(T2) = Λ4(T2) = 0, and Λ5(T2) = α2.

On the interior of the control set, the optimal anti-amyloid-beta therapy u?(t) satisfies the

optimality equation

@H
@u
¼ fu þ ΛTGu ¼ 2εuðtÞ � AbðtÞL1ðtÞ ¼ 0) u?ðtÞ ¼

L1ðtÞAbðtÞ
2ε

ð13Þ

Then applying the bounds on the controls, we obtain the optimal control characterization,

u?ðtÞ ¼ max umax;min 0;
L1ðtÞAbðtÞ

2ε

� �� �

: ð14Þ

The optimality system consists of the state differential equations, (6) and (10) and the adjoint

Eq (12), together with the optimal control characterization (14). Since the state equations have

initial conditions and are coupled the adjoint equations with final time conditions, we use an

iterative method, called the forward-backward sweep algorithms (shown in Algorithm 2) to

solve the optimality system [9].

Algorithm 2 Solving the optimality system
Input personalized parameter values and initial values for each

patient.
1: Initialize the control u(t), as a zero function;
2: Compute x by solving forward the state Eq (6) using the control

u(t);
3: Compute Λ(t) by solving backwards the adjoint Eq (12) using the

states and the control;
4: Compute the new u(t) by using the optimal control characterization

(14) and update the control function as a convex combination of the
previous control and the new control;
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5: Compute the relative error of states, adjoints and the control.
Continue to repeat steps 2—4, until the error is small.

Results

Personalized parameters

In order to estimate the parameters more accurately, we use the available patient data in

ADNI-1 dataset with at least three longitudinal datapoints for each biomarker and take T0 =

50, given that the smallest age across the dataset is 54. The parameter estimation for selected

patients in each group (AD, cognitively normal (CN), LMCI) are illustrated in Fig 3. The

parameter values for each group are shown in Table 1, with relative error given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðxðtiÞ � ~xiÞ
2

~x2
i

s

where x(ti) is the model value of the biomarker while ~xi is the clinical measurement at age ti.
Parameter estimation of umax. Based on the aducanumab data released by Biogen [26],

there are two groups: low dosage and high dosage injections. The low dosage group for aduca-

numab was administered the drug 14 times, each treatment was 3 or 6 mg/kg. The cumulative

dose at week 78 was 56 mg/kg to 98 mg/kg. The amyloid PET assessment was evaluated at

week 78 and was decreased 16.5% comparing to the baseline. In this case, we consider

dAb

dt
¼ � umaxAb which implies that AbðtÞ ¼ Abð0Þe

� umaxt:

Accordingly, we have

umax ¼ �
lnð0:835Þ

78
¼ 2:31� 10� 3=week:

Similarly, the high dosage group was given 6-10 mg/kg aducanumab each time and received

116-153 mg/kg cumulatively at week 78. The amyloid PET assessment was decreased 27.2% at

Fig 3. The parameter fitting of the ODE model for one subject in each group. The AD patient is female with age

84.7 (upper, subject # is AD4), the LMCI patient is male with age 82.8 (middle, subject # is MCI15), and the CN patient

is female with age 81.8 (lower). The relative errors (RE) for each biomarker are also shown in each panel.

https://doi.org/10.1371/journal.pcbi.1010481.g003
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week 78. Then

umax ¼ �
lnð0:728Þ

78
¼ 4:07� 10� 3=week:

We also estimate the clearance rate of donanemab by using the data in [27]. In particular,

the amyloid plaque level, assessed by florbetapir PET relative specific uptake values (SUVr), is

reduced 84.13 from 107.6 after a 76-week treatment. Similarly, we compute the maximum

clearance rate as

umax ¼ �
lnð23:47=107:6Þ

76
¼ 2� 10� 2=week:

Parameters in the Side-effect function ε. We take α1 = α2 = 1 in the objective function

(11). According to phase 3 studies of aducanumab [28], the dose regimen reaches the maxi-

mum dose after 10 and 25 weeks for the Low and High dose groups, respectively. Thus we esti-

mate ε0 and γ by taking

u�ð10Þ �
1

2ε0e� 10g
¼ 2:31� 10� 3=week and u�ð25Þ �

1

2ε0e� 25g
¼ 4:07� 10� 3=week

which yields ε0� 5 and γ� 2.

Numerical results. We perform the personalized optimal control for each subject in both

AD and LMCI groups with estimated parameters that are shown in Table 1. For each subject,

Table 1. The mean initial conditions and parameter values for AD, LMCI and CN groups with relative errors for each of the biomarkers (n is the number of sub-

jects). The values are mean ± standard deviation (std).

Descriptions AD group (n = 10) LMCI group (n = 32) CN group (n = 7)

Initial conditions A0 36.03 ± 26.52 41.57 ± 24.23 44.92 ± 24.54

τp0 12.38 ± 14.47 4.21 ± 7.68 3.69 ± 6.15

τo0 66.70 ± 58.57 28.66 ± 33.13 24.25 ± 26.98

N0 0.26 ± 0.08 0.48 ± 0.26 0.42 ± 0.10

C0 3.68 ± 8.30 6.03 ± 6.56 2.58 ± 2.60

Parameter values lAb
(18.35 ± 3.11) × 10−2 (16.12 ± 5.03) × 10−2 (16.82 ± 5.52) × 10−2

KAb
259.44 ± 13.21 264.99 ± 74.69 276.21 ± 88.29

λτ 0.15 ± 0.16 0.08 ± 0.12 0.12 ± 0.17

Kτ 123.35 ± 81.63 131.66 ± 75.89 126.53 ± 91.31

lto 1.15 ± 1.70 1.74 ± 2.08 0.87 ± 0.66

lNto
(3.75 ± 1.22) × 10−4 (4.24 ± 1.03) × 10−4 (4.41 ± 0.89) × 10−4

lNtp
(6.90 ± 1.49) × 10−3 (7.37 ± 1.07) × 10−3 (7.24 ± 1.73) × 10−3

KN 1.00 ± 0.01 1.02 ± 0.05 1.03 ± 0.07

λCN 1.67 ± 2.40 1.26 ± 1.99 3.16 ± 3.06

λCτ 3.83 ± 8.00 1.93 ± 3.91 2.48 ± 3.94

KC 169.48 ± 63.35 129.40 ± 84.31 59.89 ± 80.03

Relative errors Aβ 2.83 ± 1.21% 11.31 ± 12.60% 4.98 ± 3.56%

τp 8.44 ± 6.41% 15.11 ± 11.02% 12.25 ± 6.51%

τo 11.01 ± 6.24% 19.28 ± 15.02% 18.08 ± 7.94%

N 0.17 ± 0.20% 0.58 ± 0.63% 0.79 ± 1.24%

C 10.25 ± 4.37% 16.00 ± 7.59% 15.04 ± 3.79%

https://doi.org/10.1371/journal.pcbi.1010481.t001
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we have personalized optimal control for both a 78-week treatment and a 10-year treatment

with low and high dosages. To illustrate the dynamics of biomarkers and the optimal drug dos-

age, we use one AD subject (Subject # is AD4) to show both short-term and long-term treat-

ments in Figs 4 and 5. The efficacy of donanemab on both Aβ and p-tau is higher than

aducanumab. The effect on cognitive decline, C, is modest for aducanumab while the effect of

donanemab is more significant. In order to better assess the efficacy, we define the cognitive

percentage change as
CðtÞ � C0ðtÞ

C0ðtÞ
� 100% where C(t) is cognitive decline with treatment and

C0(t) is cognitive decline without treatment. Thus the maximum effects of donanemab and

Fig 4. Numerical results of the optimal anti-beta therapy for an AD patient (subjective # is AD4) for 78 weeks. Blue and red

curves stand for Aducanumab with low and high doses respectively while green curves stand for Donanemab. The treatment age

starts at 60 (Panel A) and 70 (Panel B). The objective functional values defined in (8) are 187.5 (A, blue), 177.1 (A, red), 33.7 (A,

green), 271.6 (B, blue), 258.6 (B, red), and 71.3 (B, green).

https://doi.org/10.1371/journal.pcbi.1010481.g004
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aducanumab are 8% and 20% less cognitive decline when the long-term treatment starts at

Age 60. We define the cognitive percentage change at the end of the treatment as

CðT2Þ � C0ðT2Þ

C0ðT2Þ
� 100% and summarize the cognitive percentage change for the AD group

(n = 10) in Table 2. It shows that the maximum effects of aducanumab and donanemab have

median values of 5.2% and 13.1%, for the AD group with the long-term treatment. Similarly,

we illustrate the personalized optimal treatment for an LMCI subject (subject # is MCI15) for

the short-term treatment in Fig 6 and for the long-term treatment in Fig 7. The effect of the

personalized optimal donanemab and aducanumab treatments on cognitive decline for the

Fig 5. Numerical results of the optimal anti-beta therapy for an AD patient (subjective # is AD4) for 10 years. The treatment

age starts at 60 (Panel A) and 70 (Panel B). The objective functional values defined in (8) are 216.2 (A, blue), 156.5 (A, red), 67.3 (A,

green), 397.8 (B, blue) 335.1 (B, red), and 234.7 (B, green).

https://doi.org/10.1371/journal.pcbi.1010481.g005
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LMCI group is summarized in Table 3 for the short-term treatment, and Table 4 for the long-

term treatment. The maximum effects of aducanumab and donanemab have median values of

5.3% and 13%, respectively, for the LMCI group with the long-term treatment.

Discussion

In this paper we develop a data-driven modeling approach to model the progression of AD

biomarkers which integrates AD pathophysiology and clinical data. We develop and refine a

mathematical model in terms of a system of ODEs to describe progression of the AD bio-

marker cascade. By using available biomarker data in a large multi-center natural history trial,

ADNI, we parametrize the ODE model to build a personalized model for each patient. In

order to solve the non-convex optimization arising from parameter estimation, we develop an

“equation-by-equation” approach to calibrate the cascade model. The average relative errors of

the fitting process are�10% for AD group and�15% for CN and LMCI groups.

We also perform an in-silico personalized optimal treatment study by adding a control

function to model anti-amyloid-beta treatment. By maximizing treatment effects on cognitive

decline and minimizing the side effects of anti-amyloid-beta therapy, we develop the first

computational framework to simulate an optimal treatment regimen via optimal control the-

ory. We represent the side effects of anti-amyloid-beta therapy as a function of both the amy-

loid beta concentration, dose and treatment duration. The results show that the optimal

Table 2. The percentage change of the cognitive decline by the end of the treatment period for the AD group with both the 78-week (upper) and 10-year (lower)

treatments. The treatment age starts at 60 and 70 with both low and high dosages. “NR” stands for “No response” which is defined by percentage change less than 10−7.

Subject # Starting at Age 60 Starting at Age 70

Aducanumab Donanemab Aducanumab Donanemab

Low dose High dose Low dose High dose

78 week AD1 0.13 0.17 1 2.5 × 10−2 3.3 × 10−2 0.22

AD2 0.15 0.19 1.2 3.6 × 10−2 4.6 × 10−2 0.30

AD3 1.2 × 10−3 2.4 × 10−3 1.2 × 10−2 5.3 × 10−4 7.8 × 10−4 1.2 × 10−2

AD4 2.6 × 10−3 3.7 × 10−3 2 × 10−2 1.1 × 10−3 1.6 × 10−3 9.4 × 10−3

AD5 0.15 0.2 1.3 3.8 × 10−2 4.9 × 10−2 0.32

AD6 1.2 × 10−6 2.4 × 10−6 5 × 10−5 2.3 × 10−7 5.3 × 10−7 1.5 × 10−5

AD7 1 × 10−5 1.3 × 10−5 9.9 × 10−4 NR NR NR

AD8 3.5 × 10−5 4.6 × 10−5 3.4 × 10−4 NR NR NR

AD9 0.16 0.21 1.3 3.7 × 10−2 4.8 × 10−2 0.32

AD10 0.13 0.18 1 4 × 10−2 5.2 × 10−2 0.31

Median 6.6 × 10−2 8.6 × 10−2 0.51 1.3 × 10−2 1.7 × 10−2 0.11

10 year AD1 6.6 9.9 25 1.8 2.6 7.2

AD2 8.1 12 27 2.9 4.2 10

AD3 5.5 × 10−7 5.7 × 10−7 7.9 × 10−7 NR 1.6 × 10−7 1.9 × 10−7

AD4 0.36 0.54 1.1 0.028 0.048 0.13

AD5 8.4 12 28 3 4.4 11

AD6 1.2 × 10−5 2.2 × 10−5 5.3 × 10−5 NR NR 1.8 × 10−7

AD7 1.5 × 10−4 1.9 × 10−4 2.3 × 10−4 NR NR NR

AD8 1.9 × 10−4 2.8 × 10−4 1.4 × 10−3 NR NR 1.2 × 10−7

AD9 8.5 12 29 2.9 4.3 11

AD10 9.2 13 26 3.8 5.3 11

Median 3.5 5.2 13.1 0.9 1.3 3.6

https://doi.org/10.1371/journal.pcbi.1010481.t002
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treatment regimen gradually increases dose until it reaches as maximum dosage steady state. It

approximates the dosage scheduling in the aducanumab clinical trail conducted by Biogen

[22]. In agreement with the data provided by Biogen for the 78-week clinical trial, amyloid

beta concentration is decreased by 27% for high dosage and 16% for low dosage. A decrease of

p-tau concentration is observable for the 10-year optimal treatment study. In keeping with

actual clinical trial results of these agents administered in MCI and AD subjects, anti-amyloid-

beta treatment has a modest mitigation effect on cognitive decline for both short-term and

long-term treatments. Our study shows that aducanumab’s efficacy as a treatment for cognitive

dysfunction in AD is limited even by an optimal dosage regimen with a long-term treatment.

However, donanemab’s efficacy is higher, according to the model, than that of aducanumab.

Fig 6. Numerical results of the optimal anti-beta therapy for the LMCI patient (subject # is MCI15) for 78 weeks. The objective

functional values defined in (8) are 195.5 (A, blue), 184.8 (A, red), 38.2 (A, green), 294.7 (B, blue), 281.3 (B, red), and 87.6 (B,

green).

https://doi.org/10.1371/journal.pcbi.1010481.g006
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The buildup of amyloid plaques in the brains of AD patients is thought to result from an

imbalance between amyloid clearance and production [29]. Removing amyloid plaques via

pharmoco-therapy accelerates amyloid clearance, but only for the duration of treatment, given

that the factors leading to the native imbalance are not removed. For this reason, it is assumed

that anti-amyloid-beta treatment, in the form of the current immunotherapies, will be neces-

sary over remainder of a patient’s lifetime for sustained disease management, similar to insulin

therapy in a diabetic patient. We therefore simulated sustained therapy over the course of a

decade, in addition to the typical clinical trial duration of 78 weeks.

In summary, we developed a novel modeling approach to provide a personalized optimal

AD treatment plan for individual patients, using optimal control theory. This approach allows

Fig 7. Numerical results of the optimal anti-beta therapy for the LMCI patient (subject # is MCI15) for 10 years. The objective

functional values defined in (8) are 256.8 (A, blue), 194.7 (A, red), 100.2 (A, green), 493.8 (B, blue), 428.8 (B, red), and 324.8 (B,

green).

https://doi.org/10.1371/journal.pcbi.1010481.g007
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us to integrate personal longitudinal biomarker data into the model by fitting the personalized

parameters. This modeling approach, though a simplification, is based on current theories of

AD pathophysiology which continue to undergo refinement. The optimal treatment takes into

account the side effects of anti-amyloid-beta therapy, including amyloid-related imaging

abnormalities (ARIA). Given the established framework, this approach can be easily extended

to include other treatments, such as anti-tau therapy, as well as combined therapies, as more

clinical trial data becomes available. Future directions include extending the current model to

the spatiotemporal domain, by including spatial information from available imaging biomark-

ers, to evaluate the effects of treatment on whole-brain neuropathology and neurodegenera-

tion. We will further validate and test the optimal treatment approach using other publically

Table 3. The percentage change of the cognitive decline by the end of the 78-week treatment period for the LMCI group.

Subject # Starting at Age 60 Starting at Age 70

Aducanumab Donanemab Aducanumab Donanemab

Low dose High dose Low dose High dose

MCI1 0.1 0.14 0.86 9.7 × 10−3 1.3 × 10−2 8.4 × 10−2

MCI2 5.9 × 10−2 7.9 × 10−2 0.45 2.5 × 10−2 3.3 × 10−2 0.2

MCI3 0.12 0.16 1 1.6 × 10−2 2.1 × 10−2 0.14

MCI4 4.3 × 10−6 6.1 × 10−6 3.3 × 10−5 NR NR NR

MCI5 1.6 × 10−3 2.2 × 10−3 1.3 × 10−2 4.7 × 10−6 6.3 × 10−6 4.7 × 10−5

MCI6 1.9 × 10−3 2.4 × 10−3 1.8 × 10−2 7.6 × 10−7 9.7 × 10−7 7.8 × 10−6

MCI7 1.1 × 10−2 1.4 × 10−2 8.9 × 10−2 9.6 × 10−3 1.3 × 10−2 8.2 × 10−2

MCI8 0.14 0.19 1.2 2.9 × 10−2 3.8 × 10−2 0.25

MCI9 4.1 × 10−4 5.8 × 10−4 3.2 × 10−3 2.4 × 10−4 3.3 × 10−4 2 × 10−3

MCI10 8.3 × 10−7 1.1 × 10−6 6.8 × 10−6 NR NR NR

MCI11 2.5 × 10−4 3.5 × 10−4 2 × 10−3 10−15 2 × 10−5 NR

MCI12 1.2 × 10−2 1.5 × 10−2 9.9 × 10−2 2.8 × 10−4 3.6 × 10−4 2.5 × 10−3

MCI13 0.11 0.15 0.92 1.2 × 10−2 1.6 × 10−2 0.1

MCI14 4.8 × 10−3 6.5 × 10−3 3.7 × 10−2 5.7 × 10−3 7.5 × 10−3 4.5 × 10−2

MCI15 NR NR NR NR NR NR

MCI16 3.6 × 10−2 5 × 10−2 0.3 1.4 × 10−4 1.9 × 10−4 1.4 × 10−3

MCI17 7.4 × 10−7 9.5 × 10−7 8.5 × 10−6 NR NR NR

MCI18 1.7 × 10−3 2.2 × 10−3 1.4 × 10−2 1.6 × 10−3 2 × 10−3 1.3 × 10−2

MCI19 6.2 × 10−2 8.4 × 10−2 0.47 3.7 × 10−2 5.1 × 10−2 0.29

MCI20 5.1 × 10−2 6.7 × 10−2 0.42 1.4 × 10−2 1.8 × 10−2 0.12

MCI21 2.3 × 10−2 3.2 × 10−2 0.18 2.2 × 10−2 3 × 10−2 0.17

MCI22 1.9 × 10−6 2.5 × 10−6 2.1 × 10−5 NR NR NR

MCI23 4.5 × 10−3 5.9 × 10−3 3.7 × 10−2 4.2 × 10−3 5.4 × 10−3 3.6 × 10−2

MCI24 1.2 × 10−5 1.6 × 10−5 NR NR NR NR

MCI25 4.4 × 10−3 6.1 × 10−3 3.7 × 10−2 1.8 × 10−5 2.4 × 10−5 1.8 × 10−4

MCI26 0.13 0.17 1 2.4 × 10−2 3.1 × 10−2 0.2

MCI27 7.6 × 10−3 10−2 6.4 × 10−2 6.3 × 10−3 8.1 × 10−3 5.3 × 10−2

MCI28 1.7 × 10−3 2.3 × 10−3 1.4 × 10−2 NR NR 3.1 × 10−7

MCI29 0.28 0.4 2.2 0.16 0.23 1.3

MCI30 0.12 0.16 0.92 2.8 × 10−2 3.8 × 10−2 0.22

MCI31 0.14 0.19 1.1 4 × 10−2 5.2 × 10−2 0.32

MCI32 0.1 0.15 1 5 × 10−2 4 × 10−2 0.25

Median 0.12 0.16 0.92 0.16 0.23 0.21

https://doi.org/10.1371/journal.pcbi.1010481.t003
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available datasets to verify the efficacy of anti-Abeta therapy. Moreover, when the data from

the Aducanumab phase 3 studies become available, we will further calibrate and refine the in-

silico anti-Abeta therapy model and test its efficacy.
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Table 4. The percentage change of the cognitive decline by the end of the 10-year treatment period for the LMCI group.

Subject # Starting at Age 60 Starting at Age 70

Aducanumab Donanemab Aducanumab Donanemab

Low dose High dose Low dose High dose

MCI1 3.4 5.1 15 0.33 0.49 1.2

MCI2 5.7 7.8 16 2.8 3.8 8.2

MCI3 4.6 6.9 18 0.55 0.83 2

MCI4 NR NR NR NR NR NR

MCI5 0.12 0.19 0.53 2.5 × 10−5 3.3 × 10−5 4.3 × 10−5

MCI6 1.4 × 10−2 2.2 × 10−2 3.4 × 10−2 3.3 × 10−6 5.3 × 10−6 3.2 × 10−6

MCI7 1.9 2.7 5.7 1.3 1.9 4.2

MCI8 7.4 11 27 2.1 3.1 8.1

MCI9 0.12 0.17 0.32 1 × 10−2 1.8 × 10−2 2.9 × 10−2

MCI10 NR NR 5.1 × 10−7 NR NR NR

MCI11 NR NR 1.2 × 10−6 NR NR 2.2 × 10−7

MCI12 1.1 × 10−7 5 × 10−7 5.7 × 10−6 NR NR 3.5 × 10−7

MCI13 0.18 0.28 0.71 2.5 × 10−3 4 × 10−3 4.3 × 10−2

MCI14 3.6 5.4 15 0.26 0.4 0.88

MCI15 1.1 1.5 2.7 1.1 1.5 2.7

MCI16 1.8 × 10−7 2.9 × 10−7 1.9 × 10−6 NR NR NR

MCI17 0.89 1.6 6.5 4.2 × 10−4 5.9 × 10−4 1.5 × 10−3

MCI18 7.5 × 10−7 9.2 × 10−7 1.1 × 10−6 NR NR NR

MCI19 0.29 0.42 0.73 0.24 0.35 0.63

MCI20 7.3 9.8 19 4.9 6.5 13

MCI21 4 5.9 16 1 1.5 4.1

MCI22 4.3 5.8 11 3.3 4.5 9.1

MCI23 3.8 × 10−6 4.7 × 10−6 7.2 × 10−5 NR NR NR

MCI24 0.82 1.2 2.4 0.62 0.91 1.9

MCI25 NR NR NR NR NR NR

MCI26 0.12 0.2 0.53 6.8 × 10−5 1 × 10−4 3.2 × 10−3

MCI27 6.3 9.3 24 1.7 2.5 6.6

MCI28 1.2 1.8 4 0.88 1.3 2.9

MCI29 9.1 × 10−5 1.5 × 10−4 1.4 × 10−3 NR NR NR

MCI30 21 31 55 8.8 14 31

MCI31 7.9 11 23 2.2 3.1 6.8

MCI32 9.2 13 27 3.5 5 11

Median 3.5 5.3 13 1.3 1.9 4.2

https://doi.org/10.1371/journal.pcbi.1010481.t004
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