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Acid–base dysregulation and chemosensory mechanisms in
panic disorder: a translational update
LL Vollmer1, JR Strawn1,2 and R Sah1,3

Panic disorder (PD), a complex anxiety disorder characterized by recurrent panic attacks, represents a poorly understood psychiatric
condition which is associated with significant morbidity and an increased risk of suicide attempts and completed suicide. Recently
however, neuroimaging and panic provocation challenge studies have provided insights into the pathoetiology of panic
phenomena and have begun to elucidate potential neural mechanisms that may underlie panic attacks. In this regard,
accumulating evidence suggests that acidosis may be a contributing factor in induction of panic. Challenge studies in patients with
PD reveal that panic attacks may be reliably provoked by agents that lead to acid–base dysbalance such as CO2 inhalation and
sodium lactate infusion. Chemosensory mechanisms that translate pH into panic-relevant fear, autonomic, and respiratory
responses are therefore of high relevance to the understanding of panic pathophysiology. Herein, we provide a current update on
clinical and preclinical studies supporting how acid–base imbalance and diverse chemosensory mechanisms may be associated
with PD and discuss future implications of these findings.
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INTRODUCTION
Panic disorder (PD) is characterized by spontaneous and recurrent
panic attacks that consist of incapacitating periods of acute-onset
respiratory, cardiovascular, gastrointestinal, autonomic and cognitive
symptoms. PD—which occurs in 6% of Americans1—typically
begins in the second decade of life2 and exhibits a peak
prevalence in the third and fourth decades of life.3 Thus, this
condition is second only to major depressive disorder in terms of
associated debility among psychiatric conditions in the United
States.4 Importantly, PD also represents an independent risk factor
for suicidality in diagnostically and demographically heteroge-
neous clinical populations5 and increases the risk of developing
other anxiety disorders and secondary mood disorders.2 Yet, many
patients suffering from PD are not clinically identified and
frequently, do not receive even minimally effective treatment.6

Even still, available psychopharmacologic treatments (for example,
selective serotonin reuptake inhibitors, benzodiazepines) and
psychotherapies (for example, cognitive behavioral therapy,
prolonged exposure therapy, psychodynamic psychotherapy) or
the combination of psychotherapy+pharmacotherapy are often
only modestly efficacious (for example, Cohen’s d= 0.4–0.6)7,8 and
in some cases (for example, benzodiazepines) may be associated
with treatment-specific side effects or risks such as sedation or the
risk of dependence or tolerance.
Studies elucidating the pathoetiologic mechanisms of PD are

urgently needed to reduce morbidity and mortality. Despite the
prevalence, as well as associated morbidity and mortality of PD,
relatively little regarding the neuropathophysiology of this
condition is known. PD is highly heterogenous with variable
symptom profile and intensity in panic episodes experienced by
the same individual and across patients. According to the DSM-5,9

recurrent panic attacks in PD are categorized as being either
spontaneous (unexpected) or cued (expected). Collective evidence
from challenge studies in the laboratory, neuroimaging, sympto-
mology, treatment responses and translational animal models
have led to an increased understanding of PD.10–14 Accumulating
evidence suggests that expected panic attacks are triggered by
exteroceptive threats (that is, a panic attack context or other
unrelated stressors) while spontaneous panic attacks may be
provoked by interoceptive sensory triggers caused by fluctuations
in the internal homeostatic milieu. An important internal
homeostatic trigger for the genesis of panic attacks, supported
by an emerging body of work, is acid–base imbalance and
associated pH chemosensory mechanisms. Largely founded on
panic provocation studies with agents promoting homeostatic pH
imbalance and related to the false suffocation alarm theory, the
role of acid–base and chemosensory systems in panic provides
strong scientific insights on the genesis of uncued panic attacks
which may sensitize fear-arousal-stress regulatory circuits to
other triggers leading to full-blown PD (Figure 1, cycle of panic).
Given the high relevance of interoceptive mechanisms in PD, this
review provides an update on our current knowledge and
understanding of the role of pH imbalance and chemosensory
targets in PD. Although excellent reviews on this topic have
appeared previously,15–17 here we focus on (1) current status on
pH homeostasis, clinical studies of acid–base physiology and
pathophysiology in patients with PD (2) preclinical rodent models
of PD, especially those focusing on interoceptive pH imbalance
and acid-chemosensory systems recruited in panic-like behaviors,
and last (3) synthesize these findings to develop a working
neurobiological model of PD that involves dysregulation of central
acid sensing and associated circuitry, and finally, (4) translational
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relevance of these data, gaps in understanding and future
implications with a discussion on neuropharmacologic interven-
tions in patients with PD.

ACIDOSIS, AN INTEROCEPTIVE TRIGGER IN PANIC: EVIDENCE
FOR RELATIONSHIP BETWEEN pH DISTURBANCES IN PD
Many clinical and preclinical studies have focused on dysregula-
tion of central fear circuitry that includes components of the
limbic network, which involves connections between the amyg-
dala and the anterior cingulate cortex (Broadman’s area 25, 24/32)
as well as midbrain regions including the periaqueductal gray
matter in panic.10,14 These studies have provided useful informa-
tion relevant to cued panic attacks and phobias in PD subjects;
however, the genesis of unexpected panic attacks still remains
elusive to panic researchers. James18 first proposed that feelings
and emotion can derive from interoceptive sensing of our body
states. These internal triggers and interoceptive chemosensory
pathways are of particular relevance to PD as initial attacks come
‘out of no-where’. Moreover, accumulating evidence supports a
principal role of pH homeostasis in panic physiology and suggests
that acidosis may be an interoceptive trigger for panic attacks.
Consistent with this, a recent study with ambulatory monitoring, a
valid approach for studying spontaneous panic, reported pH
disturbances and altered respiratory rhythms in subjects during
the final minutes before the onset of a panic attack.19 Well-
characterized and clinically relevant methods of inducing panic,
such as CO2 inhalation or sodium lactate infusion, cause acid–base
disturbances.16 Importantly, CO2 inhalation and sodium lactate
infusion stimulate respiration, which is itself tightly regulated by
pH.20 Thus, it is intriguing that despite their disparate effects,
respiratory acidosis and metabolic alkalosis, both CO2 inhalation
and sodium lactate administration lead to extracellular and intra-
cellular acidosis in the brain.16,21 In addition, neuroimaging studies
also raise the possibility of dysregulated acid–base buffering and
increased plasma and brain lactate responses to metabolic
challenges in PD.22–24 There is also a high prevalence of hyper-
ventilation and other respiratory abnormalities among patients
with PD.21,25,26 The link between panic attacks and pH dis-
turbances also forms the basis of the false suffocation alarm
theory of spontaneous panic, where CO2 hypersensitivity
may exist due to a malfunctioning suffocation alarm monitor.27

Figure 1. Potential pathogenesis of uncued and cued panic attacks
in panic disorder: Initial unexpected attacks may result from an acid/
base imbalance or from altered chemosensory mechanisms that
represent a ‘threat to homeostasis’. Although the exact origin of pH
disturbance is unknown, it may arise due to genetic predisposition,
respiratory abnormalities and other factors. This may produce a
state of alarm and subsequent activation of threat response systems
leading to elevated fear, cardiovascular and respiratory symptoms
which, phenomenologically, constitute a panic attack. Further,
experiencing uncued panic attacks may sensitize threat response
systems to exteroceptive triggers such as stress, panic context and
associated phobic cues leading to cued panic attacks. Persistence of
uncued and cued panic attacks results in full-blown panic disorder.
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Below we discuss specific areas of investigation that support the
panic-pH link.

Brain pH in patients with PD: evidence from neuroimaging
Neuroimaging studies on PD patients support a role of homeo-
static pH disturbances in panic physiology (Table 1). The majority
of these studies have focused on lactate responses to homeostatic
or activity-dependent challenges. Given the close relationship
between lactate and pH in the brain, the findings are consistent
with a model of brain metabolic and pH dysregulation associated
with altered function of acid-sensitive fear circuits as a trait
vulnerability factor in PD. Exaggerated activity-dependent brain
lactate responses are observed in PD patients, even remitted
patients, as compared with healthy controls, suggestive of
underlying pH abnormalities.23,28 Further, activity-dependent
changes in glutamate–glutamine were smaller in PD patients.28

Others have shown increased (and more prolonged) brain lactate
levels compared with healthy comparison subjects during sodium
lactate infusion, although resolution was limited.29 In a subse-
quent study, the greater and prolonged brain lactate rises in the
insula in patients with PD during and following lactate infusion30

were observed—a finding of great importance given the central
role of the insula in interoceptive pathways.31 Interestingly,
differential brain metabolic responses fail to normalize following
treatment with the selective serotonin reuptake inhibitor fluox-
etine suggesting that abnormal metabolic lactate responses
represent a trait feature of PD. Accentuated increases in brain
lactate levels have also been reported in PD subjects during
hyperventilation, that promotes pH imbalance, as compared with
comparison subjects,22 suggesting that increased lactate possibly
reflects altered cerebral blood flow in response to hypocapnia
evoked by increased breathing. Using phosphorous (31P) spectro-
scopy, pH dynamics during hyperventilation were assessed by
Friedman et al.,32 and reported an abnormal pH-buffering capacity
in PD. Very recently, CO2-evoked activation in the brain stem area
was reported in panic patients, controls and divers (representing a
group with reduced CO2 sensitivity).33 The authors reported
significant increases in activation within brain stem and insular
areas in panic patients as compared with controls and diver
groups supporting the role of these areas in interoceptive sensing
and processing in PD. Recently, new magnetic resonance imaging
techniques such as the T1 relaxation in the rotating frame (T1ρ)
have been developed and have facilitated greater pH sensitivity
and improved temporal and spatial resolution over 31P
spectroscopy.34 Increased T1ρ was observed in PD patients in
the occipital cortex as compared with healthy controls35

consistent with abnormal pH regulation in PD. Interestingly, the
magnitude of the T1ρ response correlates with the severity of
anxiety symptoms in patients with PD (but not in healthy
subjects). Thus, it is increasingly apparent that this new imaging
technique will allow for greater understanding of pH-dependent
changes in PD. Finally, although studies of panic symptom
provocation are still needed, evidence from functional magnetic
resonance imaging and functional magnetic resonance imaging
supports differences in metabolic activity or other factors such as
cerebral blood flow may lead to altered pH homeostasis in PD.

Symptom provocation challenge studies with agents producing
acid–base imbalance
Panic attacks can be induced in PD individuals by a variety of
agents such as CO2,

36,37 sodium lactate,38 doxapram,39

isoproterenol,40 caffeine,41 yohimbine,42 cholecystokinin (CCK-4
and agonists),43 the benzodiazepine receptor antagonist,
flumazenil,44 serotonin receptor agonists45 and opioid receptor
antagonists.46 It is important to note, however, that homeostatic
perturbations such as CO2, lactate and doxapram that cause direct
or compensatory pH shifts reliably evoke panic attacks that closely

resemble spontaneous panic attacks. Furthermore, as opposed
to other challenges, these agents induce panic attacks specifically
in PD subjects versus other disorders such as depression,
premenstrual dysphoric disorder, generalized anxiety disorder
and posttraumatic stress disorder.47,48 Panic provocation agents
linked to homeostatic pH imbalance are discussed below.

CO2 inhalation. Inhalation of CO2—a commonly studied inter-
oceptive stimulus—produces intense fear, autonomic and respira-
tory responses that can evoke panic attacks in individuals with PD.
For this reason, CO2 is frequently used as a biological challenge
and pathological marker of PD.11,36 First described in 1951 by
Cohen and White,37 CO2 inhalation is established as a reliable
panicogen in patients with PD.11,36,49,50

The partial pressure of CO2 in the blood increases following CO2

inhalation challenge. In addition, and of direct relevance to central
nervous system (CNS) physiology, CO2 readily crosses the blood–
brain barrier and is sensed by H+ and CO2 chemoreceptors in the
CNS and periphery.51 In the extracellular fluid, CO2 is hydrolyzed to
carbonic acid (H2CO3) by carbonic anhydrase which readily
dissociates into bicarbonate (HCO3

- ) and H+.51 The resulting
acidosis is thought to be the trigger for the panic symptoms
caused by this challenge including hyperventilation and increased
blood pressure.52 Klein puts forth in his false suffocation theory
that hyperventilation may have a protective role to combat
attacks caused by increases in CO2 (acidosis).

27 However, this is a
faulty response because the respiratory alkalosis caused by
hyperventilation is always associated with a compensatory
metabolic acidosis produced by tissue buffering systems that
release H+ ions.21 Panic challenge studies with acetazolamide
shed light on the role of protons as effector molecules for
generating panic responses; acetazolamide, a carbonic anhydrase
inhibitor, blocks the facilitated conversion of CO2 to bicarbonate
and H+, leading to increases in CO2 concentrations. Interestingly,
administration of intravenous acetazolamide fails to induce panic
attacks in patients with PD53,54 suggesting that H+ ions, rather
than CO2 per se may facilitate panicogenesis.
Currently, two CO2 inhalation techniques are used in panic

challenge studies. In the first, steady-state inhalation, a low
concentration of CO2 (5–7.5%) is inhaled for approximately
1–20min or until a panic attack occurs. In the second approach,
individuals inhale a high concentration of CO2 (35%).36 The
advantage of modeling CO2-induced panic is that these CO2-
induced panic attacks closely resemble spontaneous panic attacks
and the attacks resolve quickly.11 Interestingly, although PD is
twice as likely to occur in women,3 sex differences in CO2-reactivity
are less clear. Although there is some evidence that women report
greater fear and anxiety following a CO2 challenge,55–57 not all
studies have observed gender effects.50,58,59

CO2 inhalation has also been useful for exposure-based
treatments in patients with PD60,61 and has been utilized for
validation of current treatments such as selective serotonin
reuptake inhibitors: paroxetine, sertraline, fluvoxamine62 and
benzodiazapine alprazolam.63 In addition, screening of potential
anti-panic medications such as CRF1 receptor antagonist,
R317573,64 GABA agonist: zolpidem63 and neurokinin-1 receptor
antagonist: vestipitant65 has also been conducted using this
challenge. Thus, CO2 inhalation appears to have utility for testing
the efficacy of pharmacotherapeutic agents and for identifying
vulnerability to PD.

Sodium lactate infusion. In addition to CO2, sodium lactate is a
reliable panicogen38 frequently used in challenge paradigms. A
masked intraveneous infusion of a 0.5 M sodium lactate
(10 ml kg− 1) produces panic attacks in vulnerable individuals.38,66

Lactate-induced panic attacks, like CO2-induced panic attacks,
phenomenologically mirror spontaneous panic attacks (that is,
symptoms of dyspnea, generalized fear, a desire to flee and fear of
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losing control.67 Clinically, susceptibility to lactate-induced panic
attacks are frequently used as treatment outcome measures for
psychopharmacologic treatments.68–70

A byproduct of cellular metabolism, lactate serves as an energy
source for neurons,71 and alters systemic acid–base balance.
Pertinent to lactate infusions, lactate can cross the blood–brain
barrier through monocarboxylate transporters and there is
evidence that lactate becomes a significant fuel source in the
brain when elevated in blood.72 When administered intravenously
to lower primates, lactate decreases brain pH73 as H+ is co-
transported with lactate via monocarboxylate transporters.
Although lactate infusion may evoke acidosis, a direct role of pH
in lactate-evoked panic has not been demonstrated. Interestingly,
patients with PD show exaggerated lactic acid production in
response to alkalosis evoked by sodium lactate infusion sugges-
tive of increased compensatory drive and impaired acid–base
buffering in these individuals.17 Other studies reported that a
rapid overload of sodium and resultant acute hypernatremia may
contribute to sodium lactate-evoked panic since hypertonic saline
(3%) facilitated panic symptoms similar to 0.5 M sodium lactate.74

An interesting observation in the study was the induction of mild
acidosis by hypertonic saline while sodium lactate-evoked
hyperventilation and associated alkalosis, although specific param-
eters such as blood pCO2 were not measured. Lactate-evoked
panic attacks do not recruit neuroendocrine responses as a
dissociation between autonomic activation and cortisol has been
reported in ‘panickers’ following sodium lactate.75 Potential
downstream mechanisms for lactate sensitivity in PD are not clear.
Involvement of GABAergic system has been suggested by effective
blockade of lactate-evoked panic in subjects treated with
gabapentin,76 while presynaptic, α2adrenergic agonist, clonidine
had partial effects. Additionally, concentrations of endogenous
neuroactive steroid modulators of the GABAA receptor, allopreg-
nanolone and pregnanolone are decreased in patients with PD
during lactate-evoked panic.77 Elegant preclinical studies by
Shekhar and colleagues have highlighted the role of circumven-
tricular organs (CVOs), hypothalamic GABA, angiotensin and orexin
systems in sodium lactate-evoked panic responses (see section
‘Sodium lactate rodent model and hypothalamic GABAergic and
acid-chemosensitive orexin targets’). Thus, the underlying mechan-
ism(s) or a direct role of acidosis in sodium lactate-induced panic
attacks has not been elucidated to date, and while lactate may
contribute to decreased brain pH, the exact effector in lactate-
evoked panic in PD subjects is still unclear.

Doxapram. Doxapram, a respiratory stimulant first synthesized in
1962 (Ward and Franko78) has been examined in the management
of acute respiratory failure during the 1960s and 1970s and likely
had a specific role in the treatment of individuals with chronic
obstructive pulmonary disease. Specifically, administration of
doxapram increases tidal volume and ventilation frequency.79

Clinically, doxapram use is primarily limited to post-anesthesia
shivering prophylaxis and stimulation of respiratory drive in
premature infants. However, its use is also associated with second-
degree atrioventricular block and QTc prolongation. Regarding
patients with PD, doxapram has been examined in several studies,
given its tendency to cause hyperventilation. In this challenge,
doxapram (0.5 mg kg− 1, IV)39,80,81 produces panic attacks that
phenomenologically mirror spontaneous panic attacks with
associated hyperpnea, tachycardia, increased blood pressure and
fear symptoms. Contribution of forebrain regions in doxapram-
evoked panic is supported by recent studies where doxapram was
administered to PD patients and healthy subjects before positron
emission tomography with 18F-deoxyglucose.82 Cardiac responses
were accentuated and patients with PD exhibited decreased
prefrontal activity (relative to controls) and increased activity
within the cingulate gyrus and amygdala, suggesting a failure to
activate prefrontal inhibitory structures in patients with PD.

The underlying mechanism, specifically a role of pH in doxapram-
evoked panic has not been established. Hyperventilation induces
alkalosis, which has been reported to evoke a compensatory
increase in lactic acid release; a response that is exaggerated in PD
patients.17 It is unclear, however, whether this compensatory
increase in acidosis is associated with doxapram-evoked panic
attacks. There is evidence that the effects of doxapram may be
related to the inhibition of TASK-1 and TASK-3 acid-sensitive
potassium channels located in brain stem serotonergic neurons.83,84

In this regard, inhibition of the TASK-1 and TASK-3 channels could
increase the excitability of brain stem pH-sensitive neurons and
may link the panicogenic action of CO2 inhalation and doxapram
administration.85 In addition, increased respiratory drive by
doxapram may aggravate a pre-existing respiratory abnormality in
PD. As for lactate, a potential role of pH and acidosis in panic
provocation by doxapram may be speculated, however, direct
evidence for this link is currently lacking.

Genetics
A strong contribution of genetics and family history in PD prevalence
was first reported by Crowe and colleagues.86 In support of a genetic
component in vulnerability to interoceptive triggers and PD, higher
sensitivity to 35% CO2 was observed in first-degree relatives of
patients with PD.87 CO2 hypersensitivity has been proposed as a
genetic risk and disease-specific trait marker for PD88 also supported
by twin studies.89,90 Importantly, a distinction between genetic
vulnerability to CO2 hypersensitivity versus trait anxiety experienced
pre-CO2 inhalation was found suggesting that there are specific
genetic factors associated with responsivity to stimulation via CO2

versus factors related to underlying trait anxiety.91

However, as PD does not develop in all individuals with CO2

hypersensitivity, it underscores the relevance of other risk factors
for development of PD. A combination of genetic factors and early
adversity such as childhood parental loss may determine hyper-
sensitivity to CO2 and PD.92 An interesting preclinical study in cross-
fostered mice pups revealed persistent expression of enhanced
CO2-evoked respiratory responses in mice with a history of
interference with dam–pup interactions suggestive of significant
gene-by-environment effects on heightened CO2 sensitivity.93 In
any case, hypersensitivity to elevated CO2 may help identify
childhood groups at familial risk for subsequent development of
PD94,95 Interestingly, association of polymorphisms within the
tryptophan hydroxylase-2 (TPH-2) gene and CO2 responses is
observed suggestive of a role of the serotonergic (5-HT) system in
the effects of CO2.

96 Accumulating evidence strongly supports an
association of polymorphisms in multiple markers of the 5-HT
system, including polymorphisms in the gene locus and 3’
polyadenylation site of the serotonin transporter (5-HTT) with
PD.97,98 An association of 5-HT biosynthetic enzyme TPH-2 and 5-HT
receptor subtypes R1 and R2 with PD has also been reported.99–101

The 5-HT system is of interest given its role in the regulation of
panic-like behaviors.102 Importantly, evidence of chemosensory
serotonergic neurons in the medullary raphe (see section ‘Acid
chemosensory serotonergic neurons in the medullary raphe
nucleus’) underscores the role of the 5-HT system in translation of
pH fluctuations to panic-relevant ventilatory responses.
Lactate sensitivity on the other hand, did not show familial

vulnerability.103 However, an association of polymorphism within
the exon of the lactate dehydrogenase A gene was reported with
CO2 sensitivity where the LDH polymorphism was a risk factor for
increased CO2 responses.

104 This is relevant, given the role LDH in
lactate metabolism and its dependence on cell pH.
A recent study identified two single nucleotide polymorphisms

within the acid sensing ion channel 1 (ASIC1) gene, ACCN2 in
individuals with PD, which was associated with increased
amygdala volume and hyperactivity in these subjects.105 This
observation strongly supports an association of altered pH sensing
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within the amygdala with increased risk for PD. Collectively, all
evidence support a strong genetic vulnerability component to
interoceptive threats (represented by CO2 inhalation) and poly-
morphisms in chemosensory targets such as ASICs. However,
other environmental factors may be required for the development
of symptomology of PD.
Collectively, evidence from neuroimaging, challenge studies for

panic provocation and genetics support that pH homeostasis and
acid–base disturbances may contribute to PD at least in a large
subset of patients with PD. In the sections below, we discuss pH
chemosensory mechanisms and our understanding so far on their
potential contributions to panic pathophysiology using preclinical
models.

pH CHEMOSENSORY MOLECULES AND THEIR RELEVANCE TO
PANIC PATHOPHYSIOLOGY: EVIDENCE FROM PRECLINICAL
STUDIES
Acid chemosensory mechanisms become relevant since they can
detect and translate interoceptive pH imbalance that may exist in

PD (see above). Given the intense respiratory symptoms experi-
enced during a panic attack, it is logical to conclude that these
sensing mechanisms are recruited in panic, since respiration is
tightly regulated by pH. Multiple chemosensitive areas within the
caudal brain stem such as the retrotrapezoid nucleus, solitary
nucleus, locus coeruleus and the medullary raphe nuclei elicit
neuronal responses to hypercapnia and regulate respiration.51,106

Although chemosensory mechanisms for pH are generally
regarded as a brain stem phenomenon, studies in the past decade
have revealed several non-brain stem regions to participate in pH
chemosensation and associated behavioral and physiological
responses. Primary among these are the amygdala, dorsomedial/
perifornical hypothalamus and the periaqueductal gray, although
other structures such as CVOs may also participate as chemosensi-
tive sites.107,108 In fact, the concerted activity as well as, anatomical
and functional links between rostral forebrain and brain stem
structures is pertinent to panic attacks, where intense respiratory
and psychological symptoms coexist. Figure 2 shows the localiza-
tion of PD-relevant pH chemosensory targets, based on evidence
derived from preclinical studies, and associated circuits that might
contribute to panic responses. It is important to note that these
regions closely overlap with circuits regulating emotional/behav-
ioral responses, autonomic function and respiration. In addition to
regulation of fear and anxiety, these areas send projections to
caudal brain stem areas thereby impacting respiratory outcomes.
The following section describes specific chemosensory targets as
well as panic-relevant preclinical paradigms that support their
contributions to PD. Although no animal model can simulate all
aspects of panic pathophysiology, the unique feature of panic
provocation with acid–base modulators has enabled simulation of
human panic in preclinical setting.

Acid-sensing ion channel
The most well-characterized acid-chemosensory target in terms of
PD relevance is the acid-sensing ion channel 1 (ASIC-1a), a
voltage-insensitive H+-gated cation channel located on neurons in
the CNS (reviewed in Wemmie15). ASIC-1a has high levels of
expression in the amygdala, dentate gyrus of the hippocampus,
cortex, striatum and nucleus accumbens,109,110 regions that are
components of the limbic–corticostriatal loop, which is thought to
be involved in assigning emotional valance to external stimuli.109

The contribution of ASIC-1a localized in the amygdala has been
studied using translational as well as clinical studies using CO2

inhalation. Mice lacking ASIC-1a show decreased fear responses to
CO2 inhalation.

111 As shown in that study, CO2 inhalation reduced
amygdalar pH to an extent that activates ASIC-1a.111 Furthermore,
only control mice, not ASIC-1a knockout mice, freeze in response
to lowered amygdala pH (secondary to injection of acidified
artificial cerebrospinal fluid). In addition, restoration of ASIC-1a
expression in the amygdala of knockout mice is associated with a
return of freezing responses to CO2. Collectively, these results
suggest that the amygdala is an acid-chemosensitive site and that
ASIC-1a within the amygdala mediate CO2-evoked fear responses.
However, ASIC-1a knockout mice also demonstrate attenuated
fear responses during context and cued fear conditioning109 and
exposure to predator odor challenge,112 suggesting that that the
regulation of fear by ASIC-1a extends to exteroceptive stimuli and
raising the possibility that ASIC-1a may not be selective to
interoceptive threats. Genetic studies in humans have linked ASIC
polymorphisms to amygdala volume and activity105 suggesting
contributions of this chemosensor to amygdala function. In
addition, recent studies in humans with bilateral amygdala
damage resulting from a rare autosomal recessive disorder,
Urbach–Wiethe disease in which there is bilateral destruction of
the amygdala, have questioned the necessity of the amygdala in
panic responses to interoceptive threats such as CO2.

113 As
reported in their study, patients with neurodegenerative damage
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Figure 2. Localization of chemosensory targets and regional circuits
contributing to genesis and expression of panic. 1: acid sensing ion
channels (ASICs) in the amygdala, 2: orexin neurons in the
hypothalamus, 3: serotonergic neurons in the medullary raphe, 4:
T-cell death-associated gene-8 receptor in the subfornical organ
(SFO), 5: hypoxia-sensitive chemosensory neurons in the periaque-
ductal gray (PAG). Regions such as the SFO and medullary raphe can
directly detect pH fluctuations in the internal milieu, while the
hypothalamus, amygdala and PAG in addition to their chemosen-
sory potential also represent key nodes in the processing of external
threats, and sensory stimuli. Uncued panic may arise due to
homeostatic imbalance in pH in the brain and internal milieu.
Acidosis ‘sensed’ by chemosensory mechanisms may be translated
to autonomic, behavioral and respiratory symptoms of a panic
attack. The amygdala, PAG and the hypothalamus can regulate
behavioral and autonomic symptoms of panic, whereas respiratory
symptoms may be regulated by brain stem regions such as the
medullary raphe and the parabrachial nucleus (PBN) via inputs from
the hypothalamus and indirectly from the SFO through the
organum vasculosum of the lamina terminalis (OVLT). Many of
these structures via thalamic nuclei connect with the insula, a region
relevant for interoceptive sensing and shown to be dysfunctional in
PD. Cued panic attacks may be an outcome of sensory stimuli and
phobic cues associated with previous attacks or stressors relayed via
sensory cortices and thalamic nuclei to the amygdala and the
hypothalamus. It is important to note the overlap and connectivity
between pH chemosensory regions and exteroceptive threat
processing areas suggesting that uncued and cued panic may
recruit similar underlying circuitry depending on modality of the
trigger leading to panic.
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in the amygdala exhibited panic responses following CO2

inhalation challenge. Further, physiological responses to CO2

inhalation such as, ventilation and heart rate, were increased as
compared with non-panicking controls and similar to the PD
patients. In previous studies, fear responses to exteroceptive
threats, such as visiting a haunted house and watching video clips
of scary movies were blunted in these patients.114 All together,
their results suggest that acid-chemosensory mechanisms in other
brain regions may orchestrate fear and panic responses to
interoceptive stimuli.

Sodium lactate rodent model and hypothalamic GABAergic and
acid-chemosensitive orexin targets
The rodent sodium lactate model of panic pioneered by Shekhar
and colleagues provides an excellent translational paradigm in
terms of face, predictive and construct validity for sodium lactate
challenge in humans (for review see Johnson and Shekhar115).
Interestingly, infusing lactate alone does not elicit panic-like
behavior in rodents, rather, chronic inhibition of GABAergic tone
in the dorsal medial-perifornical hypothalamus is necessary for the
expression of lactate-evoked responses. In this regard, rats with
tonic inhibition of hypothalamic GABA exhibit intense behavioral,
respiratory and cardiovascular responses following sodium lactate
infusion.115,116 Increased anxiety-like behaviors in the social
interaction test and elevated-plus maze tests, elevated blood
pressure, tachycardia and hyperventilation was observed in GABA-
compromised, lactate-infused rats and these behavioral and
physiological responses mirror those observed in PD patients
challenged with sodium lactate.38 Electrical stimulation of the
ventromedial hypothalamus in humans leads to tachycardia and
panic (self-reported).117 Along with simulation of panic symptoms,
this model is responsive to anti-panic and anxiolytic medications,
including the benzodiazepine alprazolam. This model also high-
lights an important role of sensory CVOs as upstream sites for
detection of interoceptive stimuli such as sodium lactate.118

Further investigation revealed that sodium (but not lactate or
osmolality) is the primary trigger that is sensed via sodium ion
channels in the anterior third ventricle region. Involvement of
hypothalamic angiotensin II and orexin in orchestrating panic-like
responses to lactate was confirmed using selective antagonists
and RNAi probes.119,120 Orexin expressing neurons in the
hypothalamus are of particular interest to panic physiology. In
addition to being essential to the effects of sodium lactate, these
have been identified as chemosensitive.121,122 Blunted respiratory
responses to hypercapnia were seen in mice lacking prepro-
orexin.123 Antagonism of the ORX1 receptor with SB334867
attenuates CO2-induced respiratory responses in mice,123 whereas
anxiety and hypertensive responses to CO2 inhalation require
activation of the Orexin-1 receptor.124

Thus, converging evidence from the lactate and CO2 inhalation
model suggests that orexin antagonists may be an attractive
therapeutic option for PD, although prolonged suppression of the
orexin system may have its own complications.125

Acid chemosensory serotonergic neurons in the medullary raphe
nucleus
The serotonergic raphe neurons in the brain stem detect
decreases in pH due to hypercapnia126,127 and are strategically
located near large arteries where they are able to sense levels of
CO2 in the blood and quickly initiate behavioral and autonomic
responses to maintain homeostasis.128 These serotonergic neu-
rons may be involved in the panic-like responses of CO2 due to
their projections to the anterior limbic and prefrontal fear-
processing circuits.126 In addition, silencing these pH-sensitive
serotonergic neurons in lower animals disrupts chemosensitive
responses to CO2 inhalation that impair respiration.129 Recent
studies using un-anesthetized in situ perfused decerebrate brain

stem preparations suggest that the medullary raphe also contains
non-serotonergic, CO2-chemosensitive neurons that are positive
for neurokinin-1 receptor, suggesting other targets for CO2-
evoked ventilatory responses.130 An interesting study reported
significantly lower distress and breathlessness to CO2 inhalation in
subjects with acute tryptophan depletion suggesting role of
serotonin in promoting aversive respiratory sensations to
hypercapnia.131

Taken together, these data suggest a potential relevance for
brain stem acid-chemosensory neurons in respiratory distress, of
relevance to PD. However, additional studies especially panic-
relevant models need to be explored.

Acid-sensing T-cell death-associated gene-8 receptor
The T-cell death-associated gene-8 (TDAG8) receptor, an acid-
sensing G-protein-coupled receptor (GPCR) located on immune
cells in the CNS and periphery,132–134 was originally identified by
its increased mRNA expression during programmed cell death of
mouse thymocytes mediated by T-cell receptor engagement,132

but is increasingly recognized for its putative role in the
pathoetiology of panic-like behaviors in lower animals. TDAG8 is
a member of the ‘G2A’ group of GPCRs, which includes the G2
accumulation receptor (G2A), ovarian cancer G-protein receptor 1
(OGR-1), and G-protein-coupled receptor 4 (GPR4).132 Although
these receptors were originally characterized as lysolipid recep-
tors, they were later found to sense extracellular protons resulting
in the stimulation of intracellular signaling pathways.134–138

Accumulation of cyclic adenosine 5’-monophosphate (cAMP) has
been observed in cells transfected with mouse and human TDAG8
cDNA to low extracellular pH.138 To date, TDAG8 is the only
proton-sensing GPCR expressed in brain tissue. Recent studies by
our group has characterized TDAG8 expression in the CNS, and
found it to be enriched in sensory CVOs, which include the
subfornical organ, organ vasculosum of the lamina terminalis and
the area postrema.108 The sensory CVOs are specialized chemo-
sensory regions that are highly vascularized and lack the blood–
brain barrier.139 The sensory CVOs contain cellular contacts with
the blood and the cerebrospinal fluid allowing them to relay
signals from blood and cerebrospinal fluid to autonomic control
centers of the brain.140 Sensory CVOs have been linked to panic
via their ability to sense panic-stimuli in the circulation and
activate downstream targets via their efferent and afferent
projections to prime forebrain and hindbrain.118

Our group has demonstrated that TDAG8 is maximally activated
by extracellular pH of 6.5 leading to intracellular increases in cAMP
and pCREB in vitro.134 Presence of an acid sensor within brain areas
specialized for sensing the internal milieu is important given the
relevance of interoceptive sensing in PD. Ongoing studies by our
group are investigating the contributions of TDAG8 to panic-
relevant responses using TDAG8-deficient mice and translational
rodent models of panic phenomenon.108,141 Preliminary evidence
supports attenuation of CO2-evoked fear responses in TDAG8− /−

mice.108,141

Chemosensory neurons in the periaqueductal gray
The recent development of rodent models of panic-like behaviors
and physiology highlight the importance of the periaqueductal
gray (PAG) in panic responses.14 Electrical and chemical stimula-
tion of the dorsal PAG evokes panic-like responses including
freezing, flight, tachycardia, tachypnea and hyperven-
tilation10,142,143 in lower animals and stimulation of this region in
neurosurgical results in similar behaviors in humans.144 Several
structural neuroimaging studies reveal increased gray matter
volumes in the midbrain and rostral pons as well as PAG, in PD
patients compared with healthy controls.145,146 Thus, the PAG may
represent an attractive site for chemosensory pH sensing and its
translation to panic expression. Focal lesions of the PAG do not
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alter ventilation during normocapnia, however, lead to reduced
ventilatory responses to 7% CO2.

107 There is now strong evidence
that the dorsal PAG contains chemosensitive neurons that may be
intrinsically sensitive to O2 reduction, a hypoxia-sensitive alarm.
Intravenous potassium cyanide, which produces anoxia, produced
panic-like responses such as freezing and flight147 and when
paired with 8 or 13% CO2 inhalation, enhances evoked flight
responses and, independently facilitates the panic-like responses
of rats during electrical PAG stimulation. In addition, electrical
lesioning of the PAG attenuates, if not completely abolishes,
panic-like responses, raising the possibility that the PAG harbors
an anoxia-sensitive suffocation alarm in which dysfunction causes
hypersensitivity to CO2. Given the extensive clinical and preclinical
studies supporting a role of the PAG in behavioral and
physiological panic-associated responses, presence of chemosen-
sitive targets in this region is of interest. However, additional
studies are required to determine the involvement of this
proposed PAG suffocation alarm in PD.

TRANSLATIONAL RELEVANCE OF ACID-CHEMOSENSORY
MECHANISMS: FROM ANIMAL MODELS TO PD
Findings in translational rodent models of panic have provided
information on potential target receptors and ion channels, as well
as brain areas that may contribute to the pathophysiology of
panic in humans (Figure 2). Clinical studies over the years have
shown that a problem with acid–base homeostasis may exist in PD
subjects pointing to the relevance of pH sensing and transduction
targets as well as underlying circuits that contribute to pathophy-
siologic responses. For some acid chemosensors such as the ASIC1
channels, evidence from preclinical work translates well to human
PD. Genetic studies have shown an association of polymorphisms
in the ASIC-1a gene with PD.105 However, regional attributes and
circuits underlying ASIC contributions to PD are less clear. A role of
ASIC1 in the amygdala function is further supported in a rodent
CO2 studies; however, it is noteworthy that Urbach–Wiethe
subjects with damaged amygdala elicited panic and fear response
to CO2 supporting the relevance of exrtra-amygdalar chemosen-
sory in interoceptive threat detection and translation into panic.
Here again, translational studies have suggested that dorsomedial
hypothalamus, PAG, brain stem raphe and CVOs are potential sites
of interest to PD. In some cases, findings from separate studies
converge on selective sites that may be of particular relevance to
PD. For example, studies on sodium lactate infusion in rodents by
Shekhar’s group highlight an important role of CVOs, such as the
subfornical organ and organum vasculosum of the lamina
terminalis as sites for initiation of panic responses evoked by
lactate.118 We recently demonstrated abundance of an acid-
sensing TDAG8 receptor in these areas that are recruited in panic
responses to CO2 inhalation, a panicogen.108,141 Thus, areas
devoid of a blood–brain barrier that can sense central and
systemic homeostatic mileau may represent upstream detection
sites for panic initiation especially given their connectivity to
downstream sites for expression of behavioral and physiological
responses as well as the forebrain regions such as the insula that
have been implicated in PD. Acid chemosensors on orexin and
5-HT neurons provides further insights into integration of
interoceptive pH fluctuations leading to behavioral and respiratory
arousal. Association between polymorphisms in the TPH-2 gene
and susceptibility to panic symptoms evoked by CO2 inhalation in
humans,96 suggests the potential convergence of serotoninergic
and CO2 chemosensory mechanisms. Future studies focusing on
the crosstalk between exteroceptive and interoceptive pathways
and mechanisms will be crucial to fully appreciate the unique
pathophysiology of PD.

POTENTIAL THERAPEUTIC AGENTS TARGETING pH
CHEMOSENSORY MECHANISMS
A role for pH and chemosensory mechanisms in panic physiology
is increasingly appreciated on the basis of the recent explosion of
data from preclinical studies; however, the translation to humans
remains somewhat unclear and the degree to which these
systems may be targeted by psychopharmacologic interventions
is relatively unexplored. Thus, the lack of investigations related to
pH or chemosensory modulating therapeutics is of high public
health significance given that therapeutic options for PD are
limited. As described above, selective serotonin reuptake inhibi-
tors are the most commonly prescribed medications and,
although they are effective in some patients, there are numerous
side effects, delays in onset of action, whereas other modalities
such as benzodiazepines—which have rapid onset of action—are
associated with distinct limitations, including the risk of depen-
dence and withdrawal. To date, there have been no clinical studies
in PD patients on interventions targeted towards control of pH
imbalance or chemosensory ion channel or receptor blockers. It is
evident that antagonists for chemosensors such as ASIC1 ion
channel may be a promising therapeutic target for PD. ASIC ion
channel antagonist, such as amiloride have held promise for other
acidosis associated conditions such as pain, stroke, migraine,
spinal cord injury and multiple sclerosis (reviewed in Wemmie148).
Recent studies show neuroprotective effects of amiloride in
patients with progressive multiple sclerosis,149 supporting the
safety and efficacy of this agent for alleviating pH-associated
pathophysiology. Another promising target for PD are orexin
receptor antagonists. Pre-treating with Orexin-1 receptor antago-
nist, SB334867, attenuates anxiety-like responses to CO2 inhalation
in rats.124 In addition, silencing ORX precursor gene expression in
the dorsal medial-perifornical hypothalamus/perifornical region,
or systemically pretreating rats with SB334867 blocked intrave-
nous sodium lactate-induced anxiety-related behavior and
cardioexcitation.119 SB334867 also attenuated anxiety and panic-
relevant behaviors induced by benzodiazepine inverse agonist
FG-7142 and adenosine receptor antagonist, caffeine suggesting
that orexin antagonists act on pathways common to diverse
triggers of panic.115 In view of the relevance of acid–base
dysregulation and CO2 sensitivity to panic it would be of interest
to discuss studies on carbonic anhydrase inhibitor, acetazolamide
in panic patients. Acetazolamide blocks the facilitated conversion
of carbon dioxide to carbonic acid and finally bicarbonate and
hydrogen ions, leading to a significant increase in CO2 concentra-
tion. It was hypothesized that acetazolamide would induce panic
attacks in PD patients due to a rise in CO2 concentration. Contrary
to this, panic attacks were not induced by acetazolamide.53,150 In
fact, it was suggested that acetazolamide may serve as an anti-
panic agent, as it buffers against CO2-induced hydrogen ion
fluctuations.151 As noted in that study, acetazolamide prevents the
accumulation of H+ ions due to inhibition of carbonic anhydrase
and provides support for H+ ions as the primary biological effector
in CO2-evoked panic. These studies warrant further investigation
and support for the therapeutic potential of acetazolamide in PD.

CONCLUSIONS AND FUTURE DIRECTIONS
It is clear from the clinical and preclinical findings discussed in
preceding sections that interoceptive acid/base imbalance and pH
chemosensory mechanisms may contribute to certain aspects of
PD, particularly uncued panic attacks. Converging evidence from
neuroimaging, genetics and rodent preclinical models strongly
supports that underlying abnormalities in pH homeostasis
and chemosensation may be an important causative factor in
panicogenesis.
However, it should be noted that, while there is significant

evidence and consensus on the role of pH homeostasis and
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impaired acid–base buffering in patients with PD, not all data
support the link between pH, specifically acidosis, and panic
attacks. As described herein, clinical, genetic and preclinical
studies on CO2 inhalation strongly support this link. Although not
all panicogens (for example, sodium lactate and doxapram, which
may cause respiratory distress, pH shifts or compensatory acidosis
as a response to alkalosis) support the notion that acidosis
provokes panic. In this regard, future studies are required to
further clarify these inconsistencies.
Although pH sensing may contribute to panic, systems

regulating stress, arousal, fear and anxiety are also relevant,
particularly in the maintenance of the disorder. It is possible that
panic vulnerability occurs due to a combined deficit in the
processing of internal and external threats. The late onset of PD
also suggests that more than one phenomenon is required for the
manifestation of the disorder. An interesting future research
direction would be to study the connectivity and crosstalk
between pH chemosensory mechanisms and exteroceptive threat
response systems (see Figure 2). There is also a need for the
development of preclinical animal models where stress and pH
chemosensory threat processing and translation should be
simulated as this scenario is more likely to occur in humans.
These models will also be relevant for therapeutic testing of novel
agents. Another important area would be to study the interaction
and communication between different pH chemosensory mole-
cules in the brain. The presence of multiple sensory mechanisms
at distinct sites is reflective of a highly sensitive pH threat
detection system functioning at different thresholds and sensitiv-
ities, which may be relevant to PD. In conclusion, pH homeostasis
and chemosensation remains an important area of investigation
that furthers our understanding of panic pathophysiology and
treatment.
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