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ABSTRACT Detecting genomic regions under selection is an important objective of population genetics.
Typical analyses for this goal are based on exploiting genetic diversity patterns in present time data but
rapid advances in DNA sequencing have increased the availability of time series genomic data. A common
approach to analyze such data is to model the temporal evolution of an allele frequency as a Markov chain.
Based on this principle, several methods have been proposed to infer selection intensity. One of their
differences lies in how they model the transition probabilities of the Markov chain. Using the Wright-
Fisher model is a natural choice but its computational cost is prohibitive for large population sizes so
approximations to this model based on parametric distributions have been proposed. Here, we compared
the performance of some of these approximations with respect to their power to detect selection and their
estimation of the selection coefficient. We developped a new generic Hidden Markov Model likeli-
hood calculator and applied it on genetic time series simulated under various evolutionary scenarios. The
Beta with spikes approximation, which combines discrete fixation probabilities with a continuous Beta
distribution, was found to perform consistently better than the others. This distribution provides an almost
perfect fit to the Wright-Fisher model in terms of selection inference, for a computational cost that does
not increase with population size. We further evaluated this model for population sizes not accessible to
the Wright-Fisher model and illustrated its performance on a dataset of two divergently selected chicken
populations.
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Detecting themolecular basis of adaptation in natural species is one of the
major questions in population genetics.Most studies in this context rely on
contemporarygenomicdataandexploitseveral typicalsignatures leftbythe
spread of a benefical allele in a population: decreased heterozygosity,
extended linkage disequilibrium (LD), increased differentiation with other
populations, see Vitti et al. (2013) for a review.

Genomic time series provide an evenmore direct access to past allele
frequency changes, allowing a more precise estimation on the onset or
the intensity of selection. With the combined advances in sequencing
technologies, ancientDNAprocessingandcryoconservation, this typeof
data are becoming accessible to many researchers and are found in
various contexts. On a long time scale, time series of ancient DNA have
beenusedfor example todetect thegeneticbasisof adaptation inhumans
from Eurasia (Mathieson et al., 2015) or to infer allele frequency tra-
jectories at several causal variants or quantitative trait loci in domestic
horses (Fages Antoine et al., 2019). On a shorter time scale, genetic time
series are provided by the sequencing of samples conserved in biobanks
during decades. This approach allowed for instance to assess the recent
evolution of genetic diversity in Holstein cattle and to predict the
selective value that could be obtained by using semen from ‘historical’
bulls in this breed (Doekes et al., 2018). Controlled evolution experi-
ments also provide a lot of interesting temporal genetic data and
concern a large set of organisms. Such experiments generally imply
intentional selection for a given trait of interest, e.g., thermal tolereance
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in Drosophila (Tobler et al., 2015) or intra-muscular ultimate pH in
chicken (Bihan-Duval et al., 2018).

Following the increased production of genetic time series, several
methods allowing researchers to exploit suchdata for selection inference
have been developed in the two last decades (Malaspinas 2015). Most of
them infer selection at a given variant based on temporal observations
at this variant only, i.e., without exploiting LD information (but see
(Terhorst et al., 2015; He et al., 2019)). In this context, several statistical
approaches have been proposed to model the link between the full
temporal trajectory of a population allele frequency, which is in-
formative about selection intensity at the locus, and the (partial)
genetic samples observed at some specific dates along this trajec-
tory. These approaches include approximate Bayesian computation
(ABC) (Foll et al., 2015; Sackman et al., 2019), Bayesian path aug-
mentation (Schraiber et al., 2016) or hidden Markov models (HMM)
(Bollback et al., 2008).

The HMM approach arises quite naturally when analyzing genetic
time series, as it accounts both for the Markovian property of allele
frequency trajectoriesover time and for the fact that these trajectories are
latent variables. Besides, efficient algorithms have been developed for
likelihood evaluationandparameter estimation insuchmodels (Rabiner
1989). Following this approach, one important choice concerns the
modeling of the underlying allele frequency trajectory at a locus. In
the initial work of Bollback et al. (2008), this process was modeled by
the Wright-Fisher (WF) diffusion and the partial differential equation
(PDE) resulting from this diffusion between each pair of consecutive
sampling dates was solved using a numerical scheme. More recently,
Song and Steinrücken (2012) derived an analytical solution of this PDE
based on an infinite series expansion and integrated this solution into
the HMM framework to detect selection on ancient DNA (Steinrücken
et al., 2014). The diffusion process can also be approximated using
Markovian continuous time processes with a relatively low number
of discrete spaces (Malaspinas et al., 2012; Ferrer-Admetlla et al.,
2016). All these approaches are quite computationally demanding,
moreover the WF process converges to the diffusion only for weak
selection (Ewens 2004).

Considering the WF model as a reference, an even more natural
approach is to compute transition probabilities of the Markov chain
using this model directly (Iranmehr et al., 2017; Hubert et al., 2018).
However, this implies that the dimension of the transition matrix is
equal to the population size so this approach is in practice only possible
for small populations. A more efficient strategy is to approximate the
WF process by a parametric continuous distribution, whose first two
moments fit those of the WF and whose transitions can be computed
using a simple analytical formula. This moment-based approximation
was implemented by Lacerda and Seoighe (2014) and Terhorst et al.
(2015) using a Gaussian distribution and by Gompert (2016) using a
Beta distribution. However, Tataru et al. (2017) showed that these two
distributions accurately approximate the WF only for very short time
scale and weak selection and that a much closer fit can be obtained
by incorporating fixation probabilities in the Beta distribtuion, leading to
what they called the Beta with spikes distribution. They illustrated the
performance of this distribution to infer branch lengths in a population
tree, but did not consider the potential application for selection inference.

Here we compared the performance of these different approxima-
tions for inferring a constant selection parameter in a population of
constant size. This choice aims to establish a likelihood calculation
framework that could be generalized to a more realistic scenario
(e.g., time varying selection and population size). To compare
performances, we implemented a genericHMMthat allows to estimate
the selection intensity by maximum likelihood and to detect selected

loci by a likelihood-ratio test. Transition probabilities in this model can
be computed using either theWFmodel, the Gaussian approximation,
the Nicholson Gaussian approximation, the Beta approximation
or the Beta with spikes approximation. We evaluated the quality
of inference provided by these different transitions in a large range
of selection scenarios and showed an application of the HMM ap-
proach to a dataset concerning the experimental divergent selection
of two chicken lines (Bihan-Duval et al., 2018).

METHODS

Statistical models for genetic time-series

Hidden Markov Model framework: LetA be a locus of interest accept-
ing two alleles: A0 is called the (arbitrary) reference allele while A1 is
called the alternative allele. Considering a diploid organism, we
assume each genotype is associated to a particular fitness: the
homozygote reference allele fitness is 1, the heterozygote form
fitness is 1þ sh and the homozygote alternative allele fitness is
1þ s, where s is the selection parameter and h the dominance
parameter. Assume a population has been sampled at n different
dates t1 ¼ 0; . . . ; tn ¼ T (in generations after the first sampling
date) in order to assess the evolution of the frequency of allele
A1. We note XðtÞ the true frequency of A1 at date t. At date tk
(k 2 f1; . . . ; ng), we note Xk ¼ XðtkÞ, nk the total number of alleles
sampled and Yk the number of A1 alleles sampled. Finally, we note Ne

the haploid effective size of the population.
In this study we will follow a common approach to model such

data, first proposed by Bollback et al. (2008) and use a Hidden
Markov Model (HMM, see Cappé et al. (2005) for a general de-
scription). This HMM (Figure 1) is a bivariate Markov process
ðXk;YkÞk$ 1 with Xk 2 ½0; 1� and Yk 2 f0; . . . ; nkg. ðXk) is a Markov
process with transition kernel Qk between Xk21 and Xk. Given ðXkÞ,
observations are independant and the emission kernel of Yk givenXk is
noted gk. The distribution of X1 is noted n. This model is fully spec-
ified by setting n;Qk and gk, and each of them can be thought of as a
probability:

nðdxÞ ¼ ℙðX1 2 dxÞ

gkðx; yÞ ¼ ℙðYk ¼ y
��Xk ¼ xÞ

Qs;N;h
k ðx; dx9Þ ¼ ℙðXk 2 dx9

���Xk21 ¼ xÞ

In this study we assume that the distribution of X1 is uniform on
½0; 1� (nðdxÞ ¼ dx) (but see Discussion). As the observations Yk are
sampled from a population with allele frequency Xk, the distribu-
tion of Yk given Xk is a binomial distribution with parameters nk
and Xk:

YkjXk � ℬðnk;XkÞ

gkðx; yÞ ¼
�
nk
y

�
xyð12xÞnk2y

For a given x, Qkðx; :Þ is the distribution of Xk given that the previous
frequency Xk21 is x. Note that the Markov chain Xk is typically not
homogeneous as for example the duration between successive sam-
pling dates may vary. Apart from the time between samples, Qk also
depends on the transition model and on parameters s, Ne and h. One
of the main objective of this study is to compare different possible
transition models which are described below.
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In this HMM framework, the likelihood is:

L
�
y1; . . . ; yn; s;Ne; h

� ¼Z ​

. . .

Z ​

nðdx1Þ
Yn
k¼2

Qs;Ne;h
k ðxk21; dxkÞ

3
Yn
k¼1

gk
�
xk; yk

�

Adirect calculation of this likelihood is very costly because the integral
is over ½0; 1�n. The usual way to tackle this problem is to introduce the
forward measure ak, which is the joint probability of the k first ob-
servations and the k2 th state:

akðy1; . . . ; yk; dxÞ ¼ ℙðY1 ¼ y1; . . . ;Yk ¼ yk;Xk 2 dxÞ
This forward measure is computed using the following recursion
(Cappé et al., 2005), generally referred as the forward algorithm:

    a1
�
y1; dx

� ¼ ℙðY1 ¼ y1;X1 2 dxÞ ¼ g1ðx; y1ÞnðdxÞ
akþ1

�
y1; . . . ; ykþ1; dx9

� ¼Z
x2½0;1�

ak
�
y1; . . . ; yk; dx

�
·Qkþ1ðx; dx9Þgkþ1

�
x9; ykþ1

� (1)

The likelihood is obtained by integrating the last forward measure an

over all possible states Xn, using the following relation:

L
�
y1; . . . ; yn; s;Ne; h

� ¼Z
x2½0;1�

an
�
y1; . . . ; yn; dx

�

Using this approach, the likelihood calculation involves only n inte-
grals over ½0; 1� instead of one integral over ½0; 1�n. For a later use, let’s
also define the log likelihood:

l
�
y1; . . . ; yn; s;Ne; h

� ¼ log
�
L
�
y1; . . . ; yn; s;Ne; h

��
This likelihood forms the basis of statistical inference on the
population parameters Ne, s and h. In this study, we focus on the
inference on the selection parameter s and will therefore assume Ne

and h to be known. We estimate the selection parameter s by max-
imum likelihood:

ŝ ¼ argmax
s

l
�
y1; . . . ; yn; s;Ne; h

�
To build a test for the null hypothesis (s ¼ 0), we use the log likelihood
ratio statistic:

l
�
y1; . . . ; yn;Ne; h

� ¼2
�
l
�
y1; . . . ; yn; ŝ;Ne; h

�
2 l
�
y1; . . . ; yn; 0;Ne; h

��
(2)

Under the null, l asymptotically follows a x2 with one degree of
freedom, a property that allows to derive p-values which are useful
quantities in particular in a multiple testing context.

Having described the general framework used in this study, we now
turn to its implementation that requires specifying the transition kernel
Qkðx; :Þ. One objective of this workwas to investigate differentmodels for
this transition kernel. A reference model in this context is the one-locus
Wright-Fisher (WF) model under diploid selection pressure (Ewens
2004). However, this model has computational limitations and, in the
HMM famework, must generally be approximated. We first present
the WF model and then several continuous approximations of this
model based on a common approach: the method of moments.

Wright-Fisher transition model: The WF model is a discrete time
model that assumes random mating and non overlapping genera-
tions. Let Ne be the haploid (constant) effective population size.
Under this model, XðtÞ can take a discrete number of values in�
0; 1

Ne
; . . . ; Ne 2 1

Ne
; 1

�
and the transition kernel of this process is a

transition matrix with size ðNe þ 1Þ· ðNe þ 1Þ. Let P designate
the transition matrix of this process in one generation. Then,
P ¼ fPijgi;j2f0;...;Neg and

Pij ¼ ℙ
�
Xðtþ1Þ ¼

j
Ne

����XðtÞ ¼
i
Ne

�

¼
�

j
Ne

�
f ði=NeÞjð12f ði=NeÞÞNe2j

where f is the diploid fitness function (Ewens 2004):

"x 2 ½0; 1�; f ðxÞ ¼ ð1þ sÞx2 þ ð1þ shÞxð12 xÞ
ð1þ sÞx2 þ 2ð1þ shÞxð12 xÞ þ ð12xÞ2

¼ xð1þ shþ sð12 hÞxÞ
1þ 2shx þ sð12 2hÞx2 (3)

Note that this function can easily incorporate the possibility of
mutations (Ewens 2004) but it is not considered here for the sake
of simplicity.

Given this one step transition matrix, the transition matrix of the
HMM is obtained by taking P to the required power (Qk � Ptk2tk21 ):

"i; j 2 f0; . . . ;Neg;Qk

�
i
Ne

;
j
Ne

�
¼ �Ptk2tk21

�
ij (4)

In the WF model, the effective population size Ne is a critical param-
eter affecting computational properties. More precisely, the transition
matrix memory occupation isOðN2

e Þ and the forward algorithm com-
putation time is at least OðN2

e Þ. Moreover, the transition matrix Qk

is obtained by taking a ðNe þ 1Þ · ðNe þ 1Þ matrix to the power
tk 2 tk21, with a complexity in OðDtN3

e Þ. It can thus be very costly
for large Ne and large intersample time. To overcome this issue, one
approach is to approximate the Wright-Fisher process with a contin-
uous space process such that integral calculations of the forward

Figure 1 Graphical representation of the Hidden Markov
Model for genetic time series.
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algorithm are made over a discretization of ½0; 1�, with a grid size
(i.e., a number of discretization points) much smaller than Ne. We
followed this approach here and approximated the WF process using
the method of moments.

Parametric approximations based on the method of moments: The
principle of the method of moments consists in modeling the
transition kernel Qk with a parametric distribution, matching its
mean and variance to those of the WF model. The advantages of
using parameteric distributions are (i) to be able to compute tran-
sitions faster than raising the transition matrix to a power equal to
the number of generations elapsed, (ii) to use smaller transition
matrix in the forward algorithm. This approach was first proposed
by Lacerda and Seoighe (2014) with a Gaussian distribution and
was then used in several other studies (Terhorst et al., 2015; Tataru
et al. 2017; Gompert 2016). One prerequisite of the method of
moments is to know the moments of a WF model for any value
of s, h andNe. Under selection (s 6¼ 0) no analytical formula of these
moments exists but they can be approximated using a recursion
inspired by (Lacerda and Seoighe 2014; Terhorst et al., 2015; Tataru
et al. 2017). In the WF model, moments at generation t þ 1 can be
derived from those at generation t:

        E
h
Xðtþ1Þ

i
¼ E

h
f
	
XðtÞ

i

Var
h
Xðtþ1Þ

i
¼
�
12

1
N

�
Var
h
f
	
XðtÞ

i

þ 
E
h
f
	
XðtÞ

i	

12 E
h
f
	
XðtÞ

i


N

For models with selection, the fitness function f (Equation (3) is non-
affine so this recursion cannot be solved analytically. However, using
a Taylor expansion of f around E½XðtÞ�, it is possible to build a re-
cursion allowing the approximation of E½XðtÞ� and Var½XðtÞ�. Let mt

and s2
t be these approximations at generation t, they can be computed

as follows (see Supplemental File S1 for details):

    m0 ¼ E
	
Xð0Þ




    s2
0 ¼ Var

	
Xð0Þ




mtþ1 ¼ f ðmtÞ þ
f 99ðmtÞ

2
s2
t

s2
tþ1 ¼

1
N

�
f ðmtÞ þ

f 99ðmtÞ
2

s2
t

��
12 f ðmtÞ2

f 99ðmtÞ
2

s2
t

�

þ
�
12

1
N

�
f 9ðmtÞ2s2

t

(5)

Note that as f is a rational fraction, its derivatives can be calculated
exactly. To simplify notations in the following, we further define
mk ¼ mtk2tk2 1

and z2k ¼ s2
tk2tk21

.
Having established approximations to the Wright-Fisher moments

in the general case, different parametric distributions can be chosen to
approximate the transition kernel. We show on Figure S1 examples of
approximations using models presented below.

GaussianModel (Ga) Thefirst possibility, considered in theoriginal
description of the method of moments approach (Lacerda and Seoighe

2014), is to use the Gaussian distribution (Cavalli-Sforza et al., 1964;
Nicholson et al., 2002). Indeed, when t

Ne
and Nes are small, the rescaled

Wright-Fisher process converges to a Gaussian process and the HMM
transition kernel is:

Xkþ1

��Xk � N
�
mk; z

2
k

�
One of the main issues with the Gaussian model is that XðtÞ can take
values outside ½0; 1�. To tackle this issue we chose to reject values
distributed outside ½0; 1� and appropriately rescale the Gaussian den-
sity so that it integrates to one.

Nicholson Gaussian Model (NG) Another option to tackle the
Gaussian distribution support issue, is to allocate the mass of the
distribution outside ½0; 1� to discrete fixation probabilities at 0 (i.e.,
PðXðtÞ ¼ 0Þ :¼ PðXðtÞ # 0Þ) and 1 (i.e., PðXðtÞ ¼ 1Þ :¼ PðXðtÞ $ 1Þ)
(Nicholson et al., 2002). Hence, the resulting distribution is a mixture
of a Gaussian continuous density on ½0; 1� and a discrete distribution
at 0 and 1.

Beta Model (Be) A second possible parametric distribution is the
Beta, already used in several contexts (Balding and Nichols 1995;
Gompert 2016) including the HMM based analysis of genomic time
series (Hui and Burt 2015; Tataru et al. 2017). Use of this distribution
can be motivated by the fact that it takes values on ½0; 1� and because it
is the stationary distribution of the diffusion approximation under
neutrality (Kimura 1964). In addition, the family of Beta distributions
encompasses a lot of different shapes that can fit many behaviors for
allele-frequency variation. In this model, the HMM transition kernel
can be written as:

Xkþ1jXk � Betaðak; bkÞ
with:

ak ¼ mk

 
mkð12mkÞ

z2k
2 1

!
  bk ¼ ð12mkÞ

 
mkð12mkÞ

z2k
2 1

!

(6)

Beta with spikes Model (BwS) We finally considered the Beta
with spikes model described by Tataru et al. (2017). Similarly to the
Nicholson Gaussian model described above, this model explicitly
accounts for the possibility of allele fixation: it is a mixture of a
Beta distribution and two discrete fixation probabilities at 0 and 1.
According to Tataru et al. (2017), this model is a better approxima-
tion of the Wright-Fisher than the Ga and Be models.
Let

p0;kðxÞ ¼ ℙðXk ¼ 0jXk21 ¼ xÞ

and

p1;kðxÞ ¼ ℙðXk ¼ 1jXk21 ¼ xÞ:

The transition kernel is:

Qs;Ne;h
k ðx; :Þ ¼ p0;kðxÞd0 þ p1;kðxÞd1 þ ð12 p0;kðxÞ2 p1;kðxÞÞha�k ;b

�
k

where ha�k ;b
�
k
is a Beta distribution describing the transition from Xk to

Xkþ1 conditional on the fact that Xkþ1 did not fix in 0 or 1. Parameters
a�k and b

�
k are obtained with a formula similar to (6), replacing abolute

moments mk and zk by conditional mean and variance m�
k and z�k

given that the WF process did not fixed at 0 or 1:
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m�
k ¼

mk2 p1;k
12 p0;k 2 p1;k

  z2�k ¼ z2k þm2
k 2 p1;k

12 p0;k2 p1;k
2m2�

k

In the Beta with spikes model, fixation probabilities must be computed
in addition to WF moments. Let us define p0;t ¼ ℙðXðtÞ ¼ 0Þ and
p1;t ¼ ℙðXðtÞ ¼ 1Þ. We used the following recursion, proposed by
Tataru et al. (2015) assuming Beta with spikes transitions:

p0;0 ¼ 0

p1;0 ¼ 0

p0;tþ1 ¼ p0;t þ
	
12 p0;t 2 p1;t


B�a�t ; b�t þ N
�

B
�
a�t ; b�t

�

p1;tþ1 ¼ p1;t þ
	
12 p0;t 2 p1;t


B�a�t þ N; b�t
�

B
�
a�t ; b�t

�
where B denotes the Beta function.

Implementation In this study, the likelihood was always evaluated
on a grid ofNes composed of 600 values ranging from2100 to 300. For
WF transitions the integrals involved in the likelihood computation
using the forward algorithm (1) are finite sums. However for the para-
metric approximations to the WF these integrals are continuous and
must therefore be numerically approximated. Here, this was done using
the trapezoidal rule on an integration grid composed of 129 points
evenly spaced on ½0; 1�. Note that the calculation of these transitions
is only required once per dataset.

Comparison of HMM transition models
We studied the quality of the transition approximation to the WF
process. For this objective, we set the effective population size to
Ne ¼ 100 haploids to render the comparisons computationally trac-
table. We compared the Ga, NG, Be and BwS models as approxi-
mations to the Wright-Fisher process, first by evaluating their fit
to the WF distribution and second by measuring their impact on
selection inference.

Approximation of the WF transition: We first studied the quality of
approximations of the WF transition kernel. For all parametric distri-
butions, at least part of the WF discrete transition is approximated by a
continuous density. Thus, measuring the fit of these approximations
requires comparing continuous densities to discrete probabilities.
In such a case, classical distances aimed at comparing densities, such
as the Kullback-Liebler divergence or the Hellinger distance are not
valid. Therefore we used the Wasserstein distance defined as the L1
distance between the cumulative distribution functions of two distri-
butions and which is well defined in all cases considered here. The
fit of the Ga, NG, Be and BwS models were evaluated over the
parameter set h ¼ 0:5, ðt1 2 t0Þ 2 ½1; 20�, Nes 2 f0; 10; 100g, and
starting allele frequency covering all i=Ne values for i 2 f0; . . . ;Neg

Consequences for statistical inference: We computed the likelihood
profile (see implementation paragraph) for genomic time series ran-
domly simulatedwith theWright-Fisher process.We set the initial allele
frequency to 0.1 or 0.5 and its selection parameter varying from
0 (neutral case) to 1 (strong selection). We simulated a random
sampling of nk ¼ 30 alleles at 10 evenly spaced dates over a total range
of T 2 f9; 45; 90; 180g generations (i.e., tk 2 tk21 2 f1; 5; 10; 20g). We
ran 100000 simulations for s ¼ 0 and 10000 for other s (see Figure S2).

To compare the Ga, NG, Be and BwS models in terms of selection
inference, we focused on four summarizing quantities computed
from the likelihood: the log-likelihood value at s ¼ 0, the maximum
likelihood estimator ŝ, the log-likelihood value at s ¼ ŝ, and the log-
likelihood ratio statistic (2).

Inferring selection using the HMM: As theBwSmodelwas found tobe
the best approximation to the Wright-Fisher (see Results), we further
studied its statistical properties on simulations for higherNe and applied
it to detect selection on a real data set. The NG model, which provided
the second best fit to the Wright-Fisher, was also considered for
comparison when analyzing simulated data.

Simulation study: To study the statistical properties of NG and
BwS models, we created new datasets designed to represent con-
sistent selection dynamics as for the Ne ¼ 100 dataset but with
largerNe. To do so, we considered that the diffusion approximation to
the WF suggests that selection dynamics are driven by the two com-
pound parameters Nes and T=Ne. Therefore the new datasets were
created by increasing Ne to 1,000 and 10,000 but in each case adjusted
T and s so as to keep the same set of Nes and T=Ne values as for the
Ne ¼ 100 dataset. Specifically we considered Nes 2 ½0; 100� and
T=Ne 2 f0:09; 0:45; 0:9; 1:8g. We also kept the same sampling pat-
tern of nk ¼ 30 haploids sampled at 10 evenly spaced dates over the
total range T and an initial allele frequency of 0.1 or 0.5.

Real data analysis: We applied ourmethod using the BwSmodel on a
dataset of two experimental populations of chicken divergently selected
for the intra muscular ultimate pH (pHu) (Alnahhas et al., 2016;
Bihan-Duval et al., 2018). This selection experiment was conducted
for 5 generations and at each generation (including the starting pop-
ulation) samples were collected and genotyped for 40,199 markers.
Sample sizes in each line (pHu- and pHu+) are given in Table 1.

Our current implementation of the method does not estimate the
Ne parameter which is not known in this real dataset. To remedy this
issue, we estimated Ne in each line using the NB R package (Hui and
Burt 2015). Motivation for using this method to estimate Ne comes
from the fact that the underlying model is a HMM with Beta tran-
sitions, similar to our general framework. To estimate Ne, we re-
moved trajectories starting near edges (frequencies below 20% or
above 80%), running the analysis over 27,669 loci. For our analysis
we considered the two lines as two different populations.

As a further validation of the Beta with spikes approximation, we
applied the HHH both with Wright-Fisher and Beta with spikes
transitions. We removed from the analysis all trajectories fixing
in one step as we used the x2ð1Þ distribution to compute p-values.
SNP were called significant with a FDR threshold of 5% estimated
using the q-value R package (Storey et al., 2015).

Data availability
The implementationof theHMMis freely available at https://github.com/
CyrielParis/compareHMM. Observed allele frequencies in the
two chicken lines, for all markers and generations, are available

n■ Table 1 Haploid sample sizes across 6 generations of chicken
populations selected for intra-muscular ultimate pH

Dates (in generations) 0 1 2 3 4 5

pHu+ 102 28 42 56 54 60
pHu- 102 34 46 44 54 56
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at: http://doi.org/10.5281/zenodo.3461580. Supplemental material avail-
able at figshare: https://doi.org/10.25387/g3.9959492.

RESULTS
We have established a general HMM framework that allows to perform
statistical inference from genetic time-series data. Within this frame-
work, different transition models can be used and easily compared.
In this section we will first present results comparing the quality of
approximations of the Gaussian (Ga), Nicholson Gaussian (NG), Beta
(Be) and Beta with spikes (BwS) transition kernels on their ability to
approximate the Wright-Fisher (WF) kernel. Next, we study in more
details the statistical performances of theBwS fordetecting selection and
estimating its intensity. Finally, we illustrate how the BwSmodel can be
used on real data by re-analyzing an experimental evolution dataset.

Approximation of the Wright-Fisher model

Approximation of the WF transition: We first compared each con-
tinuous approximation with the WF using the Wasserstein distance.
Figure 2 shows for eachmodel and for different selection intensities the
heatmap of the Wasserstein distance between the continuous approx-
imation and the true WF distribution. In principle this distance ranges
from 0which is a perfectmatch to 1 which is, for an allele frequency, the
worst possible distance. For this set of parameters, the Wasserstein
distance ranged from 0 to� 0:5. According to this distance, all approx-
imations are valid for intermediate starting allele frequencies and a
small number of generations but the accuracy of all approximations
decreases as the number of generations increases. The accuracy of the
approximation also worsens when the selection parameter increases,
especially for small starting allele frequencies. Indeed, the figure shows
that for starting frequency , 0:1, generations . 15 and Nes ¼ 100 all
models performed badly in approximating the Wright-Fisher model.
As the forward algorithm involves an integration over all possible allele
frequencies at each sampling date, poor approximations of transitions
from small allele frequencies may in principle affect the performance of

HMM inference for any observed trajectory (with or without small
frequencies). We evaluate this in the next setion.

Concerning the comparison between models, Figure 2 shows that
the Be and BwS models are better approximations than the Ga and NG
models, the BwS model being overall slightly better than others. These
results are consistent with those obtained by Tataru et al. (2017), al-
though they used a different approximation for the moments and a
different measure of the distance between distributions.

The error in the approximation can come from the model itself but
also from the use of approximated moments. To evaluate what pro-
portion of the distance to the true distribution comes from the moment
approximation, we computed the Wasserstein distance of each contin-
uous distribution using the true WF moments (Equation 4, Figure S3).
Figure 3 presents this proportion for the BwS model under neutral-
ity (left Nes ¼ 0) and under selection (middle Nes ¼ 10 and right,
Nes ¼ 100). Under neutrality the error comes mainly from the contin-
uous approximation. This is also usually the case under selection al-
though for small starting frequencies (x1 , 0:1) and large duration
between samples the error in the approximation of moments is the
most influential. As getting the true moments of the Wright-Fisher
process can be costly especially for large population size, all results
presented further are based on approximated moments.

Approximation of the WF likelihood: Next, we evaluated the ability
of continuous WF approximations to recover the WF likelihood of
genetic time-series data. To do so, we simulated trajectories under
different evolutionary scenarios (see Methods) and compared the
inference obtained with each continuous model to the one obtained
using the Wright-Fisher model.

Simulations of time-series genetic data to evaluate the quality of
parametric approximations to the Wright-Fisher were performed
under this reference model. Hence, using the HMMwithWF transitions
should provide the best statistical behavior and be considered a reference
inference method. Before assessing the quality of approximations to the

Figure 2 Wasserstein distances
to Wright-Fisher transition for four
continuous approximations (col-
umns) and for varying starting
allele frequencies (x axis of each
panel) and number of genera-
tions (y axis of each panel). Top
panels: Neutral evolution (Nes ¼ 0).
Middle panels: Mild selection
(Nes ¼ 10). Bottom panels: Strong
selection (Nes ¼ 100).
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WF model with respect to their accuracy for computing the WF-based
likelihood, it is necessary to ensure that this model itself provides
sensible likelihood inference. Results on simulated data showed
that this was not always the case: a family of trajectories were
found to lead to unreliable results even when using the WF model
for inference. These trajectories correspond to cases where the
observed allele frequency reached fixation in one time step (i.e.,
"k. 1;Yk ¼ 0 or "k. 1;Yk ¼ nk). In such cases the likelihood
function is monotonic in s: the s value that maximizes the prob-
ability of fixation at 1 in one time step is s ¼ N and similarly the
s value that maximizes the probability of fixation at s ¼ 0 in one
time step is s ¼ 2 1, essentially corresponding to an infinite s for
the other allele. In these cases, likelihood inference is not valid.
They could be deemed merely pathological but they occur with a
non negligible probability that is increasing as the intersample
duration or the selection intensity increases. In the following,
we excluded such cases when evaluating the statistical properties
of inference models. However we studied their occurrence frequency
(see below).

Figure 4 presents four different statistics based on the likeli-
hood of simulated data under various scenarios (see Methods),
comparing results obtained for each parametric approximation to
those obtained using the WF: Figure 4a presents results on the
likelihood at s ¼ 0, Figure 4b the maximum likelihood estimates
(MLE), Figure 4c the likelihood at the MLE (which can be differ-
ent from the WF one) and Figure 4d the likelihood ratio statistic.
For all these statistics and independently of the scenario simulated,
the BwS and the WF provided essentially the same inference. Only
for the MLE there are few cases where the two transition model
disagreed (Figure 4b). However, this is never true for the LMLE
(Figure 4c) so when the two models disagree for ŝ they still give
similar likelihood values at the MLE. Overall this shows that the

few large differences in MLE between BwS and WF most likely
correspond to cases where the data are not very informative on the
selection intensity. On the contrary, there are many scenarios where
the Be and Ga models have very different values than the WF for all
statistics considered. Finally, the NG model showed significantly bet-
ter properties than the Be and Ga, but it provided a less accurate fit
to the WF than the BwS model, for all parameters studied.

One reason why BwS and NGmodels are better approximations
to theWF than the Beta and theGaussian is that they includefixation
probabilities. In the HMM framework, fixation events are consid-
ered by these models while others fail to correctly interprete vanish-
ing observed allele frequencies. Indeed, when fixation events are
unlikely, all models approximate efficiently the Wright-Fisher and
the likelihood approximation is good. Fixation events depend mainly
on the total duration of sampling T (see Figures S4-S7). For large
values (T=Ne . 0:5) early fixation events (apart from the patholog-
ical cases mentionned above) are not interpreted by the Beta and
Gaussian models as fixations. These models will consider that the
constant trajectory subsequent to the fixation event is consistent
with a neutral process. The resulting maximum likelihood estimator
therefore underestimates the true s (Figure 4b). As the maximum is
not well found by Beta and Gaussian models, the likelihood-ratio
statistic is inconsistent and is not calibrated as a x2ð1Þ distribution
(Figure S8).

Inferring selection using the Beta with spikes model
Given that the Betawith spikesmodel closelymimics theWright-Fisher
model in the HMM framework, we studied the statistical properties
of the HMM with BwS transitions for population sizes of 1,000 and
10,000 haploids, which are computationally prohibitive when us-
ing the WF transitions. In terms of statistical properties, we studied
the ability to detect selective loci and the accuracy in estimating the

Figure 3 Proportion of the Wasserstein distance of the BwS due to the approximation of moments. Negative values correspond to very rare cases
where the transition with approximated moments is better than with true moments.
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intensity of selection. The same analysis was conducted using the
NG model and comparable results are provided in Supplementary
Figures S9-S11.

Detection of selection: The HMM framework developed here allows
to derive a likelihood-ratio statistic that can be used to test for the
null hypothesis s ¼ 0. Asymptotically, this statistic follows a x2ð1Þ
distribution. However, the asymptotics in the HMM framework are
measured in terms of the number of dates sampled. In our simulations,
and most likely in typical real datasets, this number is not very high

(10 here). Our first goal was thus to evaluate whether the x2ð1Þ was
a good fit to statistics computed under the null hypothesis. Then we
evaluated its power under different alternatives.

Calibration under the null: We checked for the good calibration of
the BwS under neutrality. Figure 5 shows on the y axis the quantiles
of the empirical likelihood ratio distribution and on the x axis, the
corresponding quantiles of a x2ð1Þ distribution. Generally the fit of
the LR to the theoretical distribution was good although the test
would be slightly conservative for large T=Ne.

Figure 4 Comparison of four continuous approximations to the WF transition for likelihood-based statistics. In each subplot, Be,
Ga, BwS, NG indicate the compared model among Beta model, Gaussian model, Beta with spikes model and Nicholson Gaussian
model.
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Power: With the LR statistic and the x2 quantiles, the empirical power
of the test can be computed for different scenarios. As in this case we
know that all true s parameters are non negative, we considered that all
negative ŝ having a high LR should not be considered as a success in
detecting selection. Indeed, even if the LR is high in this case, the final
conclusion of such results would be that the wrong allele is under
selection which is even worse than not detecting selection.

Figure 6 shows the power of the test as a function ofNes (Figure 6a)
and as a function of T=Ne (Figure 6b), for two different initial allele
frequencies (0.1 and 0.5). As expected, the power increased with Nes
(Figure 6a). We can also see that for larger T=Ne, the power starts to
increase for smaller Nes. This can be explained by the fact that in such
scenarios, selection has more time to affect the allele frequency and
even small Nes give rise to trajectories that are consistent with selec-
tion. However, when starting at an initial frequency x1 ¼ 0:5 the
power decreases when T=Ne is too high. In these cases, the proba-
bility to observe large variations of allele frequency under neutrality
becomes larger and so the ability of the LRT to distinguish neutrality
from selection decreases.

Parameter estimation: Figure S12 shows that under the parameters
considered, Ne has no influence on estimation, except for large Nes,
for which the maximum likelihood estimator has a higher variance
for small Ne. In this case, the diffusion approximation is not valid so
different Ne are not equivalent for given Nes and T=Ne.

Figure 7 shows the MLE distribution for different Nes and T=Ne

pooling results from different Ne. It shows that the estimation is more
accurate (with lower variance) for large values of T=Ne. Moreover,
when fixation events (T=Ne , 0:5) are unlikely, the estimation is un-
biased. On the other hand, when fixation events are likely (T=Ne . 0:5
andNes. 50), the trajectories that are not filtered out are those that are
consistent with lower values than the true s and therefore the MLE
underestimates the true s.

Analysis of a selection experiment
To illustrate the statistical performance of the HMMapproach on a real
data set, we applied it to allele frequency trajectories observed at
40,199 SNPs in two lines of chicken divergently selected for the intra
muscular ultimate pH (pHu). This dataset was previoulsy analyzed
by Bihan-Duval et al. (2018) using the FLK Bonhomme et al. (2010)
and hapFLK Fariello et al. (2013) tests: considering each generation of
the experiment independently of the others, these authors looked for
regions showing a significant excess of allele (for FLK) or haplotype
(for hapFLK) frequency differentiation between pHu+, pHu- and
the founding population. Thus, this case study offers the opportu-
nity to compare the regions detected under selection by two different
approaches: genetic differentiation and time series.

We first estimated population size in the two lines using the NB R
package (Hui and Burt 2015) and found Ne ¼ 157 haploids in pHu+
and Ne ¼ 123 haploids in pHu-. Based on these values, we applied the

Figure 5 Calibration of lðyÞ under the null: comparison of empirical vs. theoretical x2ð1Þ quantiles for different population sizes, initial allele
frequencies and inter-sample times.

Figure 6 Power of the likelihood ratio test under different simulated scenarios.
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HMM in each line and detected a total of 39 significant SNPs under
selection at a FDR of 5% (Table S1). We also conducted the analysis
using the Wright-Fisher model and obtained exactly the same re-
sults (Figure S13). These SNPs were clustered in 12 genomic re-
gions (Table 2, Figure S14: eight of them were detected only in the
phu+ line, one was detected only in the phu- line and three others
were detected in both lines. Moreover, for almost all significant
SNPs, the allele that was selected in one line (positive value of ŝ)
was also counter selected in the other line (negative value of ŝ)
(Figure 8). This is consistent with the experimental design of diver-
gent selection between the two lines.

Among the 12 regions detected by the time series approach, six were
detected by FLK or (and) hapFLK and six were new. SNPs in these six
new regions were associated to an allele frequency significantly in-
creasing or decreasing in one line but rather constant in the other line
(Figure S15): in such cases, genetic differentiation was elevated but did
not result in a significant FLK or hapFLK p-value. In contrast, SNPs
detected only with FLK were generally associated to a moderate allele
frequency change in both lines, that was not found significant when
analyzing each of them independently (Figure S16). Overall, the

differentiation and time series approaches were thus found com-
plementary. Note also that the number of regions detected (i.e.,
the detection power) with the time series approach was very sim-
ilar to that obtained by FLK. Detection power was significantly
higher with hapFLK, which was related to the use of haplotype
information.

DISCUSSION
In this study we have described a general statistical framework for
the analysis of genetic time series. It is built upon combining a
Hidden Markov Modeling approach, first proposed by Bollback
et al. (2008) in the context of genetic time series and parametric
approximations to the Wright Fisher process. Within this frame-
work we have shown that using the Beta with spikes distribution
proposed by Tataru et al. (2015) to approximate the Wright Fisher
transitions provided a statistical inference comparable to that of the
Wright-Fisher model while having a computational cost that does not
depend on population size. We have shown this framework allows
to perform hypothesis testing by relying on the asymptotic distribu-
tion of the likelihood-ratio statistic and that the maximum likelihood

Figure 7 Estimation error distribution in different scenarios for x1 ¼ 0:1. Each column stands for a scaled time parameter T=Ne 2 f0:09;0:9;1:8g.
The first line indicates the absolute error distribution in each scenario and the second line represents in each case, the proportion of rejected
trajectories (red lines for fixations in 1 and blue lines for fixations in 0).

n■ Table 2 Significant regions (for HMM)

Region number of SNP common with begin end

1:a 1 hapFLK 7,422,723 7,422,723
1:b 21 FLK & hapFLK 20,580,348 27,053,505
2:a 4 hapFLK 24,035,796 31,975,586
3:a 5 none 16,910,143 18,598,504
3:b 1 hapFLK 104,194,096 104,194,096
4:a 1 none 63,446,574 63,446,574
6:a 1 none 6,356,771 6,356,771
13:a 1 hapFLK 14,544,320 14,544,320
14:a 1 none 1,718,020 1,718,020
17:a 1 FLK 8,225,007 8,225,007
21:a 1 none 4,259,090 4,259,090
22:a 1 none 4,635,167 4,635,167
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estimate of the selection intensity parameter had generally good
statistical properties.

Advantages and limits of parametric approximations to
the Wright Fisher process
Using parametric distributions to approximate Wright-Fisher transi-
tions requires the user to know or approximate the moments of the
Wright-Fisher process, including fixation probabilities in the case of
the BwS and NGmodels. We have shown, in the lines of previous work
by Lacerda and Seoighe (2014); Terhorst et al. (2015) that this could
be done using a Taylor expansion of the fitness function (see Supple-
mental File S1). Despite generally good performance of the approxi-
mation of moments, there still exists situations were the approximation
performed poorly. For the BwS model, this only happened for low
starting allele frequencies (xs≲0:1), large number of generations
(t=Ne≳0:1) and strong selection. Note that the poor performance
for low starting allele frequencies is relevant for all underlying
true allele frequency as for computing the likelihood the transi-
tion is integrated over all possible starting frequencies in the for-
ward algorithm. So this poor performance could have impacted
our simulation results. However, we showed that the WF likelihood
was still well approximated by the BwS model. In cases where bet-
ter approximation of the WF moments might be required, differ-
ent approaches could be followed. For small population sizes
(Ne≲1000), the WF moments can actually be computed exactly
using equation (4) but this computation quickly becomes com-
putationally prohibitive (the cost is approximately }N2

e ). A solu-
tion would be to develop the Taylor expansion some degrees
further and possibly include correction terms as was done by
Terhorst et al. (2015). This could be important for datasets covering
large timescales such as in ancient DNA studies where sampling times
can be widely spread.

Here, we compared four different parametric distributions for ap-
proximating the Wright-Fisher transitions. The Gaussian distribution
is a widely used approximation to the evolution of allele frequencies,
starting from (Cavalli-Sforza et al., 1964), including for the analysis of
genetic time series (Lacerda and Seoighe 2014; Terhorst et al., 2015).
Our results confirm what is widely known: this approximation is
only valid for small time scales (in units of t=Ne) and when the
starting minor allele frequency is high. The Beta distribution has been
less used in this context (Siren et al., 2011; Gompert 2016) although
we have shown that it offers a better approximation to the transitions
than the Gaussian model. However these two models present poor
performance when it comes to approximating the likelihood of
data simulated under the Wright-Fisher model. This it not true
for the Beta with spikes model that provides good approximations
both for the transition kernel and the likelihood. Moreover, despite
poor approximation of WF transitions for some parameters, the
Nicholson Gaussian model generally provided a good fit of the likeli-
hood. The good fit of NG and BwS is most likely due to the fact that
they incorporate fixation probabilities that become large when the
other models fail (large selection intensity, large intersample time,
low minor allele frequency).

The BwS model should therefore be preferred to the other three at
least in the contextofanalyzinggenetic timeseriesusingHiddenMarkov
Models. Given the good performance of the BwS model in this frame-
work, it could be an interesting model to use in more general contexts.
One interesting extensionwould be to use the BwS in the context of time
series data sampled in multiple populations. However, one important
limitationofusing theBeta distribution (withorwithout spikes) for such
data are that the multivariate Beta distribution is essentially unusable in
practice. Using this class of distribution in a multiple populations con-
text therefore requires developing a specific factorization for calculating
the multivariate likelihood. An example of such an extension for the

Figure 8 Distribution of ŝ in pHu- vs. pHu+. Levels of
gray represent the density of ŝ, significant SNP are rep-
resented in colors, the size representing the 2log10
associated p-value.
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problemof estimating branch length in population trees can be found in
Tataru et al. (2015). For such data, the Gaussian model remains much
more practical but still suffers from the limitations mentioned above.

In this study, we only focused on comparing parametric distri-
butions to approximate the WF transitions. Another standard ap-
proximation to the Wright-Fisher process under selection that was
not considered here is the diffusion process. This process has been
shown to provide a good approximation to the WF process. However
this approximation is only valid for large Ne and small Nes values and
has two additional important limitations. The main limitation is that
using the diffusion model in practice implies solving the diffusion
equation which is a partial differential equation. One approach
to do so is to write the transition distribution as an infinite sum
of elementary solutions of the diffusion equation (Song and Steinrücken
2012). This approach was considered in a HMM for genetic time
series by Steinrücken et al. (2014) but exhibited prohibitive compu-
tational cost. Another approach is to consider numerical schemes to
approximate the transition density (Bollback et al., 2008; Zhao et al.,
2013). These approaches involve numerical integrations and are also
computationally demanding. The second limitation of the diffusion
process is that it does not naturally incorporate the fixation probabil-
ities at 0 or 1. However, Zhao et al. (2013) showed that the discretized
diffusion transition density had atoms on these edges that could be
used to represent the fixation probabilities. This suggest that the
diffusion approximation could be extended to include fixation prob-
abilities. This would require specific developments and evaluation.

Overall, the choice of a particular transition model for genetic time
series should depend on the study to analyze. For small Ne, WF calcu-
lations are tractable and should be preferred. For largerNe, the diffusion
approximation could be improved but parametric approximations
seem more adapted (Lacerda and Seoighe 2014). In the class of para-
metric distributions, our results show that the Beta with spikes model is
probably more flexible as it is adapted to both large Ne and a wider
range of Nes.

Inference of selection from genetic time series
In principle, genetic time series can provide a lot of information on
selection at a locus. This comes from the fact that the allele frequency
trajectory underlying the observed sample is greatly affected by the
selection process. Indeed we found that in many scenarios that we
simulated likelihood inference provided essentially unbiased esti-
mates of the selection parameter. The power to detect selection was
substantial for a wide range of situations when the selection intensity
Nes was greater than 10. For large populations this corresponds to a
relatively modest fitness effect. For example for a population of size
10,000 this corresponds to s ¼ 0:01, i.e., a 1% increase in fitness for
an individual homozygote for the beneficial allele compared to the
other homozygote.

Our approach builds upon likelihood inference and in partic-
ular maximum likelihood estimation. While this approach was found
very efficient in most cases, the maximum likelihood theory could not
be applied to allele frequency trajectories where the reference allele
was fixed or lost between the first and second sampling dates. Indeed,
the best explaination for such events is ŝ ¼ 2 1 (for allele loss) or
ŝ ¼ N (for allele fixation), in other words the MLE is reached on an
edge of the domain. The occurrence of such events implies that the
LR distribution under neutrality is not x2ð1Þ. An approach to ensure
properly distributed p-values in this situation would rely on perform-
ing neutral simulations to obtain empirically the distribution of the
LR under the null. However, a more fundamental issue is that the ML
estimator gives no accurate information about the true s here, because

sampling dates are too distant to capture how fast the allele frequency
increases (or decreases).

We chose to treat these trajectories specifically and excluded them
from further analysis. However, the exclusion of fixed trajectories leads
to an underestimation of s. This happens because the trajectories that
are not excluded correspond to a biased sample of trajectories (those
that reached fixation more slowly) and the resulting ŝ is lower than the
true s. A way to compensate this effect would be to consider the tran-
sition process conditionally on the allele not being fixed. This can be
done in the method of moments framework by using the conditional
moments, and with the diffusion model by modifying the diffusion
equation (Ewens 2004). However, this methodology may exclude a
potentially large number of loci that can be properly analyzed within
our framework, i.e., all trajectories including allele loss or fixation
later than the second sampling date. In real data, the way to avoid
such situations is through the experimental design by chosing an
appropriate sampling strategy.

In this study we only examined one sampling strategy: 10 sampled
dates equally spread along the total durationwith30alleles sampledeach
time. With this strategy, we showed that the statistical quality of the
model is driven by the Nes and T=Ne parameters: if the selection is too
weak, increasing the duration considered is needed so as to capture its
effect on the allele frequency trajectory. But if the total duration is too
large, distinguishing the effects of genetic drift and selection is harder.
The consequence of our results is that, for a given dataset, as the
statistical accuracy of the estimation and the power of the test depend
on the sampling dates distribution and the sample sizes, the interpre-
tation of the results becomes more difficult. Some selected loci will
escape detection although they can be potentially important for fitness.
Hence, for a given dataset, we would suggest performing simulations
(possibly using the scripts we used here) matched for sampling dates
and sizes under different selection intensities to help interpreting se-
lection scan results. Moreover, such simulations could actually be used
to compare possible sampling strategies (i.e., depending on resources
such as cost and sample availability) to optimize the power of the
eventual statistical analysis. Deriving general guidelines for the optimi-
zation of sampling strategies in the context of genetic time series would
require a dedicated study.

One more aspect requiring further research would be the impact of
the initial allele frequency distribution used in the HMM. In our
simulation study the initial allele frequency was fixed (to 0.1 or 0.5),
but we preferred ignoring this information that is unknow in practice
and used the uniform distribution. When analyzing real data the allele
frequency distribution is not expected to be uniform. Using a more
realistic distributionmayhelp the algorithmandmake itmore confident
about its inference. However, this confidence persists even if the given
initial distribution is actually wrong, whichmay then bias the inference.
The choice of an informative initial distribution should thus be done
with caution. For instance, while the hyperbolic function (}1=x) rep-
resents a natural choice for the site frequency spectrum, one should be
aware that it is only expected for a neutral population with constant
size. Another solution would be to estimate the ancestral allele fre-
quency distribution from the data, which is possible if time series are
available genome-wide. Finally, note that these considerations really
matter only if sample sizes at the oldest sampling dates are small, other-
wise the emission probabilities at these dates are informative enough to
overcome any prior on the initial distribution.

Our evaluation of the HMM framework focused on its performance
to detect and estimate selection. To do so we have assumed that
other parameters, in particular effective population size, were known.
In addition, we assumed that each parameter was constant over the
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sampling duration. In practicemost of these assumptions are deemed to
be wrong. Regarding the estimation of Ne, in our analysis of the real
dataset, we used a two-step approach by first estimating Ne using Hui
and Burt (2015) and then s at each locus. The issue with such an
approach is that all loci are used to get the Ne estimate. If some of them
are under selection, they will exhibit larger allele frequency deviation.
The consequence is that the Ne estimate is going to be under estimated
and it becomes harder to reject the null hypothesis (genetic drift).
Hence, while this two-step approach is practical, it could be improved
by jointly estimating Ne and s. The framework described here can in
principle be used to do so as the HMM likelihood incorporates bothNe

and s. This will require fitting the HMMmodel on multiple loci jointly
as the information on Ne lies in the variance of the allele frequency
trajectories over the whole genome. Also, it is now well established that
populations ofmany species have experienced large changes in effective
population size over time. There is also many situations where the
selection intensity of an allele (expressed by s in our model) will
change over time (e.g., time varying environmental conditions, selec-
tion for an optimum trait value . . .). In principle the joint model
described above to jointly estimate Ne and s could also be extended
to allow for parameters to vary in time (e.g., at each interval between
sampling dates). The likelihood framework described here can form
the basis of such models.

Conclusion
Genome-wide assessment of the genetic diversity of a species is becom-
ingmore andmore accessible in particular thanks to the development of
cost effective genotyping and sequencing techniques. With the increase
in genomic data, the evolution of genetic diversity in time becomes
accessible either as a by-product of data accumulation or through
dedicated projects in artificial populations (e.g., experimental evolu-
tion) or natural settings (e.g., ancient DNA sequencing). As genomic
time series data become more widespread, their analysis requires
dedicated methods that have good statistical and computational
properties. In this study we have established a general statistical
framework to this aim that we believe can contribute to further
developments for the analysis of genetic time series.
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