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Abstract. We have defined a signal responsible for the 
morphological differentiation of human umbilical vein 
and human dermal microvascular endothelial cells in 
vitro. We find that human umbilical vein endothelial 
cells deprived of growth factors undergo morphologi- 
cal differentiation with tube formation after 6-12 wk, 
and that human dermal microvascular endothelial cells 
differentiate after 1 wk of growth factor deprivation. 
Here, we report that morphological differentiation of 
both types of endothelial cells is markedly accelerated 
by culture on a reconstituted gel composed of base- 
ment membrane proteins. Under these conditions, tube 
formation begins in 1-2 h and is complete by 24 h. 
The tubes are maintained for >2 wk. Little or no 
proliferation occurs under these conditions, although 
the cells, when trypsinized and replated on fibronec- 
tin-coated tissue culture dishes, resume division. U1- 
trastructurally, the tubes possess a lumen surrounded 
by endothelial cells attached to one another by junc- 
tional complexes. The cells possess Weibel-Palade 

bodies and factor VIII-related antigens, and take up 
acetylated low density lipoproteins. Tubule formation 
does not occur on tissue culture plastic coated with 
laminin or collagen IV, either alone or in combina- 
tion, or on an agarose or a collagen I gel. However, 
endothelial cells cultured on a collagen I gel sup- 
plemented with laminin form tubules, while supple- 
mentation with collagen IV induces a lesser degree of 
tubule formation. Preincubation of endothelial cells 
with antibodies to laminin prevented tubule formation 
while antibodies to collagen IV were less inhibitory. 
Preincubation of endotheial cells with synthetic pep- 
tides derived from the laminin B1 chain that bind to 
the laminin cell surface receptor or incorporation of 
these peptides into the gel matrix blocked tubule for- 
mation, whereas control peptides did not. These ob- 
servations indicate that endothelial cells can rapidly 
differentiate on a basement membrane-like matrix and 
that laminin is the principal factor in inducing this 
change. 

I 
T is well known that endothelial cells are capable of ag- 
gregating in vitro to form capillary-like structures (1, 3, 
14, 16, 19). This process, which is thought to mimic the 

process by which endothelial cells form capillaries in vivo, 
requires specialized culture conditions, including the re- 
moval of growth factors, and takes place after 5-40 d. 
Maciag et al. (14) showed that endothelial cells derived from 
human umbilical veins also can be induced to differentiate 
and form similar tubes over a 4-6-wk period when cultured 
in the absence of mitogens. This process was accelerated 
when the human umbilical vein endothelial cells (HUVE 
cells) 1 were cultured on endothelial cell-derived extracellu- 
lar matrix. Further support for an important role of the ex- 
tracellular matrix in the induction of the tube structures came 
from studies on rat capillary endothelial cells that form tu- 
bules after 4-5 d of culture on a matrix consisting of colla- 

1. Abbreviations used in this paper: ECGF, endothelial cell growth factor; 
HUVE cells, human umbilical vein endothelial cells; YIGSR, tyrosine- 
isoleucine-glycine-serine-arginine. 

gens IV and V or on the basement membrane side of human 
amnion (16). In vivo, endothelial cells line the lumen of 
blood vessels and are normally in contact with an extracellu- 
lar matrix of basement membrane. Basement membranes are 
composed of collagen IV, heparan sulfate proteoglycan, and 
the glycoproteins laminin and nidogen/entactin. While colla- 
gen has some adhesion-promoting activity, laminin has been 
demonstrated to have potent actions on cells: stimulating cell 
adhesion, growth, differentiation, and migration (6, 8, 10). 
Recently, an active site of laminin for some of these activities 
has been identified. It is comprised of five amino acids: 
tyrosine-isoleucine-glycine-serine-arginine (YIGSR) (4, 5). 

The slow formation of tubes by cultured endothelial cells 
has made it difficult to identify the steps involved. Recently, 
we have noted, using endothelial cells cultured from umbili- 
cal vein and skin capillaries, that they rapidly undergo tubule 
formation when cultured on a reconstituted matrix of base- 
ment membrane components. Our studies indicate that the 
morphological differentiation of these cells is triggered by 
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laminin and to a lesser extent by collagen IV. The differentia- 
tion of these cells is accompanied by a cessation of DNA syn- 
thesis, but these cells can be readily restored to a proliferat- 
ing state. 

Materials and Methods 

Isolation and Culture of Endothelial Cells 
Human Dermal Microvascular Endothelial Cells. Human microvascular 
endothelial cells were isolated from human neonatal foreskins by a modifi- 
cation of a previously described technique (17). Briefly, foreskins were cut 
into 3-ram squares and placed in PBS containing 0.3% trypsin (Sigma Chem- 
ical Co., St. Louis, MO) and 1% EDTA (Sigma Chemical Co.) at 37°C for 
10 min. The skin segments were washed with Hank's balanced salt solution 
(HBSS) several times and placed in a petri dish in HBSS with the keratinized 
surface down. They were then individually compressed with the side of a 
scalpel blade to express microvascular fragments from the cut surfaces of 
the skin. The microvascular segments were passed through a 105-~tm nylon 
mesh (Small Parts Inc., Miami, FL) and collected. The microvascular seg- 
ments in I ml of HBSS were layered onto a 35 % solution of Percoll in HBSS 
that had been spun at 30,000 g for 10 rain at 4°C in an SS-34 rotor on a 
centrifuge (model RC2-B; Sorvall Instruments, Newton, CT). The gradient 
was then spun at 400 g for 15 min at room temperature. The fraction with 
a density <1.048 g/ml, which was rich in microvascular fragments, was re- 
moved. Those portions of the gradient containing the microvascular seg- 
ments were applied to a human fibronectin-precoated (Advanced Biotech- 
nologies, Silver Spring, MD) area 10 mm in diameter in the center of a 
60-ram petri dish. The dishes were then incubated at 37°C in a moist incu- 
bator in 5% CO2 overnight. Unattached cells were removed by washing 
with HBSS. The attached ceils were then viewed with an inverted phase- 
contrast microscope. Nonendothelial cells were removed by detaching them 
with a 25-gauge sterile needle. Cells were cultured in medium 199 with 50% 
human serum, 100 ~tg/ml endotheial cell growth factor (ECGF; Meloy 
Laboratories Inc., Springfield, VA), 50 txg/rnl heparin (Sigma Chemical 
Co.), 5 × 10 -3 M dibutyryl cAMP (Sigma Chemical Co.), 3.3 × 10 -5 M 
isobutylmetbylxanthine (Calbiochem-Behring Corp., San Diego, CA), glu- 
tamine (Sigma Chemical Co.), 100 U/nil penicillin, 100 ~tg/ml streptomy- 
cin, and 250 Ixg/ml amphotericin B (Sigma Chemical Co). All cells were 
used at passages 2-4. 

HUVE Cells. HUVE cells were isolated from fresh umbilical cords ob- 
tained by caesarean section by a modification of the technique of Jaffe et 
al. (9, 13). The umbilical vein was cannulated, and 0.1% collagenase in PBS 
was introduced and incubated for 20 min. The endothelial cells liberated 
by the collagenase were obtained by rinsing the umbilical vein with medium 
199. The cells were washed with medium 199 three times and cultured in 
75-cm 2 tissue culture flasks (Costar, Cambridge, MA) coated with fibro- 
nectin. Growth media consisted of medium 199 with 20% FCS (Hyclone 
Laboratories, Inc., Logan, UT), 50 I~g/ml ECGF (Meloy Laboratories, 
Inc.), 50 ~tg/ml heparin (Sigma Chemical Co.), 100 U/ml penicillin, 100 
I~g/ml streptomycin, and 250 ltg/mi amphotericin B (Sigma Chemical Co.). 
HUVE cells were passaged at confluence after treatment with trypsin- 
EDTA buffer (Biofluids Inc., Rockville, MD). All cells were used at pas- 
sages 2-4. 

Substrates Used for Cell Culture. Matrigel (Collaborative Research, 
Inc., Waltham, MA), an extract containing basement membrane compo- 
nents at 10 mg/ml, was applied to either a 35-mm tissue culture dish or a 

24-well culture dish (Costar) and incubated at 37°C, which induced gelling. 
HUVE or human dermal microvascular endothelial cells in media were 
pipetted onto the gel. In some experiments, matrigel at 4°C was serially 
diluted 1:2, 1:4, and 1:8 with prechilled DME (Gibco Laboratories, Grand 
Island, NY) and 300 ~tl of the appropriate dilution was added to wells of 
a 24-well culture plate (Falcon Plastics, Cockeysville, MD), and then in- 
cubated at 37°C for 30 min to induce it to gel. Endothelial cells were then 
plated on the diluted matrix. Alternatively, matrigel was similarly diluted 
with a solution of collagen I (Collaborative Research, Inc.) (see below). 

In other experiments, both types of endothelial cells were grown in tissue 
culture dishes coated with laminin (12), collagen I (Advanced Biomedical 
Technologies), and collagen IV (21) or extracellular matrix (Accurate 
Chemical & Scientific Corp., Westbury, NY) under standard conditions. 
The morphology and reorganization of the endothelial cells were monitored 
with a microscope (model IM-35; Carl Zeiss Inc., Thornwood, NY). 

Matrix Reconstitution Experiments 
Native collagen I gels were prepared by mixing together I vol of cold 10-fold 
concentrated PBS, 1 vol of 0.1 N NaCI, and 8 vol of cold collagen I solution 
(Collaborative Research, Inc.) in 0.02 N acetic acid. The mixture was kept 
on ice to prevent premature formation of a gel, and the solution was adjusted 
to pH 7.5. The initial concentration of coUagen I in the gel was 1.84 mg/ml. 
Purified iaminin (12) or collagen IV (21), at 1.7 and 1.0 mg/ml, respectively, 
in 0.15 M NaC1, 0.05 M Tris-HCl, pH 7.4, was added to the cold collagen 
I solution and mixed at the concentration indicated at 4°C. The mixtures 
were plated into 24-well dishes and incubated 30-60 rain at 370C. En- 
dothelial cells were plated on the top of these reconstituted gels. 

A n tibody Blocking Studies 
To further assess the roles of laminin and collagen IV in the formation of 
tubes, endothelial cells in suspension were preincubated with goat anti- 
laminin serum (1:5) or rabbit antiserum to collagen IV (1:4, 1:10) for 15 min 
at room temperature and then plated on matrigel and cultured overnight in 
the continuous presence of antibody (2, 22). Normal goat and normal rabbit 
serum were used as controls. 

Laminin Peptide Experiments 
The peptides (YIGSR, YIGSR-NH2) were prepared using an automated 
synthesizer (OCS Laboratories Inc., Denton, TX) (5) and were incubated 
with endothelial cells for 1-2 h at room temperature at a variety of concen- 
trations, and then plated on the top of matrigel. In some experiments, 
matrigel was mixed with various concentrations of the laminin peptides for 
1 h at 4°C. The mixture was plated into a 24-well plate (0.3 ml/weli) and 
was incubated for 30-60 min at 37°C to allow a gel to form. Endothelial 
cells were plated on the top of peptide-containing matrigel. Control peptides 
were included in parallel cultures in all experiments. 

Immunofluorescence of Cultured Endothelial Cells 
Immunofluorescent staining of endothelial cells for factor VIII-related anti- 
gen was performed on cell cultures fixed in 100% methanol for 10 min at 
4°C. The cells were washed three times with PBS and then incubated with 
a 1:20 dilution of fluorescein-conjugated goat antihuman factor VIII anti- 
body (Atlantic Antibodies, Scarborough, ME) for 30 rain at room tempera- 
ture. The specimens were washed three times with PBS and were examined 
with an inverted phase-immunofluorescence microscope (model IM-35; 
Carl Zeiss, Inc.). Endothelial cell cultures were incuba~l  for 4 h at 37°C 
in medium 199 without either growth supplefnents or FCS but containing 
acetylated low density lipoprotein (10 ltg/ml) labeled with 1, l'-dioctadecyl- 
1,3,3,3,3'-tetramethyl-indocarbocyanine-perchlorate (Biomedical Tech- 
nologies, Inc., Cambridge, MA). The medium was then removed, and the 
cells were washed twice and visualized with standard rhodamine excita- 
tion/emission filters. 

Electronmicroscopy of Endothelial Cells 
Endothelial cells were washed with PBS and fixed with 2.5 % glutaraldehyde 
in 100 ~tM cacodylate buffer, pH 7.4, for 1 h and postfixed in 1% osmium 
tetroxide for 1 h. The samples were dehydrated with ethanol and embedded 
in Epon 812, and 0.5-gm-thick sections were prepared and stained with to- 
luidine blue. Thin sections were cut on an ultramicrotome. The sections 
were stained with uranyl acetate and lead citrate and were examined with 
an electron microscope (model 400; Philips Electronic Instruments, Inc., 
Mahwah, NJ). 

Cell Growth Measurements 

HUVE cells were plated on fibronectin- or matrigel-coated plastic dishes 
at an initial density of 3.7 x 105 cells per 35-mm dish and were grown un- 
der standard conditions at 37°C in 5% CO2. Every other day, duplicate 
plates were trypsinized with 0.05% trypsin-0.02% EDTA mixture (M.A. 
Bioproducts, Walkersville, MD) or dispase (Collaborative Research, Inc.), 
and the cells were counted with a batch-counting chamber (Hausser 
Scientific, Blue Bell, PA) in a 1: 20 dilution of 0. 2 % trypan blue. The viabil- 
ity of cells cultured on matfigel was 83 (original cell suspension), 80 (24 h), 
81 (48 h), and 75% (72 h). 
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Figure 1. (a) Phase-contrast photomi- 
crograph of a pure culture of human 
dermal microvascular endothelial cells. 
(b) Phase-contrast photomicrograph 
of  HUVE cells forming a tubelike 
structure after 12 wk of culture in the 
absence of  ECGF and heparin. Bars, 
20 gm. 

Results 

Morphology 

H U V E  cel ls  as wel l  as h u m a n  d e r m a l  mic rovascu l a r  en-  
do the l i a l  cel ls  a s s u m e  a "cobbles tone"  pa t t e rn  w h e n  cu l tu red  
on  f ib ronec t in -coa ted  t i ssue  cu l tu re  d i shes  in  m e d i a  sup-  
p l e m e n t e d  w i th  E C G F  a n d  h e p a r i n  (Fig.  1 a ) .  I f  E C G F  a n d  
h e p a r i n  are  w i t h d r a w n ,  these  cel ls  cease  p ro l i fe ra t ing  an d  
s lowly fo rm tube l ike  s t ruc tures .  M i c r o v a s c u l a r  endo the l i a l  
ce l ls  r equ i re  a week  to fo rm these  s t ruc tures ,  w h e r e a s  en-  
do the l i a l  ce l l s  f r o m  large vesse ls  r equ i r e  6 - 1 2  w k  (Fig.  1 b) .  

S ince  m a t r i x  c o m p o n e n t s  are  k n o w n  to in f luence  the  be-  
hav io r  o f  endo the l i a l  cells ,  we tes ted  f ib ronec t in ,  l amin in ,  
co l l agen  I,  o r  co l lagen  IV, s ingly o r  in  c o m b i n a t i o n ,  as sub-  
s t rates  for  endo the l i a l  cells.  Bo th  types  o f  endo the l i a l  cel ls  

Table L Comparison of Effects of  Basement Membrane and 
Matrix Proteins on Endothelial Cell Differentiation 

Tube formation 

HUVE HDMEC* 

Matrigel + + 
Fibronectin - - 
Laminin - - 
Collagen I - - 
Collagen IV - - 
Extracellular matrix - - 
Agarose gel - - 
Fibronectin + laminin - - 
Collagen I + collagen IV - - 
Laminin + collagen IV - - 

* HDMEC, human dermal microvascular endothelial cells. 
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Figure 2. (a) HUVE cells cultured 
on matrigel for 1 h. The cells begin 
to align themselves end to end and to 
elongate. (b) HUVE cells cultured 
on matrigel for 8 h. Marked elonga- 
tion is observed. (c) HUVE cells 
cultured on matrigel for 18 h. A 
complex network of anastomosing 
cells is observed. Bars, 20 I, tm. 
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Figure 3. A phase-fluorescence pho- 
tomicrograph of HUVE cells cultured 
on matrigel for 18 h. Showing uptake 
of acetylated low density lipoprotein. 
Bar, 20 gm. 

assumed a cobblestone morphology typical of undifferen- 
tiated cells when plated on each of these substrates, as well 
as on commercially available extracellular matrix-coated 
dishes (Table I). 

Due to the ability of basement membrane to stimulate 
differentiation, both types of cells were plated onto a gel 
formed of reconstituted basement membrane proteins (1 l) to 
which they attached rapidly. Within 1-2 h, elongated pro- 
cesses were observed (Fig. 2 a) and after 8 h the endothelial 
cell cultures showed abundant networks of branching and 
anastomosing cords of cells (Fig. 2 b). By light microscopy, 
most of these cords showed a central translucent structure 
along their long axis, suggesting the presence of a lumen. By 
18 h, the endothelial cells had formed an interconnected net- 
work of anastomosing cells that by low power light micros- 
copy had a "honeycomb" appearance (Fig. 2 c). The tubelike 
structures formed by the endothelial cells on matrigel per- 
sisted for >M4 d of culture, after which the network tended 
to detach from the surface of the culture substrate, and ele- 
ments of the network were found to be floating in the culture 
media. The formation of the tube structures was not depen- 
dent on ECGF or heparin in the culture medium, since tube 
formation took place in exactly the same way and with the 
same time course in their presence as in their absence. 

The formation of tubes appeared to be relatively specific 
for endothelial cells since neither human dermal fibroblasts 
nor human smooth muscle cells formed tubes when cultured 
on matrigel. 

Immunocheraical Studies 

The endothelial cells cultured on matrigel were examined by 
direct immunofluorescence for the expression of factor 
VIII-related antigen before, during, and after tube forma- 
tion. The endothelial cells retained factor VIII reactivity un- 
der both conditions (data not shown). Furthermore, both 
HUVE cells and human dermal microvascular endothelial 
cells cultured on matrigel were metabolically active as indi- 

cated by their uptake of acetylated low density lipoprotein 
(Fig. 3). 

Ultrastructural Studies 

We performed transmission EM on cells cultured on matri- 
gel for 18 h to examine the morphological characteristics of 
the tubes. Cross sections of tubelike structures of the surface 
of the matrigel revealed that the tubes contained a lumen sur- 
rounded by cells (Fig. 4 a). In some instances, lumen forma- 
tion appeared to take place within individual cells (Fig. 4 b). 
The membranes of cells forming the lumen of the tubes were 
connected to one another by interdigitating junctional com- 
plexes (Fig. 4 d). Weibel-Palade bodies were observed in the 
cytoplasm of the cells forming the tubes (Fig. 4 c), confirm- 
ing again that these were endothelial cells. 

Proliferation Studies 
We compared the growth of HUVE cells (3.7 x 105 cells 
per 35-mm dish) on fibronectin-coated tissue culture dishes 
with cells plated at the same density on matrigel. After 1 wk, 
the HUVE cells grown on fibronectin showed a fourfold in- 
crease in cell number, whereas those on matrigel showed no 
increase (Fig. 5). However, when differentiated endothelial 
cells were removed from matrigel and cultured on fibro- 
nectin-coated tissue culture dishes, they assumed a cobble- 
stone morphology and resumed a normal rate of proliferation 
(data not shown). 

Concentration and Component Dependence of 
Tube Formation 

Various dilutions of matrigel were prepared in DME and al- 
lowed to polymerize. These studies showed rapid formation 
of tubes on matrigel diluted to 1:2, a reduced degree of tube 
formation at a 1:4 dilution, and very reduced tube formation 
at a 1:8 dilution. Matrigel was also diluted with a solution 
of collagen I at ratios of matrigel/collagen I of 3:1, 2:1, 1:1, 
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Figure 4. (a) Transmission electron micrograph of human dermal microvascular endothelial cells cultured on matrigel for 18 h. A cross 
section reveals lumen formation. Cells contain lipid-like inclusions. (b) Transmission electron micrograph of a human dermal microvas- 
cular endothelial cell showing early lumen formation. (c) Presence of Weibel-Palade bodies in a differentiated endothelial cell. (d) The 
differentiated endothelial cell shows interdigitating junctions. Bars: (a and b) I Ixm; (c and d) 100 nm. 

1:2, 1:3, and 1.'7. Matrigel diluted with collagen I supported 
endothelial cell tubule formation at ratios of 3:1 and 2:1, but 
at higher concentrations of collagen I, the endothelial cells 
grew in a cobblestone pattern in a monolayer without tubes. 
This result suggested either that collagen I was inducing the ~r 
monolayer phenotype or that a critical component of the 2° t / 
matrigel was being diluted. To further examine this issue, a ~ ,,'~ 

× f collagen I solution was supplemented with laminin and colla- / 

gen IV, singly or in combination and then allowed to gel. En- ~ 15~ f f 
dothelial cells cultured on a collagen I gel grew as a mono- ~ / / "  : ,Y 
layer (Fig. 6 a). Collagen I gels supplemented with laminin ~ 10~-/ / / ' / /  
supported tubule formation by endothelial cells (Fig. 6 b). ~ ~ , :~ ,~  
Collagen I gels supplemented with type IV collagen showed =z s ~ ~ , _ , _ _ _ _ _ _ ~ _  
less tubule formation (Fig. 6 c). Supplements of laminin plus 
collagen IV added to the collagen I gel supported tubule for- ~ . . . .  z 4 ~ 
mation in a manner similar to that produced by collagen I gel r~ME ~y~ 

supplemented with laminin alone. These studies indicate that 
laminin is the most active component in matrigel promoting 
tube formation. 

Figure 5. Proliferation of en- 
dothelial cells cultured on ma- 
trigei (o) or fibronectin-coated 
tissue culture plastic (o). Cells 
cultured on matrigel show no 
proliferation while those cul- 
tured on fibronectin show nor- 
real proliferation. ( - )  Ad- 
herent ceils; (---) total cells. 
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Figure 6. (a) HUVE ceils cultured for 
18 h on collagen I gel showing cobble- 
stone morphology. (b) HUVE cells grown 
for 18 h on collagen I gel supplemented 
with laminin showing elongation and 
anastomosing network formation. (c) 
HUVE cells cultured for 18 h on collagen 
I gel supplemented with collagen IV. 
Minimal network formation is observed. 
Bars, 20 ~m. 
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Figure 7. (a) HUVE cells cultured 
on matrigel in presence of synthet- 
ic peptide of laminin, YIGSR-NH2 
(200 Ixg/ml). Inhibition of tube for- 
mation is observed. (b) HUVE cells 
cultured on matrigel in presence of 
control peptide showing tube forma- 
tion. Bars, 20 ~tm. 

Antibody Blocking Studies 
To further assess the roles of laminin and collagen IV in tube 
formation induced by matrigel, antibodies to either laminin 
or collagen IV were added along with the endothelial cells 
to the matrigel-coated dishes. Antibodies to laminin (1:5) 
caused a marked inhibiton of tube formation, whereas anti- 
bodies to collagen IV (1:4 and 1:10) were less inhibitory (data 
not shown). Preimmune sera had no effect on tubule forma- 
tion on matrigel. Inhibition of tube formation by anti-laminin 
antibodies was not due to inhibition of endothelial cell at- 
tachment. Pretreatment of cells with a 1:5 dilution of anti- 
body resulted in 70.6%, 1:10 in 62.5%, and 1:500 in 68.8% 
attachment. 

Laminin Peptide Experiments 
Because matrigel is known to be '~60% laminin and since 
anti-laminin antibodies blocked tube formation and laminin 

added to collagen I gel promoted tube formation, we tested 
the effects of various synthetic peptides, corresponding to se- 
quences in laminin, on the tube formation process. We found 
that YIGSR-NH2, either preincubated with endothelial cells 
or incorporated into the matrigel, inhibited tube formation 
in a dose-dependent fashion. At a concentration of 200 gg/ 
ml there was moderate inhibition of tube formation (Fig. 7 
a). At a concentration of 500 lxg/ml, YIGSR-NH2 com- 
pletely inhibited tube formation by endothelial cells but also 
showed some inhibition of cell attachment. Studies with 
YIGSR showed less inhibition of tube formation, whereas 
other unrelated synthetic peptides produced no inhibition 
(Fig. 7 b). The amide form of YIGSR also shows greater ac- 
tivity than the nonamide form in other tests (5). 

Discussion 

Our results clearly indicate that matrigel, a reconstituted 
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basement membrane, is a substrate that promotes morpho- 
logical differentiation of large and small vessel human en- 
dothelial cells into capillary-like structures. In comparison 
with other systems, the phenotype change is extremely rapid, 
with the initial alignment of cells occurring within 1-2 h in 
vitro. The cells forming the tubules retain characteristics of 
endothelial cells, namely the presence of factor VIII-related 
antigen and the ability to take up acetylated low density lipo- 
protein. These cells do not divide when cultured on matrigel, 
even in the presence of ECGF and heparin. However, they 
will resume their cobblestone morphology and begin to di- 
vide if they are subcultured on fibronectin. Ultrastructural 
studies confirm that the anastomosing cytoplasmic exten- 
sions of the morphologically differentiated endothelial cells 
contain a lumen completely encircled by one to two endo- 
thelial cells in cross section. The lumen contains various 
amounts of degenerated cytoplasm, suggesting that a very 
rapid remodeling of the cell takes place during tube forma- 
tion. Viability studies of endothelial cells cultured on matri- 
gel do not indicate that cell death plays a prominent role in 
tube formation. Moreover, these differentiated cells still re- 
tain the characteristic Weibel-Palade bodies of endothelial 
cells. This formation of tubes is apparently specific for en- 
dothelial cells, since neither fibroblasts nor smooth muscle 
cells undergo similar changes. 

Our studies also indicate that laminin and perhaps colla- 
gen IV contained in the gel structure are the key ingredients 
in this rapid induction of angiogenesis. This is illustrated by 
the fact that neither an agar gel nor a collagen I gel is capable 
of inducing tube formation by endothelial cells. Endothelial 
cells cultured on collagen I gels supplemented with laminin 
or collagen IV do undergo tube formation, with laminin as 
the more potent stimulus. Tube formation on matrigel can be 
blocked by preincubating the cells with anti-laminin antibod- 
ies, while antibodies to collagen IV were less effective in this 
regard. Furthermore, a synthetic peptide corresponding to 
the receptor binding-cell attachment site (YIGSR) blocks tu- 
bule formation, presumably at the level of the laminin 
receptor. 

Our observations that basement membrane proteins in- 
duce the differentiation of endothelial cells are in accord with 
other observations that this extracellular matrix is able to 
regulate cell differentiation. Hadley et al. (7), for example, 
found that Sertoli cells cultured on a reconstituted basement 
membrane formed monolayers of columnar cells closely re- 
sembling Sertoli cells in vivo. However, no attempt was 
made to define which of the constituents of the gel were im- 
portant in inducing the morphological changes in these cells. 
Madison et al. (15) found that the basement membrane gel 
promoted peripheral nerve regeneration in vivo, and Reh et 
al. have documented transdifferentiation of retinal-pigmented 
epithelial cells to neurons by both laminin and matrigel (20). 
McGuire and Orkin (18) noted that endothelial cells from ex- 
plants of rat aorta assumed a cobblestone morphology on colla- 
gen I but "grew in chains and sheets" from the edges of aortic 
explants on matrigel, Their photomicrograph depicting this 
phenomenon bears a striking resemblance to our cultures. 

Other investigators previously have demonstrated that, un- 
der defined culture conditions, endothelial cells can be in- 
duced to undergo tube formation (1, 3, 14, 16, 19). In this 
regard, Folkman and Haudenschild (3) found that tube for- 
mation by capillary endothelial cells from a variety of 
sources began in areas that were confluent. In primary iso- 

lates, differentiation of capillary endothelial cultures oc- 
curred between 20 and 40 d of culture, although in later pas- 
sage cells, tube formation occurred in 10 d or less. These 
investigators were not able to demonstrate tube formation by 
large vessel endothelial cells (HUVE cells) or by nonen- 
dothelial cells. However, it has been demonstrated that, by 
shifting HUVE cells from a proliferating to a nonproliferat- 
ing state by withdrawing ECGF, HUVE cells organize into 
tubes over a 4-6-wk period (14). This study also suggested 
that matrix proteins could be important in endothelial cell 
differentiation because the morphological changes were ac- 
celerated by enzyme digestion of the fibronectin matrix. The 
importance of subendothelial matrix components in regulat- 
ing the phenotypes of endothelial cells in vitro using rat 
epididymal fat pad capillary endothelial cells has also been 
demonstrated (16). These cells grown on interstitial colla- 
gens (types I or III) proliferated and formed some tubelike 
structures after 2-4 wk of culture. In contrast, using a com- 
bination of collagen IV and V as a culture substrate, the rat 
capillary endothelial cells formed tubelike structures after 
4 d of culture. In our study, collagen IV was not a potent 
stimulus for angiogenesis. The differences between our re- 
sults and those of Madri and Williams (16) may relate to 
differences in sources of endothelial cells (human vs. rat), 
culture conditions, and sources of collagen IV. In addition, 
they found that the rat capillary endothelial cells would also 
undergo differentiation after 4-5 d of culture on the basement 
membrane side of a cellular amnionic membrane (16). 

The conversion of individual endothelial cells into tubelike 
structures in our culture system occurs very quickly. The ma- 
jor aspect is the assumption of an organized tube presumably 
caused by matrix proteins. Presumably, laminin triggers the 
morphological differentiation of the cells. The rapidity with 
which this happens on matrigel suggests that this system 
offers opportunities to define the molecular events in capil- 
lary formation. 
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