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Abstract

Background: A key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is
typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal
tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal
tissue is not available for comparison.

Results: In this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation
sequencing data from germline polymorphisms in the absence of normal samples using a machine learning
approach. Our algorithm was evaluated using a family of supervised learning classifications across six different
cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues;
we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly
classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending
on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of
SOmatic mutations Without matching Normal tissues).

Conclusions: In this work, we describe the development, implementation, and validation of ISOWN, an accurate
algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is
available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN.
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Background
Somatic, or acquired, mutations are genetic changes that
accumulate in the non-germline cells of an individual
during his or her lifetime. Somatic mutations that dis-
rupt genes involved in one or more of the pathways that
regulate cell growth, programmed cell death, neovascu-
larization, and other “hallmarks of cancer” can lead to
the development of a neoplasm [1–4]. The use of next-
generation sequencing to comprehensively characterize
cancer genomes has led to multiple breakthroughs in
the understanding of driver genes and pathways involved
in cancer [5–7], the interaction between environmental

exposures and patterns of mutations [8, 9], tumor classi-
fications [10, 11], and the evolution of tumors in the
presence and absence of therapy [12, 13].
Accurate identification of somatic mutations is an

essential first step for many cancer studies. There are
many challenges in mutation calling, including but not
limited to: (a) the admixture of multiple tumor sub-
clones with each other and with normal tissue; (b) the
frequent presence of copy number alterations in tumors;
and (c) a raw error rate from sequencing instruments
that is comparable to the variant allele frequency of
mutant alleles in admixed samples. Nevertheless, the
current generation of somatic mutation calling tools are
highly accurate, even in the presence of admixed sam-
ples with low variant allele frequencies [14–17]. How-
ever, all these tools require both patient’s tumor and
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normal tissues (typically white blood cells or adjacent
normal tissue in the tumor resection specimen) in order
to distinguish somatic mutations from uncommon
germline polymorphisms. These tools construct a mul-
tiple alignment with both the tumor and normal reads,
and then scan down the columns of the alignment to
identify tumor-specific alterations, using statistical
models of sequencing error rates and base quality scores
to reduce false positives.
In some commonly encountered scenarios, however,

matching normal tissues are not available. This may be
because normal samples were not collected in the first
place, or because the patient consent was obtained in a
way that precludes examination of normal tissue or
germline variants. This is most commonly encountered
when performing analysis on retrospective studies with
human material from clinical trials, pathology archives,
and legacy biobanks, a strategy that may be required
when building a cohort of a rare cancer type or subtype,
or when executing secondary studies on clinical trials.
Another common scenario is the use of a cancer cell line
as an experimental model, many of which have no infor-
mation on the donor’s normal genomes. There may also
be financial considerations; sequencing both tumor and
normal genomes not only roughly doubles the cost but
also increases data storage and computational require-
ments. In these cases, there is a need to identify somatic
mutations from tumor tissues without the presence of
the normal tissues.
One of the main challenges for accurate identification

of somatic mutations in the absence of normal DNA is
to distinguish somatic mutations from germline poly-
morphisms (single nucleotide polymorphisms (SNPs)).
On average, the genome of any human individual con-
tains ~3,300,000 SNPs [18]. Roughly 20,000–25,000 of
those are coding variants and 9000–11,000 are nonsy-
nonymous [19]. All common SNPs with population
frequencies of 1% or greater in the major world population
groups have been extensively catalogued [20], and these
can be excluded from consideration by a simple filtering
step. Some ethnic subpopulations are under-represented
and appropriate calibration within these groups may be re-
quired. In addition, however, each individual is estimated
to carry 400,000–600,000 rare SNPs specific to the indi-
vidual or his or her close family [19], and these cannot
easily be excluded by comparison with SNP databases or
with recent large-scale exome sequencing projects.
In this study, we describe an algorithm that uses

supervised machine learning to distinguish simple sub-
stitution somatic mutations in coding regions from
germline variants in the absence of matching normal
DNA. The accuracy of this approach, calculated based
on the whole-exome sequencing data from The Cancer
Genome Atlas (TCGA), as well as targeted (gene-panel)

sequencing performed on formalin-fixed paraffin-
embedded (FFPE) tissue, lies in a range that would be
acceptable for most applications.

Implementation
Validation sets
Protected datasets in VCF format (containing both som-
atic and germline variants) were downloaded directly from
TCGA portal. Only one sample (TCGA-IB-7651-01A
from PAAD) was excluded from the analysis based on its
extremely high mutational loads (~300-fold in comparison
to the median for this cancer set). According to the
headers of the retrieved VCF files, variant calling in KIRC
(kidney renal clear cell carcinoma), PAAD (pancreatic
adenocarcinoma), and COAD (colon adenocarcinoma)
sets was done using the Baylor College of Medicine
(BCM) CARNAC (Consensus And Repeatable Novel
Alterations in Cancer) pipeline (version 1.0) [21]; in BRCA
(breast invasive carcinoma) and UCEC (uterine corpus
endometrial carcinoma) sets with the bambam pipeline
(version 1.4) from University of California at Santa
Cruz (UCSC; Sanborn JZ, Haussler D; University of
California; Bambam: parallel comparative analysis of
high-throughput sequencing data. Patent. EP2577538 A1).
During quality control of the validation sets, we noticed
that, of the five TCGA datasets used for validation, the
KIRC, PAAD, and COAD sets did not contain any homo-
zygous variants, possibly a consequence of CARNAC
filtering. To maintain consistency across all five data sets,
we removed all homozygous variants from UCEC and
BRCA as well.
In addition, we downloaded 145 ESO (esophageal

adenocarcinoma) BAM files from dbGAP portal (https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?stu-
dy_id=phs000598.v2.p2 [22]). We extracted the raw reads
from the BAM files and aligned them to human genome
hg19 using BWA (v0.6.2) [23]. Collapsed reads that
aligned in the correct orientation were passed to Mutect2
(bundled with GATK v3.6) [17] to call variants. MuTect2
was run twice on each sample in two different modes: (1)
in the usual mode with pair matching normal to retrieve
gold-standard somatic mutation calls; and (2) in so called
tumor_only_mode to call all variants (including all som-
atic and some germlines). This mode mimics the situation
when matching normal data are not available. Variants
from 100 ESO samples were randomly selected and used
for training set generation and the remaining samples for
validation.
ANNOVAR (version released on 2012-03-08) was

used for coding region functional annotations [24].
Variants were filtered based on the following criteria:
(1) minimum coverage of at least 10×; (2) PASS filter-
ing; (3) exclusion of all non-single nucleotide variants
(non-SNVs; e.g., indels or multiple base substitutions);

Kalatskaya et al. Genome Medicine  (2017) 9:59 Page 2 of 18

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000598.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000598.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000598.v2.p2


(4) removing all variants with “N” as reference alleles; and
(5) exclusion of all variants that were labeled as
“unknown” by ANNOVAR. The basic statistics of each
dataset are shown in Table 1. The use of TCGA and ESO
data sets was authorized under dbGaP project #6257.

Variant annotations
Each variant in every validation cancer set was annotated
using COSMIC v69 [25], dbSNP v142 [20], Mutation
Assessor [26], ExAC r0.3 [27], and PolyPhen-2 [28].
Annotation against the dbSNP database produced two
outputs: (1) whether a variant was catalogued by the
“common_all” division of dbSNP (found in ≥1% of the
human population by definition); or (2) represents a rare
polymorphism. COSMIC v69 was released prior to the
availability of TCGA or ESO data sets used for valid-
ation, and is therefore not contaminated with somatic
mutations from those sets. (The first COSMIC release to
contain data from any of these sets was version 72).
Future users of ISOWN are encouraged to use the latest
version of COSMIC.

Supervised learning
WEKA (Waikato Environment for Knowledge Ana-
lysis) software v3.6.12 suite [29], a mature Java-based
machine learning toolkit, was employed for the vari-
ant classification task. The WEKA toolkit provided a
collection of machine learning algorithms for data
mining together with graphical user interfaces. Algo-
rithms used in the study are described in Additional
file 1: Supplemental methods.
The performance of all classifiers was evaluated by

tenfold cross-validation, and the following six measures
were used to estimate classifier performances:

1. Recall (or sensitivity or true positive rate)
measures the proportion of the known somatic
variants that are correctly predicted as those and
is defined as TP/(TP + FN), where TP is true
positive and FN is false negative.

2. Precision is a fraction of the correctly called somatic
mutations to all variants that are labeled as somatic
by the classifier and is defined as TP/(TP + FP),
where FP is false positive.

3. F1-measure [30] is the harmonic mean of
precision and recall: 2 × (Precision × Recall)/
(Precision + Recall).

4. False positive rate (FPR) is the fraction of germline
variants incorrectly classified as somatic and is
defined as FP/(FP + TN), where TN is true negative.

5. Accuracy (ACC) is the proportion of variants that
are correctly predicted and is defined as (TP + TN)/
(TP + FN + TN + FP).

6. Area under ROC curve (AUC) denotes the
probability that a classifier assigns a higher score
to the positive instance than a randomly chosen
negative sample. It measures the general ability of
the classifier to separate the positive and negative
classes. The best performing classifier for each
cancer dataset was selected based on AUC and
F1-measure.

External and internal features
All features used for variant classification are shown in
Table 2. Variants are described by ten features that
ultimately contributed to subsequent machine learning
training and evaluation steps. One class of features came
from external databases, and the other class was derived
from the characteristics of the variants themselves.
Features based on external databases:

1. The Catalogue Of Somatic Mutations In Cancer
(COSMIC) [25] is by far the richest database of the
cancer-related somatic mutations. The presence of a
candidate variant in COSMIC is predictive, but not
definitive, of a somatic origin. The biggest drawback
of COSMIC (v69) usage is that more than 90% of all
coding somatic SNVs catalogued by COSMIC were
submitted from a single sample. Most of these are
random passenger mutations. In practice, therefore,
we used the COSMIC CNT (instead of just
acknowledging the presence of a variant in this
database) attribute as the feature presented to
machine learning. CNT is an attribute assigned to
each coding variant catalogued by COSMIC and
represents a number of samples with a mutation
across all tumor types. The CNT value was used
as a feature in the classifier. If the variant wasn’t
catalogued by COSMIC, this value of the numeric
feature was assigned to zero. Thus, CNT varies from 0
to 19,966 (a well-described mutation in BRAF).

2. Correspondingly, the Exome Aggregation
Consortium (ExAC) has collected germline variants
from ~60,000 independent individuals and is one of
the richest databases of common germline
polymorphisms. A boolean feature based on the
presence in ExAc (is.in.ExAc/not.in.ExAc) was
assigned to each variant in our validation sets and
used as an independent feature.

3. The dbSNP resource, another widely used collection
of the common germline variants, classifies
submitted variants into common (≥1% of the human
population) and rare polymorphisms. All variants in
validation sets were annotated against dbSNP/
common_all and dbSNP/rare databases. The
information from the first set was used for variant
pre-labeling (see the “Variant pre-labeling” section)
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and therefore was not used again for the classifier.
The second annotation was used as an independent
feature in the classifier.

4. Sequence context is defined as the three-base
sequence comprising the variant and its flanking
bases. It is known that different cancer types have
different mutational signatures [31]. In addition,
sequence context can help to distinguish germline
from somatic mutations due to the differences in the
mutational processes that often, but not always,
generate these two types of change. For example,
we have noticed that in all six cancer sets somatic
mutations are significantly enriched in the AGA
pattern and germline polymorphisms in the ATG
pattern.

5. Mutation Assessor predicts the functional impact
of amino acid substitutions in proteins based on
evolutionary conservation of the affected amino acid
in protein homologs. We assume that, on average,
the impact of the somatic mutation on protein
function will be significantly higher than a germline
polymorphism. Categorical output from Mutation
Assessor (high, medium, low, or neutral) was used
as a feature in the classifier. Stop loss and especially
stop gain mutations (annotated by ANNOVAR)
usually have greater impact on protein function and
predominantly occur as somatic alterations. As
variants that introduce stop gain or stop loss are
ignored by Mutation Assessor and mutually
exclusive to its output; these mutation types were
added as categories of the feature.

6. PolyPhen-2 is a tool that predicts damaging effects
of missense mutations based on both sequence and
structural information. It was also used as an
independent feature in the classifier.

With respect to the use of functional impact features,
while a small number of germline polymorphisms may
have high protein structure impact, we confirmed that in

all sets used for validations, somatic mutations are
significantly enriched in “high” and “medium” impacts,
whereas germline polymorphism are enriched in “neutral”
impacts. For example, the ratio of germline polymor-
phisms scored as neutral impact by Mutation Assessor
ranged from 40 to 45% depending on cancer data set,
while neutral somatic mutations occurred 23–27% of
the time (Additional file 1: Table S6). A similar differ-
ence was observed for PolyPhen-2 output (Additional
file 1: Table S7).
The following four features are generated based on

internal characteristics of the variants themselves:
sample frequency, variant allele frequency, substitution
pattern, and flanking regions (Table 2).
Internal annotations:

7. Sample frequency is calculated as the fraction of
samples carrying that particular variant over the
total number of samples in the particular dataset.
Variants with high sample frequencies are more
likely to be germline polymorphisms. More detailed
justification of this feature is provided in the
Additional file 2: Figure S4.

8. Variant allele frequency (VAF) is calculated as the
ratio of number of reads supporting the variant
allele over the total number of reads. The
heterozygous VAF distribution is centered at 50%
[32] for germline polymorphisms; however, germline
VAFs can deviate from 50% when they are involved
in a somatic copy number alteration event. VAFs for
somatic mutations are more likely to have values
below 50% due to copy number variation, admixture
with normal tissues and/or tumor subclonality, and,
on average, range from 22% to 50% [7] and in some
cases reach values greater than 50% due to
amplification events (Additional file 2: Figure S3).

9. Flanking regions: The VAF of each variant is an
informative feature due to the fact that somatic
mutations tend to be subclonal, while heterozygous

Table 2 List of features used in the classifiers, types of their values, and source of data

Features Type of value Internal or external Number of distinct values

COSMIC_CNT Integer External database Numeric

ExAC Boolean External database 2

dbSNP Boolean External database 2

Mutation assessor Categorical External database 5

PolyPhen-2 Categorical External database 3

Sequence context Categorical Human genome 64

Sample frequency (SF) Double Internal data Numeric

Variant allele frequency Double Internal data Numeric

Flanking regions Double Internal data Numeric

Substitution pattern Categorical Internal data 6
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SNPs will have a VAF close to 50%. To use VAF as a
predictive feature, we examine regional differences in
VAF between the candidate variant and flanking
polymorphisms. For each candidate variant (X) we
searched for flanking polymorphisms (that were
catalogued by dbSNP/common) within 2 Mbp of
flanking 5′ or 3′ regions from X (Additional file 2:
Figure S1a). The 5′ and 3′ flanking region
polymorphisms are labeled as V1 and V2, respectively.
If both V1 and V2 exist and the 95% confidence
intervals (CIs) of their VAFs, as determined by the
binomial distribution, overlap the 95% CI of X, then
X is more likely a germline variant. On the other
hand, if the VAF CI for X overlaps the CI for
neither V1 nor V2, while the V1 and V2 CIs
overlap with each other, then X is most likely a
somatic variant. In all other cases, including
where V1 and/or V2 were not found within the
2-Mbp flanking regions, this feature is marked as
NA (not applicable). The flanking region feature
measures whether the VAF of an unknown
variant is similar to the VAF of flanking known
germline polymorphisms. Because copy number
alterations are often quite large, germline
polymorphisms are expected to have similar
VAFs to those of flanking SNPs, while a somatic
mutation VAF should be different from its
flanking SNPs. This feature strongly depends on
the presence of known germline polymorphisms
in close proximity to an unclassified variant, and
because of this and the strict conditions for
defining informative flanking SNPs, this feature is
unavailable for up to 50% of the variants in a
typical cancer exome.

10.Substitution pattern is defined as a two base
sequence that contains the reference (wild type) and
the newly introduced variant base of the mutation.
For example, the substitution pattern of
chr3,178936094C > G mutation is “CG”. All
substitution patterns are combined into six
categorical subtypes: “CA”, “CG”, “CT, “TA”, “TC”,
and “TG”. We determined that somatic mutations
(as well as germline polymorphisms) are often
enriched in the particular substitution pattern. For
example, across all tested datasets somatic mutations
were significantly enriched in C > A/G > T
substitutions and germline variants were significantly
enriched in T > C/A > G exchanges.

Feature selection
We used the WEKA-InfoGain feature selection tool to
ensure all features we selected are relevant and not re-
dundant [33].

Variant collapsing
For the somatic/germline classification task, we assumed
that variants that share the same genomic position and
substitution pattern are either somatic or germline
across all samples within a particular cancer data set
(Additional file 2: Figure S2). We distinguished between
the set of unique variants, defined as the unique union
of all variants (genomic positions + substitution patterns)
in the data sets, from the set of total variants, which
includes all variants across all samples. This simplifies
the classification problem: instead of making predictions
on a large number of variants (ranges in million; see
column 6 in Table 1), we only need to do predictions on
a few hundreds of thousands unique variants (Additional
file 1: Table S5). Justification of this step is provided in
Additional file 1: Supplemental methods (Additional
file 1: Table S5). Variant collapsing is the process of
transforming the set of total variants into the set of
unique variants.

Adapting internal machine learning features to the
mono-labeled approach
After variant collapsing, the features generated based on ex-
ternal annotations will be identical for all samples in which
this variant was found. For example, chr7,140453136A >T
in COAD detected in 27 out of 215 samples will have iden-
tical values for CNT, ExAC, dbSNP, Mutational Assessor,
PolyPhen, and sequence context annotations across all 27
samples. However, as a consequence of variant collapsing,
VAF and flanking region annotations might be different for
the same variant from sample to sample. Thus, if a variant
was called in one sample, its actual VAF value was used in
the classifier; otherwise, if a variant was called across two or
more samples, the mean of VAFs of all variants is used.
Flanking region assessment was calculated for each

variant as either “true”, “false”, or “NA” (described
above). If a variant was called in only one sample, flank-
ing region assessment equals “true” was converted into a
flanking region feature equals “1” and “false” to “0”. Mul-
tiple ambiguous decisions for the same variant across
multiple samples were collapsed in the following way: a
weight ranging from 0 to 1 for each collapsed variant is
calculated as the ratio of “true” counts over the total
number of samples with this variant (Additional file 2:
Figure S1b). If flanking regions across all samples were
all NAs, then the weight is NA.

Supervised learning algorithms
The full list of the tested supervised learning algorithms
together with their short descriptions as well as settings
and optimization strategies can be found in Additional
file 1: Supplemental methods. In summary, seven
algorithms were tested: JRip [34], J48 [35], random
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forest [36], LADTree [37], naïve Bayes classifier (NBC)
[38], logistic regression [39], and support vector machine
(SVM) [40].

Variant pre-labeling
Some subsets of variants do not require classification.
For example, the variants that are in dbSNP/commo-
n_all and not in COSMIC are most likely germline in
origin and were pre-labeled as such; justifications are
provided in Additional file 1: Table S3. High values for
COSMIC CNT is a good indicator that variants are true
somatic mutations (Additional file 1: Table S4), and all
variants with CNT ≥100 were pre-labeled as somatic.
Pre-labeled variants were not subjected to the classifica-
tion step (Fig. 1).

Tenfold cross-validation
Tenfold cross-validation was used to perform the
primary assessment of the algorithm performance and
to choose the best classification strategy. We gener-
ated 1000 training subsets each containing 700 ran-
domly selected somatic mutations and 700 randomly

selected polymorphisms for each cancer type. The
best classification algorithm was chosen using tenfold
cross-validation based on the highest AUC.

Validation on independent sets
The best classification algorithm chosen during tenfold
cross-validation was trained using a linearly increasingly
number of samples from 1 to 100 for each cancer set.
The validation was done using a separate validation
dataset (not used in training) based on: (1) only non-
silent variants; (2) only silent variants; (3) somatic muta-
tions occupying different VAF tiers. We also performed
cross-cancer validation by training in one cancer type
and validating in a different cancer type. The algorithm
was also evaluated on an independent pancreatic cancer
dataset and a series of cell lines.

Results
Development of a somatic prediction pipeline
In this work we focused on predicting single-base substi-
tution somatic mutations in coding regions. Figure 1 illus-
trates the overall architecture of our prediction algorithm.
The design of our pipeline can be summarized as follows:

Fig. 1 ISOWN framework for somatic mutation prediction. Variants retrieved either directly from TCGA portal in the form of VCF files or using
GATK/MuTect2 pipeline (see “Implementation” section for more details) were annotated with a series of external databases. Low quality calls were
removed by applying a standard set of filters. Only coding and non-silent variants were taken into account (unless otherwise indicated).
After flanking regions and variant allele frequencies were calculated for each variant and data collapsed in the unique set of variants (see “Implementation”
section), some variants were pre-labeled as germline based on their presence in dbSNP/common_all but not in COSMIC or as somatic based on the fact
that over hundred samples with this particular mutation were submitted to COSMIC (CNT >100). The best machine learning algorithm was selected using
a tenfold cross-validation approach. One hundred randomly selected samples from each dataset were used for classifier training and final accuracies were
calculated based on the remaining samples
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VCF files containing both somatic and germline variants
from five cancer types were downloaded from TCGA
portal. Only those variants that passed a somatic mutation
caller filter (marked with “PASS” in VCF files) with read
depth at least 10× were used in the prediction pipeline.
Each variant was annotated against ANNOVAR, dbSNP,
ExAC, COSMIC, Mutation Assessor, and PolyPhen. Based
on functional annotations from ANNOVAR, we removed
all non-coding variants as well as variants with unknown
annotations.
We chose validation data sets that represent a range of

somatic mutation loads and mutation-calling pipelines.
For the five validation datasets from TCGA, we used the
published somatic mutations and germline polymoprh-
isms, which were in turn derived from paired tumor–nor-
mal samples processed by either the CARNAC or the
bambam pipelines (Table 1). In addition, we generated
validation data for a sixth data set (145 esophageal adeno-
carcinoma (ESO) samples) using the popular Mutect2
paired mutation caller [17], starting with unaligned BAM
files. Mutect2 was first ran in paired mode on tumor and
matched normal to generate the gold standard list of som-
atic mutations. We then ran Mutect2 in tumor-only mode
on the tumor sample only to generate somatic mutations
together with germline variants to present to the classifier.
The second mode completely mimics the situation when
matching normal tissues are not available.
To validate different supervised learning algorithms

provided by WEKA, for each tumor type we generated
1000 training sets in Attribute-Relation File Format
(ARFF), each containing 700 randomly selected somatic
mutations and 700 randomly selected germline polymor-
phisms. The performance of the machine learning classi-
fiers was evaluated using tenfold cross-validation based
on the training sets. This was repeated using classifiers rep-
resentative of each of the major classification methods (see
“List of tested learning algorithms” in Additional file 1:
Supplemental materials). The best classification method
was chosen based on the highest AUC.
For validation purposes, the sample set was then ran-

domly divided into a training sample subset (100 samples)
and a held-out validation sample subset (the remaining
samples). Each of the six cancer type data sets was prepro-
cessed and collapsed independently. Using the best classi-
fication methods (NBC and LADTree), the classifier was
trained with a gradually increasing number of samples
from the training set and the accuracy was calculated
using the held-out validation sample set.

Datasets
Evaluation of the classifiers was performed on six differ-
ent cancer datasets: UCEC (uterine corpus endometrial
carcinoma), KIRC (kidney renal clear cell carcinoma),
COAD (colon adenocarcinoma), BRCA (breast invasive

carcinoma), ESO (esophageal adenocarcinoma), and
PAAD (pancreatic adenocarcinoma).
In total, six different tumor types were used for

ISOWN validation. All datasets were sequenced using
Illumina technology. Average read depth ranged from
58× to 363× (Table 1). The number of samples in
each dataset as well as the number of the coding
non-silent variants per data set are provided in
Table 1. The average number of somatic non-silent
mutations in the coding regions per sample ranged
across an order of magnitude from 10.77 for BRCA
to 276.68 in COAD (Table 1).
Because of the range in somatic mutation and germ-

line polymorphism rate, each of the testing sets
contained different ratios of positive (somatic mutation)
and negative (germline polymorphism) instances, which
allowed us to validate the algorithm in several different
settings (Table 1, last column). The ratio of somatic to
germline variants ranged from 2:1 in the UCEC set to
1:10.5 in the PAAD set and, surprisingly, did not always
correlate with mutational load. For example, BRCA has
the lowest mutational load (~10 somatic SNVs per sam-
ple; Table 1) but the number of germline variants is only
six times higher than somatic variants (in the collapsed
set), whereas PAAD has 37 somatic SNVs per sample
but the ratio of somatic to germline variants reaches
1:10. It is unlikely that the rate of germline SNPs varies
to this extent across TCGA cancer cohorts, and most
likely these differences reflect disparities in the approaches
used to call and filter variants in these datasets. Our
algorithm was nevertheless able to learn and correctly
discriminate somatic from germline variants across a
wide range of absolute variation counts and somatic
to germline ratios.

Tenfold cross-validation and the best classification
method selection
We first set out to select the best classifier(s) for each
cancer dataset, investigate whether the best classifier is
cancer-specific, and to compare performance measures
across different cancer types. We present the results
from the best trained models for only the seven
supervised learning algorithms we selected, although
several others were investigated (Additional file 1:
Supplemental methods).
The performance measures presented here were

retrieved based on collapsed datasets (see the “Variant
collapsing” section) without taking into account pre-
labeled variants. Cross-validation was done based on
1000 training sets, each balanced with 700 somatic and
700 germline variants randomly selected from each
cancer set (Fig. 1 and “Implementation” section).
Figure 2 shows performance measures from tenfold

cross-validation for all cancer datasets. The top panel
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shows similar performances for five out of six cancer
datasets regardless of which supervised learning
method was used. ESO is the only dataset with
slightly lower F1-measure (ranges from 88 to 95%).
Overall, all seven selected classifiers showed compar-
able performances in each of the six cancer data sets
we tested, ranging from ~3–4%.
The false positive rate (FPR) was less than 7% for all

datasets except ESO. Usage of NBC consistently shows
the lowest FPR below 5% for all but the ESO set. The
FPR for the ESO set ranges from 6 to 12% (Fig. 2,
middle panel).
Based on the AUC, the worst classifier in all six cases

was SVM in spite of the fact that both kernels, Poly-
kernel and RBF-kernel, were tested and optimized. The
AUC for the best classifiers was estimated to be ~99%
for COAD, UCEC, KIRC, and BRCA, ~98% for PAAD,
and ~96% for ESO (Additional file 1: Table S1). Based
on mean AUC value, NBC and LADTree were chosen as

the best classification algorithms (Fig. 2, bottom
panel) for all cancer sets but ESO. Random forest
and LADTree were used for ESO.

Classifier validation and effect of training set size on
performance
The final assessment of the classifier performance was
done based on the held-out validation testing sample
sets that had not been used in the training procedure
(see pipeline description and Fig. 1). In addition, we
investigated the effect of the size of the training set on
the final performance measures. The validation was
performed as follows: the indicated classifier was trained
based on gradually increasing number of samples (start-
ing from 2 to 100 with increments of one) and for each
case, accuracy, F1-measure, and FPR were calculated
based on the held-out testing set. The training set was
generated based on all somatic variants retrieved from

Fig. 2 Tenfold cross-validation. We generated 1000 training sets, each containing 700 randomly selected somatic and 700 germline variants from
each cancer set. ISOWN validation was done using different machine learners (shown with different colors). Plot shows average F1-measure
(upper panel), false positive rate (middle panel) and AUC (lower panel) from 1000 training sets
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the indicated number of samples plus an equal number
of randomly selected germlines.
The overall accuracies for all six cancer sets is over 99.0%

for almost all training sets (Additional file 3: Table S2). But
the FPR and F1-measure are better measurements of a
classifier’s performance when the data set is unbalanced, as
it is in the validation sets used in this study. The FPR was
below 0.5% if the classifier was trained with at least 25
samples for the COAD, UCEC, KIRC, and BRCA sets, and
at least 50 samples for PAAD and ESO (Additional file 2:
Figure S5). The F1-measure was high (above 90%) in four
out of six studied cancer sets and reached 91.1% for KIRC,
93.2% for ESO, 96.6% for COAD, and 98.6% for UCEC.
BRCA, with a max F1-measure of 88%, showed slightly
reduced but still acceptable performance. PAAD had the
worst accuracy, with the F1-measure reaching a maximum
of just 76% (Fig. 3).
The comparison of performance between the two best

classifiers, LADTree and NBC (random forest for ESO),

is depicted in Fig. 3 and Additional file 2: Figure S5. When
applied to the BRCA, COAD, and UCEC tumor types,
NBC and LADTree classifiers were indistinguishable. In
KIRC and PAAD, NBC significantly outperformed LAD-
Tree in terms of accuracy. LADTree and random forest
showed no differences in performance in ESO.
The F1-measure plateaus for all cancer sets but PAAD,

most likely due to low mutation load. Thus, we recom-
mend using at least 25 samples for training of highly
mutated cancer types (like COAD, ESO, and UCEC) and
50–100 samples for medium mutated types (like BRCA
and KIRC) and >100 samples for cancers with a low
mutation load (like PAAD). Recall and precision for the
above described experiments are listed in Additional
file 3: Table S2.

ISOWN performance on silent mutations
Some applications require a list of silent somatic muta-
tions in addition to non-synonymous ones. We evaluated

Fig. 3 ISOWN validation using different machine learning algorithms for six whole-exome sequencing datasets. NBC (green), LADTree (red),
and random forest (blue) were trained based on a gradually increasing number of samples (x-axis). The F1-measure was calculated based
on a held-out independent sample set across six cancer datasets
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the accuracy of our classifier for distinguishing silent som-
atic mutations in coding regions. In this scenario, Poly-
Phen and Mutation Assessor do not provide functional
annotations for most variants. Thus, we expected that the
performance of the classifier would be slightly lower due
to missing functional annotation features.
We performed training and validation in a similar

manner as described earlier: training using nonsynon-
ymous variants from increasing number of samples from
each cancer set and validating with either non-silent
variants only (as it was done in the previous experiment)
or silent variants only. As LADTree showed better or
comparable performance (see “Classifier validation and
effect of training set size on performance” section) in the
majority of the datasets, it was selected for this and
following experiments. For the purposes of comparison,
F1-measures are shown for predictions of both silent
and non-silent somatic mutations in Additional file 2:
Figure S6. In all six tumor types the F1-measure was
reduced for silent mutation prediction versus non-silent.
The effect was relatively small for UCEC, ESO, and
COAD, with reductions in F1-measure of 1.9, 2.3, and
3.5%, correspondingly. Other tumor types showed a stron-
ger effect: F1 was reduced by 8.9, 11.9, and 17.7% in KIRC,
PAAD, and BRCA, respectively, when applied to silent
variants (Additional file 2: Figure S6). We also observed
that the classifiers plateaued at roughly the same number
of training samples regardless of whether silent or non-
silent variants were tested (Additional file 2: Figure S6).
In summary, the ISOWN algorithm can correctly

classify silent coding variations at acceptable levels in
tumor types with high and moderate mutational loads
(F1 92–97% for COAD, ESO, and UCEC, 80–87% for
BRCA and KIRC), but has error rates that are
unacceptably high in tumors with low mutational
loads (69.2% for PAAD).

ISOWN performance in relationship to VAF
Depending on the cellularity and heterogeneity of the
tumor sample, the VAF of somatic mutations may vary
significantly. Accurate calling of low-VAF mutations is
important for identification and characterization of sub-
clones present in the tumor. To address this issue, we
studied the impact of VAF on ISOWN accuracy. For this
experiment, we trained the LADTree classifier according
to the protocol described earlier, but divided the somatic
mutations used in the testing sets into two sets based on
their collapsed VAF values: low VAF variants (VAF ≤
median of all collapsed somatic variants) and high VAF.
To maintain the original ratio of somatic and germline
variants in the testing set, germline polymorphisms were
randomly divided among the two test sets.
As we expected, ISOWN shows consistently better

performance for predicting somatic mutations with low

VAF in comparison to high VAF. The median VAF
varied from 11.3% in the PAAD set to 31.7% in the
UCEC set (Additional file 2: Figure S2). In spite of this
wide variation, we observed only minor differences in
the F1-measure (in the range of 0.1–2.9% differences) in
the majority of tumor types. The most significant differ-
ences were observed in ESO, where we observed a
reduction of 4.3% in the F1-measure for somatic muta-
tion classification for low versus high VAF test sets
(Additional file 2: Figure S7). In conclusion, ISOWN
performs well in predicting somatic mutations across
differing VAF tiers.

ISOWN performance on cross-cancer type training and
testing
In some cases, it may be difficult to find a sufficient
number of samples sequenced with matching normal
tissues to train the classifier, especially for rare cancer
types. We decided to test ISOWN in a setting in which
the classifier was trained using one cancer type and then
tested on another cancer type.
Figure 4 shows the results from cross-cancer type

testing. The first conclusion is that in all six cancer types
(with minor exceptions), training and testing using the
same cancer type give the best accuracy. This is explained
by the following differences between cancer types: (a) VAF
distributions; (b) different patterns of sample frequencies;
(c) different mutation signatures; and probably (d) differ-
ent calling biases in among TCGA variant call sets. The
second observation is that the somatic mutation predic-
tion in the PAAD set posed the greatest difficulty for the
classifier among all six training sets, most likely due its
high ratio of germline to somatic mutations.
It is interesting to note that the UCEC and KIRC

training sets in combination with NBC demonstrated
relatively good accuracy across all six sets; these training
sets can probably serve as uniformly applicable training
sets for cancers with medium to high mutational loads.
The LADTree classifier was consistently worse than
NBC in this experiment. In summary, cross-tumor type
training can produce accurate classifiers, and in at least
one case differences in the paired variant calling meth-
odology are more important than differences between
the tumor types.

Misclassified variants
To understand the source of misclassifications, we
examined these variants in greater detail. To do so, we
trained the classifier on variants retrieved from 100
samples in each cancer data set and collected all mis-
classified variants. In the discussion below, germline
variants misclassified as somatic by our algorithm are
called false positive variants (FPVs), while somatic
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mutations classified as germline by ISOWN are called
false negative variants (FNVs).
One common theme across all tumor types tested is

that FPVs are enriched with low VAF variants. For
example, 23.8% of all FPVs in KIRC have VAF <20%, while
just 0.52% of variants correctly predicted as germline have
VAF <20%. In BRCA, 21% of all FPV versus 0.4% of all
germlines have VAF <20%. For PAAD, the different is even
more drastic: 55.4 versus 2.88%. This suggests that one
source of classifications comes from unbalanced copy
number variations affecting germline SNPs.
We detected 63.11% of all FPVs in PAAD in one sam-

ple only, whereas only 5.14% of true germline polymor-
phisms appear only once in the sample population. In
KIRC, 87.81% of all FPVs are seen in a single sample, in
contrast to 2.93% of germline polymorphisms. Similar
ratios were observed in the other cancer types. These
results indicate that the majority of the incorrectly pre-
dicted somatic mutations were called in single samples
only. Because of this, these FPVs are unlikely to have a

major effect on downstream analyses, as they would
most likely be treated as low frequency passenger
mutations.
Another interesting observation is that, in three out

of six cancer sets, the gene most frequently involved
with FPVs was MUC4. This gene accounted for 1.9%
of all FPVs in BRCA, 3.5% in KIRC and 5.8% in
COAD. This is significantly higher than expected by
chance even after taking into account the gene length.
According to Genecards (http://www.genecards.org/
cgi-bin/carddisp.pl?gene=MUC4), this gene contains a
region in the coding sequence which has a variable num-
ber (>100) of a 48-base tandem repeat. We hypothesize
that the tandem repeat is responsible for mapping errors
during the alignment and variant calling steps of upstream
processing. The other genes affected by the same issue in
at least one out of six datasets are MUC2, MUC6, and
TTN, each of which contained tandem repeats and may
be subject to similar issues. These observations highlight
the fact that our classification method is not designed to

Fig. 4 Cross-cancer validation. NBC (upper panel) and LADTree (lower panel) classifiers were trained using variants from 100 samples from cancer
indicated on the x-axis and validated using cancer set indicated on the y-axis
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identify sequencing errors and mapping artifacts. We
recommend using ISOWN only after pre-filtering for
possible artifacts (for example, sequencing and/or
FFPE artifacts).
Turning to FNVs, one source of FNVs came from

the classification of variants present in dbSNP/com-
mon_all but not in COSMIC as germline variants
(Additional file 1: Table S3). Depending on the cancer
type, between 0.9 and 9.3% of all FNVs are explained
by this classification error. In addition, the VAFs for
FNVs are significantly higher than the average VAF
for all somatic mutations. For example, 38.8% of all
FNVs in UCEC have VAF >40%, while only 20.7% of
somatic mutations have VAF >40%. Because of this,
FNV classification errors may be biased towards
clonal driver somatic mutations that arise early in
tumor development and have a high VAF, as well as
oncogenes that are involved in amplification events.
This is part of the rationale for the algorithm’s pre-
processing step of labeling all known drivers with
COSMIC CNT ≥100 as somatic and skipping the
machine learning classification step.
One of the major concerns for proper somatic muta-

tion classification is its accuracy with respect to the sub-
set of “novel” variants that are catalogued by neither
dbSNP/ExAC nor COSMIC. The ratio of novel variants
among true somatic mutations ranges from 2.0% in
COAD to 52.1% in PAAD. Interestingly, in five out of
six cancer types, we find a smaller proportion of novel
somatic mutations among the FNVs than among all
somatic mutations, meaning that FNVs were depleted
from novel mutations. For example, in the PAAD data
set the percentage of novel variants dropped from 52.1%
in all somatic mutations to 6% in FNVs (p value <0.0001
by Fisher proportional test). In the sixth cancer type
(COAD), the FNV rate among novel and known somatic
mutations was comparable. This means that ISOWN is
no more likely to miss novel somatic mutations than it
is to miss known ones.

Application to cell lines
Cell lines represent a specific case for somatic mutation
prediction where we expected a reduction in ISOWN
performance. First, the number of samples are usually
low (only two lines in the case presented below) and the
sample frequency feature is not applicable. Second,
because cell lines have cellularity close or equal to 100%,
the VAF distribution for somatic and germline variants
should show comparable patterns. In addition, the flank-
ing region VAF feature may also be less relevant due to
the high levels of cellularity. Thus, only seven out of ten
features are fully applicable to this particular scenario.
VCF files with somatic and germline variants for

the HCC1143 and HCC1954 breast cancer cell lines

were downloaded from Cancer Genome Collaboratory
(http://www.cancercollaboratory.org/). We used variants
called using the DKFZ variant-calling pipeline (https://
dockstore.org/containers/quay.io/pancancer/pcawg-dk
fz-workflow) for the ICGC/TCGA PanCancer Analysis of
Whole Genomes Project (https://dcc.icgc.org/pcawg). In
this case, matching normal DNA (isolated from normal B
lymphoblasts) was available to provide a gold standard for
somatic mutations called from the cell lines. We consid-
ered only non-silent calls in coding regions, and the ratio
of SNPs to somatic mutations was 8 to 1.
We trained NBC and LADTree using increasing num-

bers of TCGA BRCA (breast cancer) samples. Because of
the limited number of cell lines, we removed the sample
frequency feature from both the training and testing sets.
The average recall across all training sets was 85% and the
precision 63% (F1-measure 71.4%). We found that both
NBC and LADTree had similar accuracies, but NBC gen-
erated more stable results with lower accuracy variance
across the training sets (Additional file 2: Figure S8).

Application to archival FFPE specimens
A major use case for ISOWN is the identification of
somatic mutations in archival FFPE specimens, which often
do not have accompanying blood or other normal tissue.
To test the algorithm’s accuracy in this scenario, we se-
quenced 1491 estrogen receptor-positive (ER+) early breast
cancer FFPE samples (see Additional file 1: Supplemental
methods for more details) from the Tamoxifen versus Exe-
mestane Adjuvant Mulitcentre (TEAM) clinical trial [41],
which didn’t have matching normal tissues. ISOWN was
used to call somatic SNVs in this set. To validate the call
sets, the final list of TEAM somatic mutations was com-
pared with three other publicly available breast cancer
mutation sets (TGCA BRCA ER+ [42] and results pub-
lished in [43]) to determine whether the somatic mutation
frequency in each gene matched expectations.
Overall mutation loads in the genomic regions

sequenced using our targeted sequencing panel were simi-
lar between TEAM samples and those from other data
sources. We found no significant differences in gene mu-
tation frequency between the ISOWN-processed TEAM
samples and previously published breast cancer mutation
frequencies using Fisher’s proportional test (false discovery
rate >10%). For example, 30.5, 29.6, and 34.1% of samples
contain mutations in the PIK3CA gene in the TEAM,
TCGA BRCA, and Stephen et al. [43] sets, respectively.
We also calculated the proportion of samples carrying at
least one non-silent somatic mutation in each independ-
ent dataset. In the TEAM data set, 71.8% of samples
carried at least one non-silent mutation, which is not
significantly different from the 69.0% observed in the
ER+ subset of breast cancer samples in TCGA BRCA,
and 69.4% of ER+ samples in Stephen et al. (p value 0.558
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from Fisher’s proportional test). In addition, the pattern of
somatic mutations within genes matched the expected
distribution.
Based on these three assessment criteria (mutational

load, mutated gene frequency, and samples carrying at
least one mutation) we conclude that the somatic muta-
tion call set produced by ISOWN on a targeted FFPE
sample set is comparable to the data sets produced by
paired somatic mutation callers across three similar
breast cancer data sets.

Discussion
We describe the development and implementation of
ISOWN, an accurate algorithm for discriminating germ-
line polymorphisms from somatic mutations in cancer
tissues in the absence of matching normal tissues. We
achieved F1-measures ranging from 75.9–98.6% across
multiple tumor types. The algorithm was validated using
different sequencing strategies, including whole-exome
sequencing and deep targeted sequencing, and different
tissue types, including fresh frozen tumor tissues, cell
lines, and FFPE samples.
The major challenge for this discrimination is the

greatly unbalanced nature of the classification problem.
After the various quality control and preprocessing
steps, the number of germline polymorphisms is up to
500 times larger than somatic mutations, depending
strongly on cancer type. ISOWN uses two mechanisms
to overcome this imbalance. The first takes advantage of
the fact that the vast majority of variants catalogued by
dbSNP/common_all but not by COSMIC are germline
polymorphisms. Removing this subset reduces the num-
ber of germline variants by roughly 70%, but the number
of germline polymorphisms still greatly outweighs the
somatic mutations. The second approach uses a data
collapsing step in which we assume that any variant
occurring in multiple samples is either somatic or germ-
line. This assumption reduces the ratio of germline to
somatic to 0.5–10 times depending on the cancer type.
The subsequent machine-learning classification step is

based on ten different features, the most predictive of
which are the three extrinsic features of the variants’
presence in the COSMIC, ExAC, and dbSNP databases,
and the two intrinsic features sample frequency and
VAF. As these databases grow and expand, we can
expect the performance of the classifier to improve. In
addition, because sample frequency is one of the stron-
gest intrinsic features, the performance of the classifier
improves as the number of samples in the training and
testing sets increases. Interestingly, the predicted func-
tional impact of the variant, while helpful in discriminat-
ing non-silent variants, is not essential for correct
classification, as shown in the relatively good perform-
ance of the algorithm on silent mutations.

ISOWN was designed to accommodate multiple under-
lying supervised machine learning systems. Of the seven
machine learning systems we evaluated, NBC and LAD-
Tree were consistently the best, achieving comparable
accuracies across all cancer data sets. While there were no
major differences between NBC and LADTree, the former
is computationally faster.
We benchmarked ISOWN against six TCGA whole-

exome sequencing datasets that had been generated using
conventional matched normal sequencing and variant
calling. The data sets varied both biologically (a range of
mutational loads and mutational spectra) and technically
(different paired variant callers and preprocessing steps).
Using a set of ten features we were able to identify non-
silent somatic mutations with an overall accuracy of
~99.5% across all six datasets. Cancer types with a high
mutational load and a low germline:somatic ratio
(COAD and UCEC) had the best performance, with
an F1-measure ranging from 95–98%. Tumor types
with a lower mutational load and a higher germline:-
somatic ratio (BRCA, ESO, and KIRC) had a reduced
accuracy with F1-measures ranging from 85 to 93%.
The worst performance was observed in PAAD (pancre-
atic adenocarcinoma), which has the highest germline:so-
matic ratio.
Some cancer driver prediction algorithms, for example,

OncodriveCLUST [44], require a list of both non-silent
and silent (synonymous) mutations. When applied to the
task of predicting silent somatic mutations located in cod-
ing regions, ISOWN’s accuracy is reduced, but remains in
the range of 69–97% (F1-measure). We have not evaluated
ISOWN on whole genome sequences because several of
the intrinsic features we use for discrimination, such as
PolyPhen-2 functional impact, do not apply. In addition,
COSMIC is currently heavily biased towards coding muta-
tions obtained from exome sequencing studies, and the
COSMIC CNT feature would bias the classifier away from
non-coding somatic mutations.
In a recently published paper [45], nine somatic variant

callers were evaluated and benchmarked against a set of
high-confidence somatic mutations generated using alter-
native calling algorithms together with manual curation.
Widely used paired somatic mutation callers such as
Strelka [15] and MuTect [17] demonstrated the best sensi-
tivity rates of ~83 and ~89%, respectively. When bench-
marked against paired call sets, ISOWN demonstrates
sensitivities ranging from 86.7% (for PAAD) to 98% for
the rest of the datasets, indicating that ISOWN’s accuracy
lies within the range that would be acceptable for the
majority of research and clinical projects. The caveat, of
course, is that ISOWN is trained against paired variant
call sets from the appropriate tumor type, and its accuracy
can never exceed that of the paired caller it is trained on.
The variation in the number of germline SNPs per sample
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called by the different TCGA projects (Table 1) illustrates
the strong effect that the choice of the paired variant
calling pipeline may have on the training set.
The ISOWN algorithm works across multiple experi-

mental designs, including whole-exome sequencing and
targeted sequencing, and samples derived from fresh-
frozen tissue, FFPE tissue blocks, and cell lines. For a
large cohort of ER+ breast cancer patients with unpaired
FFPE samples, ISOWN produced somatic mutation call
rates that, on a per-sample and per-gene basis, were
consistent with the values reported by several large
paired sample studies of similar cohorts. In cell lines, we
were able to predict somatic mutations in two breast
cancer cell lines, achieving an F1-measure close to 75%
when the classifier was trained on a breast cancer data
set. The great majority of the cell lines registered with
the Cancer Cell Line Encyclopedia (CCLE) portal are
missing matching normal tissues, and only common
germline polymorphisms are removed based on dbSNP
and other external databases. Provided that an appropri-
ate training set is used, ISOWN can be used for identify-
ing somatic mutations in these cell lines.
ISOWN is applicable to two research scenarios. First is

the case where a researcher has access to matched nor-
mal tissue for some, but not all, of the members of a
cancer cohort. In this case, he or she will be able to call
somatic mutations using a conventional paired variant
caller like MuTect2. For the rest of the samples without
matching normals, all variants including somatic and
germlines are called in tumor-only mode using existing
tools such as GATK or MuTect2. The somatic mutations
are then used to train and validate ISOWN. Once
trained and validated, ISOWN can be used to predict
which of those variants called from the tumor-only sam-
ples are somatic mutations. Our benchmarks demon-
strate that 25–50 samples are adequate for training
ISOWN on highly mutated cancer types (>100 non-
silent somatic mutations per sample), 50–100 samples
for cancers with a moderate mutational load (10–100
non-silent somatic mutations per sample), and >100
samples for cancers with a high ratio of germline
variants to somatic mutations (like PAAD). A researcher
might also wish to reduce the overall cost of a cancer
sequencing study by sequencing only sufficient
matched normals to adequately train the classifier,
and then using the classifier to call somatic mutations
on unpaired tumor sequences obtained from the
remainder of the donors.
The second research scenario is where no matched

normal tissue is available at all, either because it was
never collected (e.g., cell lines, pathology archives) or
because donor consent was obtained in a narrow fashion
that forbids examination of the germline. In such cases,
ISOWN can be trained on a reference data set that has

similar biology to the cohort of interest. For example, we
demonstrate that ISOWN’s accuracy is degraded but still
usable when the classifier is trained on one tumor type
and then tested with another that has a similar muta-
tional load (F1-measure 98% for training with COAD
and testing with UCEC). Even in the worst case, in
which paired variant calls from breast cancer primaries
were used to train the classifier to detect somatic muta-
tions in two breast cancer cell lines, still had an accuracy
in the 70% range (F1 measure). For convenience, we
have included six standard training sets in the ISOWN
software package.
Like many other software, ISOWN also has a few

limitations. First, its accuracy suffers with cancers with
low mutational load and small sample sets. Second, the
algorithm isn’t trained to recognize sequencing artifacts
related to FFPE damage or other artifacts; these must be
removed via upstream filters prior to the classification
task. Third, for best results the algorithm requires a set
of 25–100 samples to train the classifier; one of the
standard training sets provided with ISOWN can be
used, but accuracy might be moderately reduced. Fourth,
the algorithm has only been tested on variants that fall
in coding regions and is unlikely to work on whole
genomes until the databases of somatic mutations
become more comprehensive. Lastly, the current version
of ISOWN is not set up to call small insertions/deletions
(indels), a task that is challenging due to the high rate of
sequencing and mapping artifacts that contribute to
indel calls, and their relative scarcity. These challenges
will be addressed in the next releases of ISOWN.
Future work will focus on improving the classifier

performance for cancer types with low mutation
frequencies, datasets with low numbers of samples,
indels, and non-coding mutations. In addition, we
plan to add additional reference training sets to the
ISOWN package.

Conclusions
In this work we have presented a novel and accurate
computational algorithm called ISOWN for predicting
somatic mutations from cancer tissues in the absence of
matching normal samples. ISOWN uses machine learn-
ing and external databases along with the sequencing
characteristics information retrieved from the samples
themselves. ISOWN was extensively validated across six
different cancer types with different mutation loads
where F1-measures range from 75.9 to 98.6%. In
addition, ISOWN was tested on FFPE, fresh frozen, and
cell line tissues.
ISOWN can help researchers to accelerate sequencing

process, reduce financial investment in sample sequen-
cing and storage requirements, or increase the power of
analysis by increasing the number of tumor samples
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sequenced with the same resources. In addition, ISOWN
is useful in cases where the patient consent prevents
normal tissue collection or when a study is based on
retrospective biopsies where normal tissues were not
collected. ISOWN is freely available on GitHub together
with a detailed manual of how to install and use it.

Availability and requirements
Project name: ISOWN (Identification of Somatic mutations
Without Normal tissues)
Project home page: https://github.com/ikalatskaya/ISOWN
Operating system(s): Linux, iOS
Programming language: C, Perl, Java
Other requirements: Tabix, Annovar, Weka
License: GNU
Any restrictions to use by non-academics: please contact
the authors
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