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Abstract. In the/S-cells of pancreatic islets, insulin is 
stored as the predominant protein within storage gran- 
ules that undergo regulated exocytosis in response to 
glucose. By pulse-chase analysis of radiolabeled pro- 
tein condensation in B-cells, the formation of insoluble 
aggregates of regulated secretory protein lags behind 
the conversion of proinsulin to insulin. Condensation 
occurs within immature granules (IGs), accounting for 
passive protein sorting as demonstrated by constitutive- 
like secretion of newly synthesized C-peptide in 
stoichiometric excess of insulin (Kuliawat, R., and P. 
Arvan. J. Cell Biol. 1992. 118:521-529). Experimen- 
tal manipulation of condensation conditions in vivo re- 
veals a direct relationship between sorting of regulated 
secretory protein and polymer assembly within IGs. 
By contrast, entry from the trans-Golgi network into 
IGs does not appear especially selective for regulated 
secretory proteins. Specifically, in normal islets, 

lysosomal enzyme precursors enter the stimulus- 
dependent secretory pathway with comparable 
efficiency to that of proinsulin. However, within 2 h 
after synthesis (the same period during which proinsu- 
lin processing occurs), newly synthesized hydrolases 
are fairly efficiently relocated out of the stimulus- 
dependent pathway. In tunicamycin-treated islets, while 
entry of new lysosomal enzymes into the regulated 
secretory pathway continues unperturbed, exit of non- 
glycosylated hydrolases from this pathway does not oc- 
cur. Consequently, the ultimate targeting of non- 
glycosylated hydrolases in/S-cells is to storage 
granules rather than lysosomes. These results impli- 
cate a post-Golgi mechanism for the active removal of 
lysosomal hydrolases away from condensed granule 
contents during the storage process for regulated 
secretory proteins. 

T 
HE past decade has witnessed considerable debate re- 
garding the mechanism(s) used by specialized neuro- 
endocrine and exocrine cells for sorting polypeptide 

hormones and other content proteins into storage (secretory) 
granules. Protein sorting during intracellular transport is 
well established for newly synthesized lysosomal enzymes, 
which are recognized by mannose-6-phosphate receptors 
and conveyed via clathrin-coated vesicles from the TGN to 
an endosomal compartment, en route to lysosomes (Kornfeld 
and Mellman, 1989; Trowbridge et al., 1993). By analogy, 
the "sorting for entry" model of protein targeting to storage 
granules proposes that through specific mechanisms, regu- 
lated secretory proteins (and not other proteins) are selected 
from the mixed contents of the TGN (Griffiths and Simons, 
1986; Orci et al., 1987a; Tooze et al., 1987a; Moore et al., 
1989; Tooze and Huttner, 1990) and conveyed to immature 
granules (IGs) ~, the first organelle in the biosynthetic path- 
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way able to undergo stimulus-dependent exocytosis (Arvan 
et al., 1991; Tooze et al., 1991b). It has recently been recog- 
nized that regulated secretory protein condensation into in- 
soluble aggregates plays a role in the sorting process (Gerdes 
et al., 1989; Wagner et al., 1991). Consequently, Huttner 
and colleagues have hypothesized that sorting receptors in 
the TGN (Bauerfeind and Huttner, 1993) may direct selected 
protein aggregates (Chanat and Huttuer, 1991) from TGN to 
IGs, while denying similar access to nongranule content pro- 
teins. 

A conceptual difficulty with condensation of regulated 
secretory proteins in the TGN is that it may sterically hinder 
the catalyzed cleavage (by prohormone convertases; Steiner 
et al., 1992), of proinsulin, proopiomelanocortin, and cer- 
tain other regulated secretory proteins whose proteolytic 
maturation is completed only after arrival in IGs (Orci et al., 
1987b; Tooze et al., 1987b; Kuliawat and Arvan, 1992; 
Zhou et al., 1993; Huang and Arvan, 1994). As an alterna- 
tive to sorting for entry, the "sorting by retention" model pro- 
poses the following sequence of events: soluble proteins are 
largely unsorted upon entry into IGs; receptors mediate 
efficient vesicular removal of selected molecules from IGs, 
along with a modest sampling of proteins in the fluid phase 
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(Aryan and Chang, 1987; vonZastrow and Castle, 1987; Ar- 
van et al., 1991); while the condensation of regulated secre- 
tory proteins favors their efficient retention within IGs (Kuli- 
awat and Aryan, 1992). Both hypotheses embrace "sorting 
domains" within regulated secretory polypeptides; however, 
since sorting by retention is accomplished by passive (self- 
associating; Arvan and Castle, 1992) rather than active 
(receptor-binding; Moore et al., 1989) protein interactions, 
the retention hypothesis predicts that sorting domains may 
not be highly conserved between different regulated secre- 
tory proteins. 

To distinguish (TGN-based) sorting for entry from (IG- 
based) sorting by retention, we have posed four related ques- 
tions. (a) Can secretory proteins enter IGs in the soluble 
phase? (b) Is the efficiency of protein storage within the regu- 
lated secretory pathway influenced by polymer assembly that 
occurs after export from the TGN? (c) If secretory proteins 
are not sorted for entry into IGs, how does the cell keep sub- 
stantial quantities of nonsecretory proteins, such as newly 
synthesized lysosomal enzymes, from entering IGs? (d) If 
nonsecretory proteins do enter IGs, how do these proteins 
avoid becoming permanent members of the regulated secre- 
tory pathway? In this report, we have put these questions to 
the test by examining the/~-cells of isolated pancreatic islets. 

Materials and Methods 

Isolation and Pulse Radiolabeling of Rodent 
Pancreatic Islets 
Islets from 250 g Sprague-Dawley rats or 25 g CD-1 mice were isolated 
similarly to that previously described (Aryan et al., 1991) after pancreatic 
digestion by per fusion with collagenase (Boehringer Mannheim Biochemi- 
cals, Indianapolis, IN); flotation on a histopaque gradient (Sigma Chemical 
Co., St. Louis, MO); picking individual islets; preineuhation overnight in 
10% calf serum containing DME in the presence of 28 mM glucose; and 
transferring the islets to fresh DME containing 3.5 mM glucose "recovery 
medium" for 4 h before labeling. This protocol yields efficient proinsulin 
synthesis and lysosomal biogenesis (Landstrom et ai., 1988). Mouse islets 
were routinely prepared for the analysis of lysosomal enzymes because of 
the superior immunoprecipitations obtained with available antibodies. 
When tunicamycin (Sigma Chemical Co., St. Louis, MO) was used, iso- 
lated islets were preexpesed to the drug at a dose of 20 t~g/ml during the 
4 h before labeling. Islets were pulse-labeled for up to 30 rain in deficient 
DME containing up to 300/~Ci of [35S]cysteine and methionine mixture, 
or [3H]leucine (Dupent-NEN, New Bedford, MA). In preparation for in 
vitro analysis of assembly of regulated secretory protein aggregates, rat 
islets were chased for various times in fresh DME, before lysis. 

In experiments labeling newly synthesized lysosornal enzymes, after 
short initial incubation in chase medium (DME containing 3.5 mM glu- 
cose), a 60-rain period of proinsulin and insulin secretion was collected 
from islets bathed in fresh chase medium or that plus a high glucose-con- 
taining secretagogue (22 mM glucose, 1 mM tolbutamide, 1 mM isobutyl- 
methylxanthine, and 1 t~M phorbol 12-myristate, 13 acetate). The islets 
were lysed in 1% boiling SDS, and then diluted 10-fold into a buffer yielding 
final concentrations of 100 mM NaCI, 10 mM EDTA containing 1% Triton 
X-100, 0.2% Na deoxycholate, and 25 mM Tris, pH 7.5. The same protocol 
was followed for prolonged chase experiments, except that the overnight 
chase was in recovery medium, before the 60-min period of collected secre- 
tion. An anti-protease cocktail containing aprotinin (1 mU/ml), leupeptin 
(0.1 raM), pepstatin (10 #M), and diisopropylfluorophosphate (1 raM) was 
added finally to all collected chase media and islet lysates. 

Sucrose Velocity Gradient Centrifugation 
At each chase time, the media was removed and the islets were snap-frozen 
in liquid nitrogen, and subsequently thawed in 0.2 ml of a lysis buffer con- 
taining 0.3% Nikkol (a nonionic detergent; Nikko Chemicals, Tokyo, Ja- 

pan), 1 mM CaCI2, 0.5 mM ZnCl2, 0.4 M NaCI, 10 mM Mes, pH 6.0, and 
the anti-protease cocktail listed above plus 10 raM iodoacetamide. Al- 
though all experiments shown included 0.4 M NaC1 to minimize the 
sedimentation of high molecular weight protein complexes unrelated to hor- 
mones, preliminary studies (not shown) indicated the use of 0.4 M NaCI 
did not alter the relative sedimentation of proinsulin or insulin. The islets 
were lysed at 4"C using continuous, cup-horn sonieation (model 450; Bran- 
son, Danbury, CT) for 15 s at setting 2 (,,o80 W). All samples were spun 
i n a microfuge for 15 s at 4°C to remove nuclei and islet debris; pelleting 
of insulin from the total homogenate was =10% during this step. Then, 180 
t~l of each supernate was loaded on top of a 2.0-ml 10-30% linear sucrose 
gradient and spun for 30 rain at 50,000 rpm using the SW55 rotor in a TL100 
ultracentrifuge (Beckman Instruments, Inc., Palo Alto, CA). Throughout 
the lower 2.0 mls, a concentration of 0.1% Nikkol, 1 mM CaCl2, 0.5 mM 
ZnC12, 10 mM Mes, pH 6.0 was maintained. The 2.18-ml gradients were 
generally collected from above in five fractions, including the pellet. The 
proinsulin plus insulin in each fraction was then rapidly concentrated using 
a 1:3 ratio of Pro-Cipitate (Affinity Technology, New Brunswick, NJ), ex- 
cept in the case of C-peptide (see Fig. 2) for which the protein was immu- 
noprecipitated using a specific antiserum (Linco, St. Louis, MO). The pre- 
cipitates were then dissolved in SDS gel sample buffer and analyzed by 
tricine-urea-SDS-PAGE (Schaggar and vortlagow, 1987), followed by Coo- 
massie staining, fluorography, or phosphorimaging. Although insulin was 
undetectable by conventional Coomassie blue staining, sensitivity by colloi- 
dal Coomassie (Sigma Chemical Co.) was ,,-,0.5 #g insulin per lane. Regard- 
less whether the islets were untreated or treated with zinc or chioroqulne, 
recovery of insulin from the gradient was 985 %. 

Labeled C-Peptide/Insulin Ratios 
The C-peptidedInsulin (C/I) ratios from media collected during the 60-120- 
min chase period from control islets or those treated with zinc or chloro- 
quine, were measured by specific immunoprecipitation using antisera to in- 
sulin and rat C-peptide as described previously (Kuliawat and Aryan, 1992). 
Data from the supplier (Linco) and our own preliminary studies indicate 
that the anti-C-peptide precipitation may under-recover rat and mouse 
C-peptides, especially C-peptide-1, so that the C/I ratios >unity are never- 
theless likely to be underestimates. However, neither ehloroquine nor zinc 
treatment of islets influences the subsequent immunoprecipitation step per 
se (data not shown). 

Analysis of Lysosomal Enzymes in 
Pulse-Chase Experiments 
Several different sources of antisera were initially tested for quantitative im- 
munoprecipitation of lysosomal hydrolases from rodent islets. Based on 
these trials, experiments using antisera to cathespin L (from Dr. C. Gabel, 
Pfizer Research, Groton, CT), cathespin B (from Dr. A. Saluja, Beth Israel 
Hospital, Boston, MA), and cathespin D (from Dr. S. Diment, New York 
University, New York) were performed in mouse islets. ~glucuronidase, 
which was too low for reliable detection in mouse islets, was immunopre- 
cipitated from rat islets (antiserum from Dr. R. Ganschow, University of 
Cincinnati, OH). The precipitation reagent used was either protein A 
agarose or Zysorbin (Zymed, San Francisco, CA). Immunoprecipitates 
were dissolved in SDS gel sample buffer and analyzed by 12% acrylarnide 
SDS-PAGE, followed by fluorography. 

Results 

Selective Protein Storage in the Secretory 
Granule Compartment 
A central feature of the E-cells of pancreatic islets is the syn- 
thesis and maintenance of a very large population of insulin 
storage granules. To test whether heavy biosynthetic traffic 
into the regulated secretory pathway results in inefficient 
sorting of stored granule contents, isolated islets were 
pulse-labeled with 35S-labeled amino acids, and chased 
overnight to allow time for all labeled proteins to be targeted 
to their final destinations. The targeting of ~-glucuronidase, 
a representative lysosomal hydrolase, was distinct from that 
of insulin in that only the latter could be released upon addi- 
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Figure 1. Independent storage 
of lysosomal B-glucuronidase 
and insulin is confirmed by 
selective stimulus-dependent 
release of insulin. Isolated 
rat pancreatic islets were 
pulse-labeled with [35S]cys- 
teine and methionine for 30 
min. After overnight chase, 

the islets were divided and a 60-rain period of secretion was col- 
lected either in medium containing 3.5 mM glucose or a high glu- 
cose-containing secretagogue. The chase media and islet lysates 
were immunoprecipitated with antibodies to B-glucuronidase (top) 
or insulin (bottom). To illustrate the lack of stimulated B-glucuron- 
idase secretion compared to (,~20%) insulin secretion, the SDS- 
PAGE of insulin was underloaded while the fluorography of mature 
B-glucuronidase (*74 kD) was intentionally overexposed 15-fold. 

tion of/~-cell secretagogues (Fig. 1). Thus, although a small 
fraction of lysosomal enzymes may exist in B-granules (Ira 
et al., 1989), mechanisms exist for the selective storage of 
regulated secretory proteins (Kelly, 1985) and lysosomal en- 
zymes (Kornfeld and Mellman, 1989) in largely nonoverlap- 
ping steady-state distributions. 

In Vitro Assay of Assembly of Regulated 
Secretory Protein Polymers 

The assembly of insoluble aggregates is important for pro- 
tein targeting to storage granules (Chanat and Huttner, 
1991), and in pancreatic B-granules, insulin is packaged in 
insoluble dense cores (Michael et al., 1987). However, there 
have been no attempts to demonstrate biochemically when 
and where these insoluble polymers first form. To examine 
polymer assembly, sedimentation on linear sucrose velocity 
gradients was examined after solubilization of islet organelle 
membranes by sonication in a cell lysis buffer including 
0.3% Nikkol, 1 mM CaC12, and 500/zM ZnC12 at pH 6.0. 
Mildly acid conditions are thought to approximate the lumi- 
nal environment of IGs, as opposed to the more acidic inter- 
nal pH of mature granules (Orci et al., 1986, 1987b); while 
calcium and zinc were included because these ions play a 
role in protein assembly within the/~-granule core (Howell 
et al., 1978). Centrifugation speed and time (see Materials 
and Methods) were adjusted to distinguish polymeric assem- 
blies (hundreds-to-thousands of molecules) from soluble 
proinsulin hexamers (Grant et al., 1972) that are believed to 
form within the endoplasmic reticulum (Emdin et al., 1980). 

A solubilized insulin standard analyzed by velocity gra- 
dient did not exit the load fraction (Fig. 2, top gradient). By 
contrast ~60% of Coomassie-stainable islet insulin pene- 
trated the gradient (Fig. 2, second gradient). To determine 
whether the sedimentable insulin represented intact granules 
or granule cores, we examined the sedimentation of soluble 
C-peptide which is co-sequestered within/3-granules. Since 
C-peptide does not stain with Coomassie blue or silver, 
pulse-labeled islets were first chased overnight to maximize 
the fraction of labeled insulin and C-peptide stored in mature 
granules. After cell lysis as described above, the fraction of 
total radiolabeled insulin which pelleted was also '~60% 
(Fig. 2, third gradient). However, the soluble C-peptide was 
quantitatively retained in the load fraction (Fig. 2, last gra- 
dient). These data indicate that granule membranes were in- 

Figure 2. In vitro demonstration of the polymerization state of the 
contents of B-storage granules. (First gradient) Fully solubilized in- 
sulin, or (second gradient) 150 islets sonicated in the presence of 
0.3 % Nikkol were resolved by velocity centrifugation on 10-30% 
linear sucrose gradients as described in Materials and Methods. In 
parallel tubes, a series of sedimentation standards (albumin, ~5 S; 
catalase, '~11 S; thyroglobulin, '~17 S; large ribosomal subunits 
'~60 S; intact influenza virions, *700 S) were used to calibrate the 
gradients according to the sketch shown at top. Gradient fractions 
were analyzed by tricine-urea-SDS-PAGE (in which insulin bands 
typically have a curvilinear appearance) and then digitized and 
printed after flatbed scanning (minor linear artifacts in printing of 
the figure do not affect calculations from these data). As shown, the 
gradient does not create aggregates in vitro but does preserve 
~60% of granule insulin in a polymerized state. (Third and fourth 
gradients) Radiolabeled islets were chased overnight before sonica- 
tion as above. SDS-PAGE/fluorography analysis of [35S]insulin 
(third gradient) or [3H]C-peptide (bottom gradient) showed mark- 
edly different distributions which demonstrate disruption of granule 
membranes. 

deed disrupted (Michael et al., 1987). We conclude that al- 
though the vigorous sonication procedure does cause a 
partial solubilization of granule insulin, the sedimentable 
"GC fraction" (Fig. 2) exhibits the behavior expected of poly- 
meric assemblies of granule core protein. 

Next, using this in vitro assay, the kinetics of polymer as- 
sembly of regulated secretory protein was examined. By 60 
min, a time when virtually all labeled proinsulin has arrived 
in IGs (Orci, 1982), there was still very little sedimentable 
material; however, at later chase times significant polymer 
assembly was readily demonstrable (Fig. 3 A). A quantita- 
tive comparison of the kinetics of proinsulin-to-insulin con- 
version and recovery in the GC fraction graphically demon- 
strated that formation of insoluble aggregates lagged behind 
the appearance of labeled insulin (Fig. 3 B). If islet insulin 
is formed in IGs (Orci et al., 1987b; Kuliawat and Arvan, 
1992; Huang and Arvan, 1994), then these data suggest that 
formation of insoluble aggregates occurs after proinsulin 
enters the regulated secretory pathway. 
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Figure 3. In vitro assay of secretory protein polymerization in 
pulse-labeled pancreatic islets. (A) Islets were pulse-labeled in 
batch with pSS]cysteine and methionine, lysed by sonication in the 
presence of 0.3% Nikkol at the times indicated, and analyzed by 
sucrose-velocity gradient centrifugation as in Fig. 2. Gradient frac- 
tions were analyzed by SDS-PAGE and phosphorimaging. Note that 
the top of the gradients are to the fight. (B) when quantified, the 
conversion to labeled insulin at 30 min (15%), 60 rain (60%), 120 
min (81%), and 210 min (88%) were normalized to that seen after 
overnight chase (96%). The sedimentation of labeled proinsulin to 
the GC fraction was indistinguishable at 30 min from that seen at 
zero chase time (not shown), while progressive increments in 
sedimentation of labeled insulin at 60 rain (18%), 120 min (30%) 
and, 210 min (40%) were normalized to that seen maximally after 
overnight chase (62 %). 

The Relationship between Protein Condensation in 
IGs and the E~iciency of  Insulin Sorting 

Constitutive-like membrane traffic, which originates in vesi- 
cles that bud from IGs, leads to the secretion of newly syn- 
thesized C-peptide in stoichiometric excess of insulin (Arvan 
et al., 1991). This elevated "C/I ratio" serves as a convenient 
assay that reflects the solubility of C-peptide vs. insolubility 
of insulin, altering their relative probability for departure 
from IGs in budding vesicles (Kuliawat and Aryan, 1992). 
A moderately acidic pH is though to make an important con- 
tribution to the environment favoring intragranular conver- 
sion of proinsulin to C-peptide and insulin (Orci et al., 1986, 
1987b; Rhodes et al., 1987) as well as to the subsequent 
condensation of insulin (Michael et al., 1987). Cellular ex- 
posure to 200 #M chloroquine, an agent which raises the pH 
inside acidic organeUes, perturbs the storage of proteins nor- 
mally targeted to secretory granules and enhances secretion 
by a pathway that exhibits constitutive characteristics (Moore 
et al., 1983) (although these studies were controversial 
because the dose, 200 /~M, and several hour duration of 
chloroquine exposure caused other effects such as profound 
inhibition of prohormone processing [Mains and May, 
1988]). These earlier studies led us to reconsider whether 
it might be possible to selectively manipulate the efficiency 
of insulin polymer assembly in vivo without disturbing pro- 
hormone processing. 
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Figure 4. Experimental inhibition and augmentation of insulin 
polymer assembly in immature/3-granules. (A) At 60 rain of chase, 
[35S]cys/met/labeled pancreatic islets were divided and further 
chased in control medium or that containing 100/~M chloroqulne. 
(B) Immediately postpulse, labeled pancreatic islets were divided 
and incubated for two hours in control medium or that containing 
100 gM ZnCI2. In all cases at 120 min, the islets were lysed and 
examined by the in vitro analysis shown in Fig. 2. While there were 
only minor differences in insulin polymerization in the control is- 
lets of A and B, the recovery in the GC fraction from four indepen- 
dent experiments was inhibited 87 % by chloroqulne (A), and stimu- 
lated 61% by zinc treatment (B). (Bars = standard deviation). 

Two maneuvers were attempted for this purpose. First, ex- 
posure to chloroquine (100 #M) was re-examined, except 
that importantly, the period of islet exposure was delayed un- 
til well after pulse-labeling was completed (60-120 min of 
chase). This modification allowed unperturbed intracellular 
conversion of newly synthesized proinsulin to insulin. Thus 
under these conditions, effects of chloroquine could not be 
ascribed to sorting for entry, since the arrival of proinsulin 
in IGs (as measured by processing to insulin) was quantita- 
tively unaffected. Nevertheless, polymeric assembly of na- 
scent insulin to the sedimentable GC fraction was reduced 
markedly (Fig. 4 A). Further, the 60-120-min chase medium 
from chloroquine-treated islets contained an increased 
amount of newly synthesized insulin while C-peptide enrich- 
ment over insulin was eliminated (i.e., C/I ratio = 1.0, see 
Fig. 5). These data suggest that by inhibiting insulin conden- 
sation, the two polypeptides were no longer spatially seg- 
regated within the IG lumen, so that sorting between them 
could no longer take place. 

In the second maneuver, zinc was added to the medium 
bathing pulse-labeled islets. Zinc uptake by tissues in vivo 
and in culture is well documented (Johnson and Evans, 1982; 
Ratfaniello et al., 1992); its uptake by pancreatic islets (Lud- 
vigsen et al., 1979) leads to accumulation in B-granules 
(Figlewicz et al., 1980); and it is known to stabilize insulin 
crystals (Baker et al., 1988). When ZnSO4 (100 #M) was 
added to islet chase media, labeled proinsulin-to-insulin 
conversion at 120 min was not enhanced, but the insulin con- 
tent of the GC fraction was clearly increased (Fig. 4 B). In 
conjunction with improved condensation, constitutive-like 
membrane traffic from 60-120 rain exhibited a reduced insu- 
lin content with an elevation of C/I ratio (Fig. 5). These data 
bolster the suggestion that divalent cations facilitate the pas- 
sive assembly of insoluble protein polymers which are im- 
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Figure 5. The effect of altered 
insulin polymer assembly on 
escape from maturing secre- 
tory granules. Pulse-chase of 
isolated pancreatic islets was 
as in Fig. 4 except that the 
labeling was with [3H]leu- 
cine. Constitutive-like secre- 
tion from control (n = 4), 
chloroquine-treated (n = 3), 
and zinc-treated (n = 3) islets 
were collected during the 
60-120-rain chase period, and 
the C/I ratios in the media 
were measured according to 
published procedures (Kulia- 
wat and Arvan, 1992). (Bars 
= standard deviation). ,o90% 
conversion of labeled proinsu- 
lin to insulin was observed at 
120 min for all samples in 
these experiments. 

portant for peptide hormone storage in the regulated secre- 
tory pathway, and support a direct link between this process 
and the protein sorting which occurs within IGs. By con- 
trast, these data (Figs. 3-5) do not support the idea that as- 
sembly of insoluble aggregates is important for the "entry" 
into IGs of the regulated secretory protein, proinsulin, 
which appears to be fully soluble. 

Newly Synthesized Hydrolases En Route to Lysosomes 
Pass through Immature Granules 

I f  regulated secretory proteins can enter IGs in the soluble 
phase, then it is difficult to conceive of a means by which 
soluble proteins intended for destinations other than storage 
granules can be excluded from IGs, particularly in cell types 
where a large fraction of volume flow is directed into the 
regulated secretory pathway. Because IGs are competent for 
stimulus-dependent exocytosis (Arvan et al., 1991; Tooze et 
al., 1991b), any nonsecretory proteins that enter IGs must at 
least transiently behave as members of the regulated secre- 
tory pathway. Since in pancreatic/S-cells, mature lysosomal 

hydrolases have at most, limited overlap in their steady-state 
distribution with regulated secretory protein (Fig. 1), we ex- 
amined the trafficking of newly synthesized lysosomal en- 
zymes in these cells. 

As expected, when pulse-labeled pancreatic islets were 
chased overnight to allow labeled proteins to reach their final 
destinations, there was quantitative intracellular processing 
of cathepsin B from precursor to mature lysosomal form; 
secretagogue addition at this time induced a stimulated dis- 
charge of labeled insulin without detectable release of ma- 
ture cathepsin B (Fig. 6 A). By contrast, stimulated secretion 
of the labeled ,,o39-kD cathepsin B precursor was evident at 
20-80-min of chase, and was declining during the 60-120- 
min chase period (Fig. 6 A). Stimulus-dependent hormone 
secretion during these early chase periods represented 
mostly unprocessed proinsulin and conversion intermedi- 
ates, indicating an origin from IGs (Kuliawat and Arvan, 
1992; and data not shown). By comparing the fractional 
stimulated release of procathepsin B to that measured from 
anti-insulin immunoprecipitation in the same samples, the 
labeled hydrolase was at least ,,073 % as efficient as labeled 
proinsulin for entry into the stimulus-dependent secretory 
pathway. 

This finding was confirmed in nine paired samples that 
were similarly analyzed. The absolute magnitude of the 
stimulus-dependent secretion (i.e., stimulated minus con- 
trol) of procathepsin B varied between experiments, result- 
ing in a large standard deviation (Table I). Nevertheless, 
between different pairs as well as by overall averaging, 
the stimulus-dependent fraction of labeled procathepsin B 
tended to parallel the regulated exocytosis of proinsulin/ 
insulin (Table I). This regulated secretory behavior suggested 
that the secretion of cathepsin B precursor originated from 
IGs. Since procathepsin B enters the stimulus-dependent se- 
cretory pathway nearly as efficiently as proinsulin (which en- 
ters IGs with >99% efficiency; Rhodes and Halban, 1987), 
the present data suggest that hydrolase precursors enter the 
IG compartment in great abundance. While one could con- 
ceive of the possibility that stimulated secretion of newly 
synthesized hydrolases might originate from endosomes or 
endosome-derived vesicles rather than IGs, this secretion 
was not at all diminished even when lysosomal enzyme traffic 
to endosomes was markedly inhibited-moreover, it was 

Figure 6. Entry of cathepsin B 
precursor into the regulated 
secretory pathway of pan- 
creatic/S-cells. (A) Following 
pulse-radiolabeling of pan- 
creatic islets and either 20 
min, 60 min, or overnight 
chase, a l-h period of un- 
stimulated (3.5 mM glucose) 
or near-maximally stimulated 

secretion was collected. The chase media and islet lysates were then analyzed by immunoprecipitation for both proinsulin plus insulin, 
and cathepsin B. Prolonged secretory collection helped to minimize effects of differences in ER exit rates for proinsulin and cathepsin 
B. In the experiment shown, the stimulus-dependent release of labeled (pro)insulin present in islets at each chase time averaged 17.3 %, 
which was not inhibited as the chase progressed. By contrast, the stimulus-dependent fraction of cathepsin B precursor, which was 73 % 
of the stimulus-dependent fraction of proinsulin secreted from 20-80 min, declined rapidly as a function of chase time. A "o39-kD precursor 
(upper arrow) was the only form secreted into the medium, while a "o35-kD form (lower arrow) accumulated in a nonsecretory compart- 
ment, presumably lysosomes. Representative data are shown from one of nine such experiments (see Table I). (B) After tunicamycin ex- 
posure, islets were labeled as in A and chased 45 min before the secretion period. A "o34-kD nonglycosylated cathepsin B precursor (aster- 
isk) exhibited regulated exocytotic discharge. 
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Table L Secretion of Newly Synthesized Procathepsin B 
from Isolated Mouse Pancreatic Islets 

Antibody Cathepsin B Insulin 

Stimulated 33.6 + 15.9 34.6 + 9.1 
Unstimulated 11.8 + 11.5 9.6 + 2.8 
Stimulus-dependent 

Secretion 21.8 + 10.8 24.9 4- 11.3 

Islets were isolated and recovered overnight as described in Materials and 
Methods. Each preparation of islets was radiolabeled and divided into pairs of 
approximately equal numbers. The islets were chased "~30 rain before an addi- 
tional 60-min collection from unstimulated or stimulated islets. The media and 
cell lysates were each analyzed by immunoprecipitation using an anti-insulin 
serum as well as an antiserum to cathepsin B. The fraction (%) of labeled 
cathepsin B secreted into the medium corresponded exclusively to the precur- 
sor form (Fig. 6) and was quantita~l either by phosphorimaging or scanning 
densitometry after SDS-PAGE and fluorography. The data shown repesent the 
mean value from nine such pairs (+standard deviation). 

possible to trap labeled lysosomal enzymes within the stor- 
age granules (described further, below). 

Thus, at least one newly synthesized lysosomal enzyme 
behaves like a transient member of the regulated secretory 
pathway. To determine whether this behavior of cathepsin B, 
a moderately abundant B-cell hydrolase, is a special case or 
is generally representative of lysosomal enzyme trafficking, 
the stimulus-dependent secretion was also measured for 
newly made cathepsin D and cathepsin L, whose expression 
levels range '~100-fold in these cells. For these hydrolases 
as well, secretagogue addition during early chase led to obvi- 
ous stimulus-dependent secretion, while secretion of labeled 
hydrolases at later chase times was greatly attenuated (Fig. 
7). When normalized to the release of labeled proinsulin and 
insulin, an extremely high fraction of these newly synthesized 
hydrolases were found to enter the stimulus-dependent 
pathway: 87% for cathepsin D; >95% for cathepsin L; and 
a comparably high value for /~-glucuronidase (data not 
shown). Nevertheless, over time, little lysosomal enzyme 
persisted in the stimulus-dependent secretory pathway (Figs. 
6 and 7), suggesting that these hydrolase precursors were in 
transit to their normal, lysosomal destination. 

Entry of Lysosomal Enzymes into the 
Stimulus-dependent Secretory Pathway Does Not 
Require Mannose-6-Phosphate Recognition 
The observation that different lysosomal enzymes at all lev- 
els of expression appear to enter IGs, represents a pattern 
other than that found in nonregulated secretory cells, where 

Figure 7. Entry of newly syn- 
thesized cathepsin D and 
cathepsin L into the regulated 
secretory pathway of pan- 
creatic /3-cells. Pulse-labeled 
islets were chased for 20 min 
or overnight before a 60 min 
secretion period as in Fig. 6. 
Cathepsin D (~54 kD) and 
cathepsin L (,,o40 kD) were 
specifically immunoprecipi- 
tated and analyzed by SDS- 
PAGE and fluorography. The 
data from a representative ex- 
periment (of three) are shown. 

most hydrolases en route to lysosomes bind mannose-6- 
phosphate (M6P) receptors in the TGN and are relocated 
via clathrin-coated vesicles to an endosomal compartment 
(Kornfeld and Mellman, 1989; Trowbridge et al., 1993). 
Thus, it seemed possible that hydrolase precursors could be 
sorted for entry into/3-cell IGs based on M6P recognition, 
as has been hypothesized in cytotoxic T lymphocytes (Grif- 
fiths and Isaaz, 1993). To test this possibility, we wished to 
block N-linked carbohydrate addition to new lysosomal en- 
zymes and thereby prevent the formation of M6P recognition 
signals. Unlike for more complicated glycoproteins, nongly- 
cosylation of biosynthesized lysosomal enzymes (either after 
mutagenesis or after tunicamycin treatment) does not induce 
detectable misfolding nor block the ability of these enzymes 
to bind and ultimately cleave (Smith et al., 1989; Kane, 
1993) (as measured for nonglycosylated cathepsin B [Runzi, 
M. A. Saluja, R. Dawra, M. Saluja, H. Nishino, and M. 
Steer. 1993. Pancreas 8:771]) suhstrate peptides. Indeed, in- 
tracellular transport of these lysosomal enzymes through the 
ER and Golgi complex occurs normally; and in nonregulated 
secretory cells, most (but not all) nonglycosylated hydrolases 
are constitutively secreted "by default," indicating that they 
proceed unsorted through the soluble secretory pathway (von 
Figura et al., 1979; Rosenfeld et al., 1982; Nishimura et al., 
1988a,b; Rindler and Traber, 1988; Glickman and Kornfeld, 
1993; Kane, 1993). 

Remarkably in pancreatic islets treated with tunicamycin, 
although the radiolabeling between different sets of islets 
varied to some extent, the fraction of total labeled cathepsin 
B that entered the stimulus-dependent secretory pathway was 
not at all inhibited by the absence of N-linked carbohydrate 
addition (Fig, 6 B). An identical result was observed for 
cathepsin L (Fig. 8). Thus, hydrolase entry into the stimulus- 
dependent secretory pathway did not require the presence of 
the M6P signal. This result dearly indicates that transient, 
regulated release of new lysosomal hydrolases cannot origi- 
nate from an endosome compartment, since the routing of 
newly synthesized hydrolases into endosomes is profoundly 
inhibited in the absence of M6P recognition. 

Relocation of Newly Synthesized 
Nonglycosylated Cathepsin B Out of the Regulated 
Secretory Pathway Is Blocked 
Because previous evidence has suggested that clathrin- 
coated vesicles bud from IGs (Kuliawat and Arvan, 1992), 
the preceding data raise the possibility that lysosomal en- 
zyme precursors may be removed from IGs in clathrin- 
coated buds. This proposal is consistent with a recent view 
of IGs as a functional extension of the TGN (Aryan and Cas- 
tle, 1992), and could help to explain the well-recognized loss 
of clathrin that accompanies granule maturation (Orci et al., 
1987b). To examine whether the M6P moiety might play a 
role in the ability of hydrolase precursors to be removed from 
IGs, pancreatic islets treated with tunicamycin were labeled 
and chased overnight to allow newly synthesized proteins to 
reach their final destinations. At this time, cathepsin B from 
control islets shows a mobility shift upon SDS-PAGE after 
digestion with endoglycosidase F, while from tunicamycin- 
treated islets there was no shift upon digestion, confirming 
an absence of N-linked glycans (Fig. 9 A). 

As expected after overnight chase, secretion of labeled 
cathepsin B from control islets was minor (Fig. 9 B). Re- 
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Figure 8. Lysosomal enzyme 
entry into IGs is independent 
of a mamaose-6-phosphate 
recognition signal. Pulse- 
labeled islets, untreated or 
pre-treated with tunicamycin, 
were chased briefly before a 
60-min collection of unstimu- 

lated or stimulated secretion, as in Fig. 6. Newly synthesized cathepsin L was specifically immunoprecipitated and analyzed by SDS-PAGE 
and fluorography. In each set of islets, the stimulus-dependent fraction of glycosylated (,040 kD) or nonglycosylated (,o37.5 kD) cathepsin 
L actually exceeded the stimulus-dependent fraction of labeled proinsulin, which ranged from 18.4-21.3 % in this experiment. Thus, both 
forms of cathepsin L behaved as virtually perfect markers for entry into IGs. The data from a representative experiment (of three) are shown. 

markably, however, there was a dramatic stimulus-dependent 
exocytosis of nonglycosylated cathepsin B (~,40% in the ex- 
periment of Fig. 9 B), indicating that in f3-cells, the non- 
glycosylated lysosomal enzyme was unable to traffic out of 
the stimulus-dependent secretory pathway. Stimulated secre- 
tion of the labeled protein after such a long chase time is con- 
sistent with residence of the nonglycosylated hydrolase in 
storage granules, but is not compatible with protein traf- 
ficking through the constitutive secretory pathway or endo- 
somes. Thus, we conclude that without alteration of primary 
sequence, simple removal of carbohydrate was sufficient to 
change the ultimate targeting of cathepsin B from lysosomes 
to storage granules. 

Discussion 

Sorting by Retention in the Regulated 
Secretory Pathway 

There is general agreement that insulin and many other regu- 
lated secretory proteins are packaged into an insoluble dense 
core (Giannattasio et al., 1975; Michael et al., 1987), which 
is a general feature of exocrine and neuroendocrine storage 
granules (Palade, 1975; Kelly, 1985). Two current models 
of targeting to storage granules (sorting for entry [Bauer- 
feind and Huttner, 1993] and sorting by retention [Kuliawat 
and Aryan, 1992]) differ in whether the condensation of 
regulated secretory proteins need or need not occur prior to 
protein entry into IGs. Understanding where condensation 
first occurs is crucial because if a large number of molecules 
enter IGs in the soluble phase, then it is difficult to conceive 
of a sorting mechanism that could prevent other soluble pro- 
teins (including nonsecretory proteins) from entering IGs as 
well. This if of minor concern in most cell culture models 
of regulated secretion, where the fraction of volume that 
flows from the TGN into IGs is modest relative to other TGN 

exit routes (i.e., the constitutive secretory pathway, and clath- 
rin-coated vesicle traffic to endosomes). However,/3-cells of 
pancreatic islets, like many other regulated secretory tissues 
in vivo, produce an abundant population of storage granules, 
which represents a significant fraction of the entire cell 
volume. In these cells, a large majority of volume flowing 
through the TGN must enter directly into IGs, while the con- 
stitutive secretory pathway is likely to be diminutive by com- 
parison. In this case, the question becomes whether soluble 
nonsecretory proteins can avoid the IG compartment. 

In pancreatic/~-cells, proinsulin enters IGs with >99% 
efficiency (Rhodes and Halban, 1987). Postulates concern- 
ing the formation of insoluble protein aggregates in the TGN 
(Chanat and Huttner, 1991) do not seem applicable to proin- 
sulin, which requires efficient proteolytic conversion to insu- 
lin after entry into IGs (Orci et al., 1987b; Davidson et al., 
1988; Huang and Arvan, 1994). Nevertheless, until now, no 
biochemical investigations have been made concerning the 
condensation of proinsulin (or other regulated proteins) 
while in transit through the intracellular secretory pathway. 
Using a sedimentation assay, we observed that assembly of 
regulated secretory protein polymers began shortly after the 
first appearance of insulin and accumulated progressively 
thereafter (Fig. 3). The data strongly suggest that in islet 
B-cells, insulin rather than proinsulin is primarily responsi- 
ble for the formation of the nascent ~-granule core, and IGs 
serve as the site of this assembly. Thus, we propose that 
proinsulin enters IGs in the soluble phase in pancreatic 
B-cells. These data are entirely consistent with earlier bio- 
physical studies indicating that randomly coiled C-peptides 
interfere with close-packing of soluble proinsulin hexamers 
(Steiner, 1973; Weiss et al., 1990), thereby rendering pro- 
insulin incapable of forming large, insoluble complexes in 
an aqueous environment above pH 3 (Fullerton et al., 1970; 
Grant et al., 1972). While we do not preclude the possibility 
that some proteins in some cell types might undergo complex 

Figure 9. Nonglycosylated 
cathepsin B is converted from 
a lysosomal enzyme to a per- 
manent resident of the regu- 
lated secretory pathway in 
pancreatic /3-cells. Pulse- 
labeled islets, untreated or 

pre-treated with tunicamycin, were chased overnight before a 60-min collection of unstimulated or stimulated secretion. Tunicamycin pre- 
treatment did not inhibit the stimulus-dependent secretion of labeled insulin, which averaged "040 % in this experiment. (A) Pooled media 
and cell lysates from control and tunicamycin-treated islets were mock-digested or digested with endoglycosidase F (4,000 U/ml, 3 h at 
37°C) (B) Immunoprecipitation of cathepsin B revealed a "035 kD mature form in the control cells. By contrast, both ,034 plus ,031-kD 
nonglycosylated forms (arrows) exhibited regulated exocytosis, suggesting that the smaller form was generated by proteolysis within the 
secretory pathway. The data shown are from a representative experiment (of three). 
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formation in the TGN (or earlier) and might even be con- 
veyed to granules by binding to the luminal aspect of the 
membrane of forming IGs, it seems clear that many regu- 
lated secretory proteins may not require the formation of in- 
soluble complexes before entry (see preceding paragraph). 
Specifically, while TGN-based condensation could be used 
as a sorting mechanism for the granins in PC12 cells (Chanat 
and Huttner, 1991; Pimplikar and Hutmer, 1992), we note 
that even in these cells, recent evidence suggests that the IG 
is an important sorting compartment (Grimes and Kelly, 
1992) as appears to be the case in AtT-20 cells (Milgram et 
al., 1994). For the reasons described above, in "real" regu- 
lated secretory tissues, the importance of IG-based sorting 
is likely to be considerably greater than in these cell culture 
systems. 

Constitutive-like Vesicle Budding from IGs Facilitates 
Protein Sorting by Retention 
If condensation within IGs plays an important role in regu- 
lated secretory protein sorting by retention, a mechanism 
must exist in which other proteins can be removed from the 
IG compartment. Constitutive-like vesicle budding, which 
corresponds kinetically to the period shortly after IGs detach 
from the TGN, was initially discovered in highly granulated 
tissues as part of a secretory pathway conveying a small frac- 
tion of granule content proteins under basal conditions (Ar- 
van and Castle, 1987; Arvan and Chang, 1987; vonZastrow 
and Castle, 1987). To date, not all of the vesicular transport 
steps in this pathway have been mapped. Nevertheless, there 
is reason to believe that initial steps of this pathway involve 
clathrin-coated vesicles which travel from IGs to endo- 
somes, from which some of the transported cargo is regurgi- 
tated to the cell surface (Aryan and Castle, 1992). The 
constitutive-like vesicles departing from IGs sample a mod- 
est fraction of fluid contents enriched in soluble components, 
accounting ultimately for the unstimulated secretion of 
newly synthesized C-peptide in stoichiometric excess of in- 
sulin (Kuliawat and Arvan, 1992). The fact that the intralu- 
minal environment of IGs can be experimentally manipu- 
lated (Fig. 4) has provided a handle by which to explore the 
interplay between protein condensation and protein storage 
within granules, or removal therefrom (Fig. 5). Although the 
data is pharmacological in nature, a picture emerges that 
while solubility of proinsulin does not interfere with massive 
entry into IGs, the insolubility of insulin plays an important 
role in enhancing the efficiency of its targeting to storage 
granules. These results are consistent with, and may help to 
explain, older studies analyzing the effect of weak bases on 
storage granule formation and maturation (Moore et al., 
1983; vonZastrow et al., 1989). Moreover, Carroll et al. 
(1988) have described transgenic mice in which two-thirds 
of the islet insulin is a mutant that exhibits defective oligo- 
merization with zinc and hence defective condensation. In 
these/3-cells, most secretory granules were morphologically 
deficient in forming the dense core; and isolated islets ex- 
hibited "unregulated" secretion consistent with excessive 
traffic of uncondensed proteins through the constitutive-like 
pathway. Thus, we conclude that both the nature of the secre- 
tory proteins as well as the intraluminal IG environment play 
a significant role in enhancing the efficiency of protein stor- 
age in regulated secretory granules. 

Lysosomal Enzyme TrajOicking in Regulated 
Secretory Cells 
In nonregulated secretory cells, lysosomal hydrolase precur- 
sors exit the biosynthetic pathway at the level of the TGN 
(Griffiths and Simons, 1986; Kornfeld and Mellman, 1989). 
In the jr-cells of mouse pancreatic islets, the distributions of 
mature lysosomal enzymes overlap little with storage gran- 
ules (Figs. 6-8); nevertheless, lysosomal enzyme precursors 
enter the stimulus-dependent secretory pathway. While one 
might postulate that release of lysosomal enzyme precursors 
could derive from a stimulated endosomal compartment 
rather than from IGs, the fact that tunicamycin treatment 
(which interferes with the traffic of newly synthesized hydro- 
lases to endosomes) does not inhibit stimulus-dependent 
hydrolase secretion (Figs. 6 and 8) effectively eliminates this 
possibility. Moreover, the persistence of stimulated secretion 
of nonglycosylated hydrolases after overnight chase (Fig. 9) 
is incompatible with stimulated hydrolase secretion via the 
constitutive secretory pathway. In addition, cell fractionation 
studies have previously demonstrated that procathepsin B is 
found in isolated/S-granules while mature cathepsin B is 
found exclusively in a lysosome fraction (Docherty et al., 
1984). Taken together, these data indicate that the stimulus- 
dependent secretion of lysosomal enzyme precursors derives 
predominantly if not exclusively from the regulated secre- 
tory pathway. Finally, because the absence of N-linked 
glycosylation does not reduce the stimulatable fraction, the 
entrance of lysosomal hydrolases into ~-cell IGs must not re- 
quire the M6P moiety. 

In conventional regulated secretory tissues (Brands et al., 
1982; Docherty et al., 1984; Taugner and Hackenthal, 1988; 
Tooze et al., 1991) it has been suggested that lysosomal en- 
zyme entry into storage granules may imply "mis-sorting: 
Certainly, in our studies of the ~-cells of pancreatic islets, 
at most a minor fraction of newly made hydrolases was actu- 
ally sorted at the TGN. While various possibilities might the- 
oretically account for the behavior of lysosomal enzymes in 
/~-cells, the simplest and likeliest explanation is that most 
newly synthesized hydrolases bypass the TGN and enter IGs 
because they are soluble, and a major fraction of volume in 
the intracellular transport pathway flows into IGs in these 
ceils. Nevertheless, the fact that lysosomal enzymes may use 
bulk flow to gain entrance into IGs should not be considered 
mis-sorting. Rather, the data indicate a temporary residence 
of these precursors in B-cell IGs as part of the normal transit 
of hydrolases en route to lysosomes (Fig. 6). 

In theory, nonprotein "bulk flow markers" could be used 
to confirm the magnitude of fluid phase entry into B-cell IGs. 
In reality, such markers do not presently exist for studying 
the regulated secretory pathway. Certainly, sulfated glycos- 
aminoglycans (which are excellent markers of rapid secre- 
tion, but are unable to distinguish traffic through constitu- 
tive [Tooze and Huttner, 1990] vs. constitutive-like vesicles 
[Grimes and Kelly, 1992]) cannot be used successfully for 
this purpose. In fact, for most (although perhaps not all) cell 
types, the preponderance of lysosomal enzymes not sorted 
via the M6P signal recognition pathway probably represent 
the best protein markers available to define how unsorted 
proteins will travel in the soluble secretory pathway (von 
Figura et al., 1979; Rosenfeld et al., 1982; Nishimura et al., 
1988a,b; Rindler and Traber, 1988; Kane, 1993). Thus, 
based on the solubility of proinsulin and evidence supporting 
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the bulk flow of lysosomal enzymes into IGs, the sorting for 
entry model is unlikely to account for the selectivity of insu- 
lin targeting to the storage granules of pancreatic/3-cells. 

Although the M6P signal is not required for entry of 
lysosomal enzymes into IGs, the presence of carbohydrate 
appears essential for the active sorting of hydrolases out of 
the regulated secretory pathway (Fig. 9). Although addi- 
tional work is needed, the fact that more than three-quarters 
of newly synthesized procathepsin B is transferred to ly- 
sosomes during prolonged chase bespeaks an extremely ef- 
ficient retrieval system from IGs, suggesting a receptor- 
mediated process, presumably involving M6P receptors. 
Consequently, inefficiency in retrieving hydrolases from IGs 
(either because of interaction with condensing secretory pro- 
teins or because of poor M6P recognition) would represent 
mis-sorting of lysosomal enzymes, leaving them stranded in 
storage granules (Brands et al., 1982; Docherty et al., 1984; 
Taugner and Hackenthal, 1988; Tooze et al., 1991a). Taken 
together, the present observations define IGs as an important 
branchpoint in trafficking of luminal proteins destined for 
lysosomes and storage granules in a system which represents 
one of the nearest approximations to physiological protein 
sorting. 
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