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Abstract

Tuberculosis disease is a major global public health concern and the growing prevalence of

drug-resistant Mycobacterium tuberculosis is making disease control more difficult. How-

ever, the increasing application of whole-genome sequencing as a diagnostic tool is leading

to the profiling of drug resistance to inform clinical practice and treatment decision making.

Computational approaches for identifying established and novel resistance-conferring muta-

tions in genomic data include genome-wide association study (GWAS) methodologies,

tests for convergent evolution and machine learning techniques. These methods may be

confounded by extensive co-occurrent resistance, where statistical models for a drug

include unrelated mutations known to be causing resistance to other drugs. Here, we intro-

duce a novel ‘cannibalistic’ elimination algorithm (“Hungry, Hungry SNPos”) that attempts to

remove these co-occurrent resistant variants. Using an M. tuberculosis genomic dataset for

the virulent Beijing strain-type (n = 3,574) with phenotypic resistance data across five drugs

(isoniazid, rifampicin, ethambutol, pyrazinamide, and streptomycin), we demonstrate that

this new approach is considerably more robust than traditional methods and detects resis-

tance-associated variants too rare to be likely picked up by correlation-based techniques

like GWAS.

Author summary

Tuberculosis is one of the deadliest infectious diseases, being responsible for more than

one million deaths per year. The causing bacteria are becoming increasingly drug-resis-

tant, which is hampering disease control. At the same time, an unprecedented amount of

bacterial whole-genome sequencing is increasingly informing clinical practice. In order to

detect the genetic alterations responsible for developing drug resistance and predict
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resistance status from genomic data, bio-statistical methods and machine learning models

have been employed. However, due to strongly overlapping drug resistance phenotypes

and genotypes in multidrug-resistant datasets, the results of these correlation-based

approaches frequently also contain mutations related to resistance against other drugs. In

the past, this issue has often been ignored or partially resolved by either restricting the

input data or in post-analysis screening—with both strategies relying on prior informa-

tion. Here we present a heuristic algorithm for finding resistance-associated variants and

demonstrate that it is considerably more robust towards co-occurrent resistance com-

pared to traditional techniques. The software is available at https://github.com/julibeg/

HHS.

Introduction

Tuberculosis disease (TB), caused by bacteria in the Mycobacterium tuberculosis (Mtb) com-

plex, is a major global public health burden. In 2018, the WHO reported around 10 million

cases globally and 1.3 million deaths from TB [1]. The Mtb genome is 4.4 Mb in size, features

a high (65%) GC-content and contains *4,000 genes [2]. It is subject to low mutation and

recombination rates with little to no horizontal gene transfer [3]. Of the seven main lineages

comprising the Mtb complex, four predominantly infect humans and have spread globally

(Lineage 1: Indo-Oceanic, Lineage 2: East Asian, Lineage 3: East-Africa-Indian and Lineage 4:

Euro-American) [4]. They can vary in virulence, transmissibility, and drug resistance as well

as geographic distribution and spread [3, 5, 6]. Lineage 2, especially Beijing strains, have

shown to be particularly mobile with evidence of recent spread from Asia to Europe and

Africa [7, 8].

Mtb drug resistance is making the control of TB difficult. It was estimated that 558,000

cases in 2017 were resistant to the first-line drug rifampicin (RIF; RR-TB). Among these, 82%

had additional resistance to the first-line drug isoniazid (INH), leading to multidrug-resistant

TB (MDR-TB). 8.5% of MDR-TB cases were further resistant to one fluoroquinolone and one

injectable second-line drug, leading to extensively drug-resistant TB (XDR-TB) [1]. Drug

resistance in Mtb is almost exclusively due to mutations [mostly single nucleotide polymor-

phisms (SNPs) but also insertions and deletions (indels)] in genes coding for drug-targets or

-converting enzymes [4]. Additionally, changes in efflux pump regulation may have an impact

on the emergence of resistance and putative compensatory mechanisms have been described

to overcome the fitness impairment that arises during the accumulation of resistance-confer-

ring mutations [9]. Resistance-associated point mutations have been found for all first-line

drugs [RIF (e.g. in the rpoB gene), INH (katG, inhA), ethambutol (EMB; embB), streptomycin

(SM; rpsL, rrs, and gidB), pyrazinamide (PZA; pncA)] as well as for fluoroquinolones (gyrA
and gyrB) and other second-line drugs or injectables [ethionimide (ethA), bedaquiline

(rv0678), amikacin (rrs), capreomycin (rrs, tlyA), kanamycin (rrs, eis)], but the understanding

of resistance mechanisms is still incomplete [9].

Advances in whole-genome sequencing (WGS) are assisting the efforts to profile Mtb for

drug resistance, lineage determination, virulence, and presence in a transmission cluster [10,

11], thereby informing clinical management and control policies. The use of WGS can reaffirm

known resistance mutations and uncover new candidates through genome-wide association

studies (GWAS) and convergent evolution analysis [9, 12, 13]. GWAS approaches assess a

probabilistic association of a given allele with a phenotype, but need to account for the clonal

nature of microbial genomes affecting population stratification, effective sample size, and
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linkage disequilibrium [9, 14]. Clonal populations, like those in Mtb, can be accounted for by

sorting significant associations by lineage effects [6, 15], applying metric multidimensional

scaling on inter-sample distances [4, 16], linear mixed models [9, 17], or employing compacted

De Bruijn graphs [18].

The complementary convergent evolution approach aims at detecting the strong selection

for drug resistance, which can be quantified by counting SNPs that have occurred indepen-

dently on multiple occasions (i.e. homoplastic variants). The discrepancy in frequency of

homoplastic events between resistant and susceptible branches of a phylogenetic tree can be

used to estimate how strongly a mutation has been selected for. This approach inherently

accounts for population structure and linkage disequilibrium in addition to being more robust

towards small sample sizes [14].

Traditionally, estimating TB drug resistance has been based on known and biologically

established mutations [3, 10]. However, as resistance phenotype prediction from genomic data

is a binary classification problem with high-dimensional input—a standard task in statistical

and machine learning (ML)—various such techniques have been applied to antibiotic resis-

tance recently [19–26]. Employing ML in genomic phenotype prediction has two main advan-

tages. First, several recent studies have shown that these techniques can at least compete with

existing direct association methods based on mechanistic and evidential knowledge, which has

been curated and scrutinised for decades [20–22, 24–26]. Second, examining important feature

sets of the trained models might hint at yet unexplored variants leading to novel discoveries or

reveal latent multidimensional interactions (e.g. compensatory mutations, epistasis) too subtle

to be picked up by traditional techniques.

However, there are at least three challenges with ML applications for Mtb to date. First, co-

occurrent resistance mutations are incorporated into the predictive models, potentially leading

to overestimation of model performance which may not translate optimally into clinical prac-

tice [26]. Although the removal of unrelated genetic regions, adjustment for preceding resis-

tance, or focusing on mono-resistance may remove bias, this leads to data size reduction and

may be difficult to implement when prior knowledge about key mutations and loci is limited.

Second, different models have been used for different drugs within the same study [23], rather

than proposing a unified approach across all drugs [26]. Third, genomic data is often sparse,

multicollinear and high-dimensional, where often a very small number of predictors explain

most of the variance in the phenotype. Hence, preventing the models from overfitting by suit-

able regularisation strategies is paramount.

In light of the latest advances in bacterial GWAS as well as the plethora of ML algorithms

available for binary classification, we sought to (i) compare the utility of some of these

methods to re-discover point mutations that are already known to confer resistance, (ii)

examine their robustness against co-resistant markers, and (iii) assess the accuracy of pre-

dicted resistance phenotypes. Further, we introduce a novel tool for finding resistance-con-

ferring variants in strongly co-resistant datasets. In particular, we developed a procedure

consisting of two stages. First, an initial batch of alleles is pre-selected by calculating a sim-

ple scoring heuristic to reduce the influence of population structure. The selected variants

are then subjected to iterative ‘cannibalism’ until a final set of survivors remains. In refer-

ence to a popular table-top game, the method was named “Hungry, Hungry SNPos”. Here,

we show its potential by applying it to a strongly MDR-TB dataset consisting of *41,000

missense SNPs in *3,600 strains of the Beijing sublineage of Mtb and compare the results

with multiple GWAS implementations as well as the features most relevant for prediction

in various ML models.

PLOS COMPUTATIONAL BIOLOGY Robust detection of resistance-associated SNPs in multidrug-resistant M. tuberculosis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008518 December 21, 2020 3 / 22

https://doi.org/10.1371/journal.pcbi.1008518


Methods

Data preparation

We used a subset of a global collection of *19,000 Mtb samples with whole-genome sequenc-

ing data from which *600,000 SNPs were derived [10] (see the ‘Additional file 2’ in ref. [10]

for a list of accession codes and references). In brief, raw sequence data were mapped to the

H37Rv reference genome with bwa-mem. From the alignments, variants were called using the

GATK and samtools [27] software suites. Because we wished to focus on virulent strains and

reduce the size of dataset (non-synonymous SNPs constituted less than half of all called vari-

ants), all Beijing strains (n = 3,574) and their polymorphic missense SNPs (41,319) were

selected. Alleles were converted into binary genotypes, where ‘0’ represents the reference geno-

type and ‘1’ a missense-SNP at the respective genomic position. To check for biases in the mis-

sense SNPs versus the unfiltered Beijing dataset, the corresponding distributions of variants,

allele counts and missing genotypes were plotted and principal component analysis (PCA) was

performed on both matrices.

Although the dataset contained categorical resistance data for 15 antibiotics, most strains

had only been phenotyped for the most common first-line drugs. Hence, this work only con-

sidered INH, RIF, EMB, PZA, and SM. Strains with known resistance status for at least one of

these five drugs were selected for analysis. Each of the resulting six datasets (one per drug and

one including all drugs) was filtered to remove SNPs and samples with more than 10%

uncalled genotypes as well as mono-allelic sites. For all analyses intolerable to missing data the

corresponding genotypes were set to the respective allele frequency.

Strain metadata including resistance status to the five drugs are available in S6 Data. The fil-

tered genotype matrix can be found in S7 Data.

Phylogenomics

A phylogenetic tree was obtained from the*41,000 missense SNPs using fasttree (v2.1.11)

[28] with a Generalised Time Reversible (GTR) substitution model and branch length rescal-

ing to optimise the Gamma20 likelihood. The multi-FASTA alignment file required for run-

ning fasttree was generated from the called variants using vcf2phylip (v2.0) [29]. A proto-

Beijing strain (ERR751993) belonging to lineage 2.1 was presented as the outgroup. The result-

ing tree topology was then evaluated under various model parameters with RAxML-NG
(v0.9.0) [30] (the evaluation step re-optimises the branch lengths under a given model). For all

subsequent analyses requiring phylogenetic input, the tree with the lowest AIC metric [31] was

used. It was created using GTR with the Gamma model for rate heterogeneity and estimated

base frequencies. The tree was visualised with ggtree (v1.16.3) [32]. The command line argu-

ments used for fasttree and RAxML-NG are listed in S1 Methods.

Genome-wide association studies

GWAS was performed with multiple ways of correcting for population structure, including

multidimensional scaling (MDS) as implemented in SEER [16], linear mixed models as in

FaST-LMM [17] and lineage effects as in bugwas [15]). These analyses were run via the pyseer
package [33]. SEER was run once with four and once with ten dimensions to be included in

MDS. The pairwise distance as well as similarity matrices were generated from the phyloge-

netic tree by the respective scripts coming with pyseer. Homoplastic variants were tested for

convergent evolution with treeWAS [13]. We provided the phylogenetic tree employed in the

analysis, whereas the ancestral reconstruction was performed by treeWAS internally. The com-

mand line arguments passed to SEER can be found in S1 Methods.
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Statistical and machine learning

Most ML methods employed were available via Python’s sklearn package (v0.21.2) [34]. These

included regularised linear regression (L1 penalised; i.e. Lasso [35]), logistic regression (L1

and L2 penalised), support vector machines [SVMs; using linear and radial basis function

(RBF) kernels] [36], decision trees [37], random forests [38], and gradient boosted decision

trees [39]. Neural networks (NNs) were implemented with Keras (v2.2.4) [40] upon Tensor-
Flow (v1.13.1) [41]. Model parameters are described in more detail in S2 Methods and the NN

architecture is illustrated in S1 Fig.

All algorithms were applied on the five single-drug datasets separately. Additionally, an

extra NN was trained for multi-label classification on the dataset with all drugs. Thus, it would

predict resistance against one or more of the five drugs simultaneously. Each dataset was split

into training and testing batches stratified for phenotype at a ratio of 0.7 to 0.3. The models

were then trained on the training data and benchmarked on the testing data. During training

of the NNs, 20% of the training data were used for validation. For selecting the optimal shrink-

age parameters for Lasso and logistic regressions, sklearn’s respective cross-validation func-

tions were utilised. Decision trees were left at default parameters (representing minimum

restriction) or constrained to a maximum depth of five. Hyperparameters for random forests

and gradient boosted trees were selected with sklearn’s cross-validated grid-search method

according to the F1-score [42] as scoring metric. Class weights were balanced wherever

possible.

For Lasso and linear SVM the absolute magnitude of model coefficients was interpreted as

feature importance. For logistic regression, a likelihood-ratio test was implemented [43, 44].

The test calculates two p-values for a given feature according to two different approaches: (i)

the corresponding regression coefficient is set to zero and the resulting difference in log-likeli-

hood of the prediction of the training set is subjected to a χ2 test; (ii) the model is fit on the

respective feature alone and the difference of the prediction log-likelihood to the raw class

probabilities is subjected to a χ2 test. p-values were calculated for the 1000 features with the

largest absolute regression coefficients per model.

For all other sklearn models (except for SVM with RBF kernel) feature importance values

were determined by the respective implementation internally. From NNs or SVMs with non-

linear kernels feature importance cannot be quantified directly, but must be estimated by mon-

itoring prediction accuracy while permuting the input data [45]. However, this requires pre-

dicting a considerable number of samples at least once per feature and thus is computationally

infeasible given the size of the datasets used in this work.

Hungry, Hungry SNPos algorithm (HHS)

To minimise the confounding effects of co-occurrent resistance markers, we formulated an

iterative, ‘cannibalistic’ elimination algorithm. In its first stage an initial score for each SNP i is

calculated according to

scorei ¼ ðp1g1
i � p0g1

i � wp0g1Þ � dp1g1 ;i

with p1g1
i ¼

Xn

j¼1

pj � gi;j and p0g1
i ¼

Xn

j¼1

ð1 � pjÞ � gi;j

ð1Þ

with the (binary) phenotype p, the (binary) genotype g, the number of samples n, dp1g1, i as a

distance measure for how closely related all strains with pj = 1 and gi,j = 1 are (e.g. the average

pairwise Hamming distance or an average distance extracted from a phylogeny), and wp0g1 as a
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weight factor that can be set to values > 1 to exaggerate the effect of strains that are not resis-

tant but still have the genotype.

The rationale behind this formulation as opposed to the scores calculated by treeWAS is

that p1 g0 and p0 g0 add little relevant information for assessing a particular variant as resistance

in strains with p1 g0 could be caused by other SNPs (which we did not want to penalise) and

because p0 g0’s relation to a SNP’s association with resistance is typically weak. p1 g1 favours

high-frequency alleles in imbalanced datasets with a large proportion of resistant strains, but

this can be counteracted by a sufficiently high wp0g1. In the actual implementation, additional

weights can be applied to normalise for the overall allele frequency at the respective site and

class imbalance in the phenotype. The weight of the distance dp1g1, i is tunable as well. See S3

Methods for a more detailed description of the different parameters.

After this first step all SNPs with positive scores are subjected to iterative elimination as out-

lined in S3 Methods. In every iteration, the procedure reduces the score of every SNP i by an

amount that is proportional to (i) the overlap of i with other SNPs across all resistant strains

and (ii) the magnitude of these other SNPs’ scores. After each iteration, all scores are rescaled

so that their overall sum stays the same. Thus, some scores will grow and others will shrink. As

soon as a score drops below zero, it is no longer considered. After a certain number of itera-

tions, a stable set of SNPs remains.

The results reported below were generated with a Python prototype relying on NumPy [46,

47], SciPy [48], pandas [49], and Numba [50]. First, the pairwise Hamming distances between

all strains in the dataset were calculated. Then, HHS was run on the five single-drug datasets in

various different configurations (for details see S3 Methods) for 20,000 iterations each. This

was enough to let the algorithm converge (i.e. the scores would no longer change). A Rust [51]

implementation optimised for memory efficiency (with a footprint of� 1=4� nsamples �

nSNPs þ 2� n2
samples bytes) is available at https://github.com/julibeg/HHS. A run of 20,000 itera-

tions (e.g. to test a specific set of parameters) with the Beijing dataset took about 20 seconds

(or 10, if the pairwise distances were already known) on a standard laptop, whereas hours of

high-performance computing were required for some of the other methods tested herein.

Results and discussion

Mtb Beijing strain data and phylogeny

The Beijing strains (n = 3,574) were from 43 countries, with nearly half (n = 1771; 49.6%) from

Thailand, South Africa and Russia (S2 Fig). To check for systematic biases within the set of

missense SNPs, the distributions of variants, non-calls and allele-counts were compared with

the original dataset holding all SNPs and no striking differences were found (S3 and S4 Figs).

For each of the five drugs, sample sizes varied from 1489 (SM) to 3547 (RIF), leading to

between 24,946 and 41,040 SNPs being analysed, respectively (Table 1). The differences are

driven by the number of susceptibility tests performed for each drug across the 3,574 samples

(Fig 1, top). There is a high level of co-occurring resistance, especially between partner drugs

such as INH and RIF, leading to a high proportion of the samples being MDR-TB (Fig 1, bot-

tom). This makes detecting resistance-conferring SNPs difficult as mutations strongly associ-

ated with resistance to one drug (e.g. katG S315N/T for INH) also give large association signals

when analysing other drugs.

A phylogenetic tree inferred from the 41,319 missense SNPs revealed that the XDR strains

clustered relatively well, with evidence of potential transmission clusters for single countries

(South Africa and Belarus; Fig 2). Otherwise, samples with the same resistance status or that

originated from the same country spread throughout the tree. This was also found in a PCA

(S5 Fig), with the majority of clusters being heterogeneous.
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Resistance mutations found using GWAS and phylogeny testing

The four SNPs most significantly associated with each drug as determined by GWAS with

FaST-LMM are presented in Table 2. Similarly, the significant SNPs for SEER are listed in S1

and S2 Tables. The results produced by FaST-LMM featured the least number of co-resistant

false positives, which might be attributed to it being less prone to inflating p-values as opposed

Table 1. Specifics of the datasets used.

Dataset N % resistant Training N Testing N SNPs

All drugs 3574 60.9 2501 (501) 1073 41319

INH 3501 55.5 2450 (490) 1051 41040

RIF 3547 52.8 2482 (497) 1065 41120

EMB 3352 33.3 2346 (470) 1006 40252

PZA 2212 31.4 1548 (310) 664 22403

SM 1489 44.3 1042 (209) 447 24946

The size of the respective training subset used for validation in neural net hyperparameter search is given in brackets. N, number of samples.

https://doi.org/10.1371/journal.pcbi.1008518.t001

Fig 1. Distribution of resistance phenotypes. Top: Bar plot of resistant, susceptible and missing phenotypes per drug.

Bottom: Pairwise co-occurring resistance for the five drugs in the dataset. Colours are relative to the drug with fewer

resistant strains (e.g. 597/659 = 0.906 for SM and INH, 1072/1115 = 0.961 for EMB and RIF etc.). The upper triangle of

the symmetric matrix has been removed for clarity.

https://doi.org/10.1371/journal.pcbi.1008518.g001
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to SEER [52]. The SEER results showed only minimal difference between projecting the phylo-

genetic distances onto four or ten dimensions.

Although at least one known resistance-conferring SNP ended up in the top four for every

drug except PZA, the results were strongly confounded by false positives due to co-occurring

resistance. For PZA, the most significant SNP in pncA (the gene coding for the enzyme activat-

ing PZA) was ranked 7th, 36th, and 75th for Fast-LMM and the two SEER settings, respec-

tively. The challenge of rediscovering SNPs that are actually related to PZA resistance can be at

least partially attributed to pncA featuring a larger number of rather uncommon resistant

alleles as opposed to genes with very few but prominent variants like S315T/N in katG confer-

ring resistance to INH [6]. More results produced by the two GWAS methods can be found in

S1 Data.

Sorting SNPs not only by significance but also lineage as done by bugwas [15] leads to a

higher portion of true positives reported for some lineages (S2 Data). Albeit useful, this does

not fundamentally solve the issue of co-occurring resistance as other lineages are even more

strongly confounded in return.

The significant SNPs reported by treeWAS draw a very similar picture (S3 Table). The fact

that this method, which follows a very different approach for handling population structure

Fig 2. Phylogeny of the dataset. Tracks are coloured by resistance status (inner track) and source country of Mtb (outer track). The root

node was omitted for clarity.

https://doi.org/10.1371/journal.pcbi.1008518.g002
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and significance testing, also suffers from false positives due to co-occurring resistance, under-

lines the general nature of this frequently neglected problem.

Application of machine learning for predicting drug resistance

Although the F1-score was used for ranking models while searching hyperparameter space, the

more intuitive recall metric was additionally employed for assessing classifier performance.

Calculated for the positive (resistance) and negative (susceptible) case separately, recall is

equivalent to the sensitivity or true-positive rate (positive recall) and specificity or true-nega-

tive rate (negative recall), respectively. Performance metrics of all models tested are depicted

in Fig 3 and listed in Table 3.

For INH, RIF, and SM most models performed similarly well with consistently higher

recalls for the ‘susceptible’ class. This observation is not surprising as the resistance of some

strains might have been caused by genomic features other than missense-SNPs like indels or

SNPs in non-coding regions. Moreover, in some cases, resistance might have been conferred

by cooperative networks of SNPs that all need to be present concomitantly in order to take

effect. As such networks are likely to be ‘fluctuant’ (i.e. several similar patterns might yield

comparable effects) as well as harder to obtain evolutionally (it is more likely to acquire a single

or a few strongly selected mutations than a larger number of weakly selected, cooperative

ones), they are underrepresented in the dataset and thus not learned effectively. Nonetheless,

the recalls are comparable to what was reported in other recent resistance-prediction studies

(e.g. [23]) and, for INH and RIF, also to a state-of-the art direct association model [10]. It

Table 2. Most significant hits according to GWAS.

Drug Gene Position Codon Ref. AA p1 g1 p0 g1 p-value Resistance

INH katG 2155168 315 S 1676 12 8.19E-217 INH

rpsL 781687 43 K 1118 79 6.58E-54 SM

rpoB 761155 450 S 1289 54 1.78E-38 RIF

embB 4247429 306 M 583 24 4.88E-18 EMB

RIF rpoB 761155 450 S 1367 9 4.46E-153 RIF

katG 2155168 315 S 1548 169 2.52E-74 INH

rpoB 761139 445 H 135 4 3.32E-34 RIF

rpsL 781687 43 K 1044 162 2.34E-32 SM

EMB katG 2155168 315 S 1004 587 1.89E-75 INH

embB 4247429 306 M 455 120 2.40E-69 EMB

rpoB 761155 450 S 854 433 1.99E-65 RIF

rpsL 781687 43 K 729 381 1.16E-42 SM

PZA rpoB 761155 450 S 549 452 5.43E-28 RIF

katG 2155168 315 S 623 558 5.31E-22 INH

embB 4247429 306 M 292 160 1.61E-17 EMB

rpsL 781687 43 K 446 378 1.71E-10 SM

SM rpsL 781687 43 K 469 11 5.91E-121 SM

katG 2155168 315 S 542 80 2.44E-35 INH

rpsL 781822 88 K 60 7 8.61E-24 SM

rpoB 761155 450 S 411 74 3.82E-14 RIF

Top four SNPs per drug as reported by pyseer’s implementation of FaST-LMM. SNPs from genes known to be involved in resistance to the respective drug are shaded

red. SNPs from genes known to be involved in resistance to other drugs are shaded blue. Ref. AA, reference amino acid.

https://doi.org/10.1371/journal.pcbi.1008518.t002
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Fig 3. Machine learning prediction performance. F1-scores (top) as well as negative and positive recalls (bottom; left and right bars of corresponding

colour) of all classifiers tested. LR, logistic regression; L1, L1 penalty; L2, L2 penalty; SVM, support vector machine; RBF, radial basis function kernel; DT,

decision trees; MD5, maximum depth of five; RF, random forest; GBM, gradient-boosted machines; SDNN, single-drug neural net; MDNN, multidrug

neural net.

https://doi.org/10.1371/journal.pcbi.1008518.g003

Table 3. ML prediction performance.

Method INH RIF EMB PZA SM Package Studies

F1 R+ R− F1 R+ R− F1 R+ R− F1 R+ R− F1 R+ R−
Lasso .95 .92 .98 .96 .94 .99 .78 .77 .89 .76 .77 .88 .93 .90 .97 sklearn –

LR-L1 .96 .94 .97 .96 .95 .97 .78 .90 .79 .80 .84 .89 .94 .92 .97 sklearn [21–23, 26]

LR-L2 .95 .93 .97 .95 .93 .97 .78 .89 .80 .76 .84 .84 .94 .92 .96 sklearn [19, 22–24]

SVM-L1 .96 .94 .98 .96 .94 .98 .79 .90 .82 .79 .81 .88 .94 .91 .97 sklearn –

SVM-L2 .95 .93 .98 .96 .94 .97 .80 .90 .82 .77 .83 .85 .93 .92 .96 sklearn [22, 23, 25]

SVM-RBF .96 .94 .98 .96 .94 .97 .79 .90 .82 .77 .80 .87 .92 .90 .96 sklearn [20, 22, 23]

DT .95 .95 .95 .96 .96 .96 .74 .76 .86 .74 .81 .83 .91 .89 .94 sklearn [26]

DT-MD5 .96 .94 .98 .94 .91 .99 .76 .94 .73 .70 .84 .75 .91 .91 .92 sklearn [26]

RF .96 .94 .98 .96 .95 .97 .81 .88 .85 .75 .85 .82 .91 .90 .94 sklearn [19, 20, 23–25]

GBM .96 .95 .96 .97 .96 .98 .79 .81 .89 .78 .77 .90 .93 .92 .96 sklearn [19, 23, 26]

SDNN .95 .93 .96 .95 .92 .97 .76 .78 .86 .72 .77 .84 .92 .90 .95 Keras [19, 24]

MDNN .94 .91 .97 .93 .89 .97 .75 .77 .87 .75 .72 .91 .88 .89 .90 Keras [24]

Performance metrics of the ML models tested in addition to the underlying Python packages and recent studies employing similar techniques for antibiotic resistance

prediction. F1, F1-score; R+, positive recall; R−, negative recall; other abbreviations are explained in Fig 3.

https://doi.org/10.1371/journal.pcbi.1008518.t003
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should be kept in mind, though, that the different studies used different data and hence com-

parisons should be interpreted carefully.

Surprisingly, for SM all models outperformed the direct association approach [10], even

though the rRNA gene rrs was completely absent from the missense-only dataset. However,

for EMB and PZA both [23] and [10] outperformed the models tested here with the difference

in performance being smaller for PZA. The performance gap between INH, RIF and SM on

one hand and EMB and PZA on the other may be partially explained by the latter two datasets

being the most imbalanced ones. Additionally, two of the ten most important SNPs for pre-

dicting EMB resistance reported by [23] lie outside the coding region of embA and are thus

absent from the missense SNPs used here.

Although trained and tested on the same data, there is high variance among the perfor-

mance metrics of the individual models for the harder-to-predict drugs EMB and PZA. This

result could be attributed to stratification within the training/testing splits favouring some

models over others. Repeating the fitting and testing process multiple times as done in some

other studies [22, 23, 53] might smooth out the variation but was infeasible given the computa-

tional resources available for this work.

Remarkably, NNs did not outperform the simpler learning algorithms and the multidrug

version did consistently worse than its single-drug counterparts. It should be noted, though,

that the space of possible network architectures, regularisation methods, loss functions and

optimisers with accompanying hyperparameters is tremendously vast and a proper hyperpara-

meter search for deep NNs was not in the scope of this work. Nonetheless, despite exploring

more complex NN architectures, Chen et al. also found that L2 regularised logistic regression

performed on a par with their best neural nets [24]. In combination with the results reported

here, this might indicate that—given the rather direct relationship between genotype and phe-

notype—the higher complexity of NNs is not justified. Overall, the results do not show a clear

trend towards a single method or family of algorithms and most models performed compara-

bly well.

The 20 most important SNPs of all classifiers allowing for extraction of feature importances

are illustrated in Fig 4. Linear SVM and especially Lasso appeared to be less sensitive to co-

occurring resistance, whereas all other models seemed to be affected equally with true and

false positives occurring at roughly the same rate. Lasso’s greater robustness might be attrib-

uted to it being a regression rather than a classification method. Therefore, its output is not

bounded between 0 and 1 and the model tries to keep the prediction for resistant strains as

close to 1 as possible since overestimating the resistance status would increase the error just as

much as underestimating it would. Conversely, all the other methods are implemented as

proper classifiers only capable of producing class probabilities between 0 and 1. Thus, taking

prediction of INH resistance as an example, giving large weight coefficients to S315 in katG as

well as S450 in rpoB, which are both present in *1,200 strains, would let Lasso predict a num-

ber close to 2 for most samples, whereas logistic regression due to its sigmoid nature would

only be even more sure that the sample is 1, i.e. resistant.

However, regression coefficients for strongly correlated genotypes (e.g. compensatory or

cooperative mutations) are likely to be underdetermined and hence unstable in Lasso. This

would make Ridge regression [ordinary least squares (OLS) with L2 penalty] [54] or Elastic

Nets (OLS with linear combination of L1 and L2 penalties) [55] better choices for exploring

feature importance in such cases as the quadratic penalty forces coefficients of collinear predic-

tors to take similar values. These methods have not been tested systematically in this work,

though.

For PZA not a single algorithm ascribed highest relevance to a SNP in pncA and in L1 regu-

larised logistic regression the most important SNP from that gene appeared only at rank 23. It
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Fig 4. Machine learning feature importance. Top 20 SNPs per ML algorithm as sorted by the respective measure of

feature importance. Cells are coloured red for SNPs in genes known to contribute to resistance to the respective drug

and blue for SNPs involved in resistance to other drugs. Grey cells denote a feature importance of zero or a p-value of 1

(i.e. there are fewer than 20 SNPs with non-zero feature importance). p-values for LR have been calculated with

approach 1.

https://doi.org/10.1371/journal.pcbi.1008518.g004
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should be noted, however, that the plots for logistic regression in Fig 4 are based on the p-val-

ues calculated with approach 1 (see Methods) which should be viewed only as an easily avail-

able heuristic for feature importance. When sorted by absolute magnitude of regression

coefficients, six pncA SNPs were featured in the top 20 (see S6 Fig and S4 Data).

The white tiles in Fig 4 represent “unknown” SNPs that have not been linked to resistance

so far (we define “unknown” as not being present in the TBProfiler [10] database). They are

listed in more detail in S4 Table and some show very favourable p1 g1 / p0 g1 ratios. However,

upon closer inspection of their distribution across the phylogeny, for most variants the associa-

tion appears to be due to population stratification. This is also evident from their relatively

small average pairwise distance values. A SNP in a hypothetical protein (genome position

2238734), for instance, occurred in 78 samples resistant against RIF and only in seven that

were susceptible. Yet, all strains carrying the mutation are located on the same clade in the

phylogenetic tree (S7 Fig). Nonetheless, a few promising candidates were found (Table 4). P93

in idsB, for example, appeared in 12 INH-resistant and two susceptible strains and has

emerged multiple times independently (S8 Fig). Moreover, nine of the 12 resistant samples

also carried a resistance-conferring SNP in katG. Thus, one could argue that idsB P93 might

have a compensatory effect reducing the fitness penalty incurred by the katG mutations.

Further, eight samples resistant against PZA featured a mutation in rpoB F503. However,

these were all resistant against RIF as well, which—since rpoB is the main target of RIF—might

indicate a potential false positive. Nonetheless, rpoB F503 could still represent a novel compen-

satory variant related to RIF resistance as all strains carrying it also feature rpoB S450.

SNPs at the positions 2626678 and 3884871 (both in hypothetical proteins) showed strong

homoplasy, but only two thirds of the strains they appeared in were resistant against RIF.

Moreover, all 10 resistant samples with a SNP at 2626678 and 29 out of 30 with a SNP at

3884871 also carried at least one SNP in rpoB. Thus, although perhaps not causing resistance,

these variants might provide some other fitness advantage, which has been strongly selected

for recently, explaining their frequent independent emergence.

Similarly, position 2986827 (in a hypothetical protein) has also mutated independently

multiple times and occurred in 76 strains that were resistant against PZA (vs. 23 susceptible

ones). Sixty-one of the resistant samples carried pncA SNPs as well, possibly hinting at a com-

pensatory or cooperative effect. However, the majority of strains featuring a SNP at that posi-

tion lie within a single clade (S8 Fig). Hence, further research with complementary methods is

required to confirm these associations.

Application of Hungry, Hungry SNPos

The last SNPs remaining after 20,000 iterations for every drug as determined by HHS are listed

in Table 5. As opposed to most of the other methods, the algorithm re-discovered

Table 4. Potential novel variants related to resistance extracted from the ML feature importances.

Drug Gene Locus Tag Position Ref. AA Codon p1 g1 p0 g1 Distance Method Rank Comment

INH idsB Rv3383c 3798212 P 93 12 2 0.688 SVM-L1 19 possibly compensatory for katG
RIF . Rv2348c 2626678 I 101 10 4 1.484 SVM-L1 18 strong homoplasy, but many susceptible strains and overlap with

rpoB in resistant strains. Rv3467 3884871 P 303 30 15 1.172 SVM-L2 19

PZA rpoB Rv0667 761314 F 503 8 1 0.522 Lasso 16 probably false positive and actually related to RIF overlap with pncA
. Rv2670c 2986827 A 5 76 23 0.479 GBM 17

The most promising SNPs with high p1 g1 / p0 g1 ratios and large distance values (indicating strong homoplasy) were selected from S4 Table Ref. AA, reference amino

acid.

https://doi.org/10.1371/journal.pcbi.1008518.t004
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predominantly true positives. The results in Table 5 were obtained with wp0g1 = 2, a filter ignor-

ing all SNPs with p1 g1 < 5, normalised p1 g1 and p0 g1 values, and a distance weight of 1. This

set of parameters turned out to be most reliable across the five drugs tested. Additional results

are available in S5 Data.

While runs without the p1 g1 filter and wp0g1 = 10 returned additional relevant low-frequency

SNPs for INH, RIF, and PZA, they failed to produce any relevant SNPs for EMB and SM. This

is a general risk of running HHS without a filter for rare alleles and normalised p1 g1 values

since—given equal distance values—SNPs with p1 g1 = 2 and p0 g1 = 0 are assigned the same

Table 5. ’Last SNPos standing’ after 20,000 iterations of HHS.

Drug Gene Position Codon Ref. AA p1 g1 p0 g1 Counts Distance Score0 Score20000 Resistance

INH katG 2155541 191 W 10 0 1577.9 1.040 1640.4 237633.6 INH

katG 2155169 315 S 8 0 1577.9 0.850 1337.1 159553.4 INH

katG 2155168 315 S 1676 12 1538.7 0.945 1453.4 128838.5 INH

RIF rpoB 761101 432 Q 10 0 1680.2 1.174 1973.1 135374.4 RIF

rpoB 761128 441 S 13 0 1680.2 1.032 1733.6 107171.9 RIF

rpoB 760314 170 V 24 0 1680.2 0.922 1549.1 93596.2 RIF

rpoB 761139 445 H 135 4 1523.8 1.073 1634.5 74374.8 RIF

rpoB 761155 450 S 1367 9 1644.6 0.844 1387.9 35940.8 RIF

rpoB 761110 435 D 131 7 1404.5 1.328 1865.4 30883.7 RIF

EMB embB 4247495 328 D 7 1 1890.4 1.446 2733.1 57535.3 EMB

gyrB 6742 501 E 8 1 1960.3 1.217 2385.3 44699.3 FQ

rpoC 765846 826 N 5 1 1680.8 0.884 1486.6 31274.1 RIF

embB 4247729 406 G 13 3 1576.0 0.785 1236.5 23067.0 EMB

rpoB 761097 431 S 5 0 2519.3 0.784 1975.7 22631.1 RIF

embB 4247469 319 Y 11 3 1441.3 0.852 1228.0 16557.9 EMB

pncA 2288703 180 V 7 1 1890.4 0.490 926.2 16378.0 PZA

embB 4248003 497 Q 82 25 1343.9 0.956 1285.2 13938.8 EMB

embB 4247429 306 M 455 120 1469.4 0.781 1147.5 11245.9 EMB

PZA pncA 2289096 49 D 6 0 1762.6 0.967 1704.0 31191.7 PZA

hadA 732110 61 C 5 0 1762.6 1.112 1960.5 27771.6 .

pncA 2289043 67 S 7 1 1340.8 0.975 1307.3 15491.8 PZA

pncA 2288839 135 T 9 0 1762.6 1.117 1968.2 13797.6 PZA

pncA 2289222 7 V 6 2 919.0 0.700 643.5 13649.0 PZA

pncA 2288820 141 Q 9 1 1425.2 0.655 934.1 11959.5 PZA

rpoC 766488 1040 P 10 3 983.9 0.778 765.9 8919.5 RIF

pncA 2289213 10 Q 48 3 1564.1 0.413 646.1 4897.7 PZA

pncA 2288703 180 V 6 0 1762.6 0.373 657.8 4765.2 PZA

pncA 2289016 76 T 5 2 798.5 0.855 682.6 4445.3 PZA

pncA 2289054 63 D 6 1 1280.6 0.376 481.7 2899.9 PZA

pncA 2289040 68 W 17 1 1575.1 0.598 942.5 1869.5 PZA

rpoA 3878416 31 G 5 1 1200.2 0.083 99.2 253.2 .

SM rpsL 781822 88 K 60 7 613.7 0.881 540.4 40005.3 SM

rpsL 781687 43 K 469 11 791.2 0.632 499.9 22640.5 SM

The algorithm was run with the set of parameters that generalised best across all drugs. ‘Counts’ denotes the intermediary result of the expression in brackets in Eq 1,

which is subsequently multiplied by the distance to give the initial score. In this setting, the values for p1 g1 and p0 g1 were normalised before being used in the

calculations (for details see S3 Methods). SNPs from genes known to be involved in resistance to the respective drug are shaded red. SNPs from genes known to be

involved in resistance to other drugs are shaded blue. Ref. AA, reference amino acid.

https://doi.org/10.1371/journal.pcbi.1008518.t005
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score as SNPs with p1 g1 = 1000 and p0 g1 = 0. Additionally, very-low-frequency SNPs are less

likely to sufficiently overlap with other strong SNPs which lets them take out truly resistance-

conferring variants easily.

Not normalising p1 g1 strongly favoured the most common alleles leading to a drastically

reduced set of final SNPs (often only one). This is due to high-frequency co-resistant false

positives not being removed quickly enough and outliving less common true positives. Setting

wp0g1 to 10 partially mitigated this issue as the initial scores of false positives with non-zero

p0 g1 values were substantially lower or negative.

Not accounting for intra-p1 g1 distance (i.e. setting the weight for dp1g1, i to 0) had substantial

influence on the results in most but not all settings. This shows that even a primitive distance

metric like the average pairwise Hamming distance is a good surrogate for incorporating pop-

ulation structure.

An exemplary depiction of the changing scores over the course of an HHS run (with the set-

tings used to generate the results in Table 5) is shown in Fig 5. After an initial rise, scores of

co-resistant SNPs (blue) slowly decreased until they dropped below zero and the correspond-

ing variants were purged. However, some pncA variants, which almost completely overlapped

with the most common co-occurring resistance markers (e.g. katG S315 or rpoB S450), shared

the same fate as those did not disappear quickly enough. After increasing the penalty for p0 g1

by setting wp0g1 to a larger value, co-occurring SNPs started off with lower initial scores and

more pncA variants were retained (S5 Data). Additionally, two rare pncA variants (T100 and

T160; occurring in eight and nine samples, respectively) overlapped in eight samples and were

therefore eliminated quickly.

All SNPs shaded red or blue in Table 5 are already known to confer resistance to the respec-

tive or a different drug. For PZA, however, two variants might constitute novel discoveries and

thus warrant closer examination. The rpoA G31 mutation started and finished with an excep-

tionally low score due to the samples featuring this variant being closely related (resulting in a

Fig 5. Course of HHS scores for PZA during iterative elimination. Scores remained unchanged after*11,000

iterations. SNPs related to PZA resistance in red; SNPs related to other drugs in blue; other SNPs in black.

https://doi.org/10.1371/journal.pcbi.1008518.g005
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very low average pairwise distance, S9 Fig). Additionally, it was only found in two out of the 14

different parameter configurations tested (S5 Data). Furthermore, it overlapped with two pncA
SNPs (D8 and C138—both are marked as conferring resistance against PZA in the TBProfiler

database [10]), which occurred in fewer than five samples and thus were excluded from the

dataset. In light of this complementary evidence, it is reasonable to suspect rpoA G31 to be a

false positive caused by population structure.

The five strains harbouring hadA C61, on the other hand, were more widely spread out

across the phylogeny and the mutation has apparently emerged independently four times (S9

Fig). Moreover, it was among the final SNPs in nine out of 14 HHS runs with different param-

eters. However, three of the five samples carrying hadA C61 also featured pncA variants that

confer resistance according to TBProfiler (T100, V139, V180). Two of these were too rare to be

included in the analysis and for the third one the initial score was already below 0. Therefore,

hadA C61 might likewise be a spurious result and its validity should be checked by including

more samples or consulting orthogonal methods in future work.

Conclusion

In a world of increasing antibiotic resistance and with the prospect of bringing routine whole-

genome sequencing of pathogen samples to the clinic [56], the development of methods for

predicting resistance from genomic data with near-perfect accuracy becomes a necessity. The

results reported here corroborate the findings of recent studies that many ML models are well

suited for phenotype prediction with equivalent or superior performance compared to tradi-

tional methods based on direct association. This might be owed to ML’s ability to learn subtle,

latent interactions, which have not been discovered yet. Alternatively, some predictions may

be biased by co-occurring resistant markers, causing overestimation of performance. Our

results show that L1 penalised linear models are more robust in this regard and hence might

be better suited for mining feature importances even though other classifiers are likely to pro-

vide more accurate predictions. Nonetheless, frequent co-occurring resistance in the dataset

tested here was a major source of confounded results for all ML techniques as well as tradi-

tional GWAS approaches and tests for convergent evolution. While many strategies have been

devised to account for population stratification and lineage effects in bacterial genomics, the

co-occurrence issue has not received as much attention. Here, we have introduced HHS, a new

method for determining resistance-associated SNPs, that tries to only allow a single variant to

account for resistance in a given sample. Although potentially losing information on compen-

satory and cooperative mutations, the process showed great robustness towards co-occurring

resistance and returned rare variants occurring in fewer than 1% of resistant samples. In spite

of being strongly associated with the phenotype, these might go unnoticed by other methods

due to false positives with greater significance rankings. Thus, we consider HHS a useful addi-

tion to the toolbox of bacterial genomics.

Supporting information

S1 Fig. Neural net architecture for the multidrug case. For the five single-drug equivalents

the input dimensions were adjusted accordingly and the output layer only had one node.

(TIF)

S2 Fig. Samples per country. Origin of samples in the dataset; more than two thirds came

from the first five countries.

(TIF)
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S3 Fig. Distribution of all SNPs vs missense SNPs only. Kernel density plot showing the dis-

tribution of SNPs (blue) and missense SNPs (red) across the M. tuberculosis chromosome for

all Beijing strains.

(TIF)

S4 Fig. Distribution of allele count and non-calls among all SNPs and missense SNPs only.

Histograms and kernel density plots (dashed red line) of allele count (top row) and missing

genotypes (bottom row) for all SNPs (left column) and missense SNPs only (right column).

(TIF)

S5 Fig. PCA score plot. Samples in reduced feature space of the first three principal compo-

nents extracted from the missense SNPs coloured by country (left column) and resistance sta-

tus (right column).

(TIF)

S6 Fig. Different approaches for assessing feature importance for logistic regression with

L1 (top row) and L2 (bottom row) penalties. Left column: top 20 SNPs as sorted by absolute

magnitude of regression coefficients; centre column: top 20 SNPs as sorted by p-values calcu-

lated with approach 1; right column: top 20 SNPs as sorted by p-values calculated with

approach 2 (for an explanation of the two approaches see the Methods section). Grey cells

denote a p-value of 1. This means that in the L2 penalised models for EMB and PZA not a sin-

gle SNP achieved a p-value lower than 1 according to approach 2.

(TIF)

S7 Fig. Phylogenetic tree highlighting all samples with a SNP at genomic position 2238734.

Resistant strains are depicted in red; susceptible strains in blue; strains with the reference geno-

type (i.e. the same as in H37Rv) in grey. Ref. GT, reference genotype.

(TIF)

S8 Fig. Phylogenetic tree highlighting samples carrying potential novel resistance-associ-

ated variants discovered in the ML feature importances. For details regarding the variants

see Table 4. Resistant strains are depicted in red; susceptible strains in blue; strains with the ref-

erence genotype (i.e. the same as in H37Rv) in grey. Ref. GT, reference genotype.

(TIF)

S9 Fig. Phylogenetic tree highlighting samples with potential novel resistance-related

SNPs discovered by HHS. All samples with rpoA G31 (genomic position 3878416) sit on the

same clade, whereas those featuring hadA C61 (genomic position 732110) occur in four dis-

tinct locations throughout the tree.

(TIF)

S1 Table. Results of pyseer’s SEER implementation run with - -max-dimensions 4. Note

that the distance values are slightly different from those displayed in Table 5. This is because

HHS calculates the average pairwise distance among all strains with p1 g1, whereas for the dis-

tances listed in the Supplementary Tables all the strains in the dataset have been used.

(PDF)

S2 Table. Results of pyseer’s SEER implementation run with - -max-dimensions 10. Note

that the distance values are slightly different from those displayed in Table 5. This is because

HHS calculates the average pairwise distance among all strains with p1 g1, whereas for the dis-

tances listed in the Supplementary Tables all the strains in the dataset have been used.

(PDF)
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S3 Table. Significant SNPs detected by treeWAS. p-values were calculated by treeWAS inter-

nally and all rounded to zero by R before returning the result (R prints six decimal places by

default). Hence, they have been omitted in the table. treeWAS scores with insignificant p-val-

ues are replaced by ‘ins.’. Note that the distance values are slightly different from those dis-

played in Table 5. This is because HHS calculates the average pairwise distance among all

strains with p1 g1, whereas for the distances listed in the Supplementary Tables all the strains in

the dataset have been used.

(PDF)

S4 Table. Most important SNPs for ML predictions that are not (yet) known to be related

to resistance. For every drug the top 20 SNPs with the greatest feature importances were

extracted and those which were associated with any drug in the TBProfiler database [10] were

dropped. The others represent potentially novel resistance markers and are listed here. Dupli-

cated rows from SNPs that were important for more than one ML model were removed.

Depending on the ML algorithm, feature importance was quantified via different metrics. For

Lasso and SVM the absolute magnitudes of the regression coefficients were used (the higher,

the more important). p-values for Logistic regression were calculated with approach 1 (the

lower, the more important). Gini importances (i.e. normalised total reduction of the Gini

impurity [57]; the higher, the more important) for the tree-based classifiers were calculated by

the sklearn implementations internally. The last nine columns show how the respective SNP

ranked in importance for the single ML methods. Note, that for most models SNPs that were

already known (and that were therefore removed) scored highest. Since they were excluded

(and due to dropped duplicated rows), not all ranks from one to 20 are present. Ranks higher

than 999 have been replaced with a ‘+’ sign. For unknown genes the corresponding locus tag

has been placed into the ‘Gene’ column. AA, amino acid; Dist., distance; FI, feature impor-

tance; coef., coefficient; p-val., p-value; GI, Gini importance. For other abbreviations see Fig 3.

(PDF)

S1 Methods. Command line arguments used in the phylogenomic analysis and GWAS.

(TXT)

S2 Methods. sklearn grid search and model parameters.

(TXT)

S3 Methods. HHS algorithm and parameters.

(PDF)

S1 Data. GWAS results (SEER + LMM combined). Top 20 most significant SNPs per drug

and GWAS implementation.

(ODS)

S2 Data. GWAS LMM results with lineage effects (bugwas). Top 20 most significant SNPs

per lineage and drug. The five single-drug datasets contained different SNPs. Thus, for the dif-

ferent drugs different lineages were found and some did not contain any significant variants.

(ODS)

S3 Data. ML feature importances. Top 20 SNPs per ML algorithm and drug.

(ODS)

S4 Data. Logistic regression feature importances. Magnitudes of regression coefficients as

well as p-values calculated by approaches 1 and 2.

(ODS)
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S5 Data. HHS results for all parameter combinations tested.

(ODS)

S6 Data. Strain metadata.

(CSV)

S7 Data. Filtered genotypes.
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