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Objective: This study aimed to investigate the molecular mechanism of tumor necrosis

factor (TNF) superfamily-related genes and potential therapeutic drugs for glioblastoma

multiforme (GBM) patients based on transcriptome and epigenome.

Methods: Gene expression data, corresponding clinical data, and methylation data

of GBM samples and normal samples in the TCGA-GBM and GTEx datasets were

downloaded. The TNF-related genes were obtained, respectively, from two groups

in the TCGA dataset. Then, the TNF-related differentially expressed genes (DEGs)

were investigated between two groups, followed by enrichment analysis. Moreover,

TNF superfamily-related gene expression and upstream methylation regulation were

investigated to explore candidate genes and the prognostic model. Finally, the protein

expression level of candidate genes was performed, followed by drug prediction analysis.

Results: A total of 41 DEGs including 4 ligands, 18 receptors, and 19 downstream

signaling molecules were revealed between two groups. These DEGs were mainly

enriched in pathways like TNF signaling and functions like response to TNF. A total of 5

methylation site-regulated prognosis-related genes including TNF Receptor Superfamily

Member (TNFRSF) 12A, TNFRSF11B, and CD40 were explored. The prognosis model

constructed by 5 genes showed a well-prediction effect on the current dataset

and verification dataset. Finally, drug prediction analysis showed that zoledronic acid

(ZA)-TNFRSF11B was the unique drug–gene relation in both two databases.

Conclusion: Methylation-driven gene TNFRSF12Amight participate in the development

of GBM via response to the TNF biological process and TNF signaling pathway and

significantly associated with prognosis. ZA that targets TNFRSF11B expression might

be a potential effective drug for clinical treatment of GBM.

Keywords: glioblastomamultiforme, differentially expressed genes, tumor necrosis factor superfamily genes, DNA

methylation, survival analysis
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive cancer
that represents 15% of all brain tumors (1). The most common
length of survival following diagnosis is 12 to 15 months, with
fewer than 3% to 5% of people surviving longer than 5 years
(2). Typically, surgery after chemotherapy and radiation therapy
are commonly used for the treatment of GBM (3). However,
the cancer usually recurs due to poor effect of existing drugs or
treatment strategies on the diffusive, infiltrative, and metastatic
of GBM (4).

Further understanding of the molecular mechanisms involved
in the development of GBM may contribute to the development
of new therapies and strategies (5). Recent observations after
immunotherapies with cytokines suggest an immunological and
even clinical response from immunotherapies (6). Actually,
members of the tumor necrosis factor (TNF) superfamily
(TNFSF) and TNF receptor superfamily (TNFRSF) have crucial
roles in both innate and adaptive immunity (7). A previous
study shows that tumor necrosis factor (TNF) and the associated
receptor superfamily play important roles in the development
of GBM (8). Some TNFs such as TNF-α are upregulated
in GBM cells, which further play an important role in
GBM progression (9). TNFRSF19 is upregulated in advanced
glial tumors and promotes glioblastoma cell invasion (10).
Furthermore, DNA methylation plays an important role in
gene expression regulation during the development of tumor
(11). Abnormal epigenetic modification can lead to tumors,
genetic disorders, inflammation, aging, and neuropsychiatric
abnormalities (12). A previous study shows that epigenetic
therapy with inhibitors of histone methylation suppresses DNA
damage signaling and increases glioma cell radiosensitivity (13).
Methylation profiling can be used to identify different groups of
GBM according to their tumorigenesis (14). However, due to the
lack of integrated analysis of epigenomic and transcriptome data,
the specific role of DNA methylation sites and TNF-related gene
expression changes in GBM progress, as well as potential effective
drugs associated with these genes, are still unclear.

In this study, the gene expression data, clinical information,
and methylation data of GBM tumor samples and normal
tissue samples in TCGA-GBM dataset and GTEx dataset
were downloaded. The differentially expressed genes (DEGs)
were explored between tumor and normal samples, followed
by function and pathway enrichment. Then, the expression
of TNF superfamily-related genes and upstream methylation
regulation mechanism was investigated to explore candidate
genes and prognostic models. Finally, the protein expression
level of candidate genes was performed, followed by drug
prediction analysis. This study hoped to investigate themolecular
mechanism of TNF superfamily-related genes and potential
therapeutic drugs for GBM patients.

MATERIALS AND METHODS

Data Acquisition
A total of 96 TNF superfamily-related genes including 18
TNF superfamily (TNFSF), 29 TNF receptor superfamily

(TNFRSF), and 49 related downstream signal genes were
enrolled for the current analysis based on literature review
(15). The RNA-seq data including corresponding methylation
and clinical phenotype data of GBM samples in TCGA and
GTEx were downloaded from the University of California
Santa Cruz (UCSC, http://xena.ucsc.edu/) Genome Browser
database (16). A total of 166 GBM samples obtained from
the TCGA-GBM dataset were enrolled as the tumor group.
Meanwhile, 5 normal paracancerous tissue samples from the
TCGA-GBM dataset and 105 normal brain cortex samples
from the GTEx dataset were combined as the normal group.
Moreover, after being annotated by hg38 gene annotation
information (gencode.v23.annotation.gene.probemap) based on
the GENCODE database (17) and having filtered low-level
expression genes (not expressed in half of all samples), a total
of 76 TNF superfamily-related genes (Supplementary Table 1)
including 7 TNFSF, 21 TNFRSF, and 48 downstream signal
molecules were extracted for subsequent analysis.

The methylation data of GBM patients was obtained by the
correspondence between the chip methylation spectrum site
and the symbol annotation conversion file downloaded from
UCSC-Xena. Furthermore, clinical data including age, race,
gender, radiotherapy and chemotherapy information, new tumor
information, OS status, and OS time of each patient in the
downloaded data were obtained using TCGAbiolinks in R (18).

Differentially Expressed Analysis
The linear regression and empirical Bayesian methods (19, 20)
in limma package of R (21) were used to explore DEGs between
the tumor group and normal group based on the TNF-related
76 gene expression matrix. The Benjamin & Hochberg method
was used for multiple-test correction. The adjP < 0.05 and |
log2 fold change (FC)| > 1 were selected as the thresholds for
DEG screening. Then, the volcano plots and clustering heat map
were constructed using ggplot2 (version: 3.2.1) (22) and using
pheatmap (version: 1.0.12) (23), respectively.

Enrichment Analysis of DEGs
Gene ontology-biological process (GO-BP), GO-cellular
component (GO-CC), and GO-molecular function (GO-MF)
(24), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway (25) enrichment analyses of TNF-related DEGs were
performed using the Metascape software (parameter: min
overlap = 3; P-value cutoff = 0.01; min enrichment = 1.5)
(26). P < 0.01 was considered as the cutoff value of significant
enrichment results. Moreover, clustering analysis was conducted
according to the similarity of genes enriched in each term
(similarity of > 0.3). The most statistically significant term
(P-value minimum) in each cluster was selected to define this
cluster. Then, the top 20 clusters based on the P-value were
visualized by a histogram. Furthermore, to further explore the
relationship between terms, the interaction network diagram of
terms in the top 20 clusters was constructed (inclusion criteria:
terms with the most significant P in each cluster; <15 terms
in each cluster; no more than 250 terms in total; similarity >

0.3). Finally, the network was constructed by Cytoscape software
(version: 3.4.0) (27).
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Correlation Between Methylation Level and
DEG Expression
Based on the correspondence between methylation sites and
genes, all methylation sites corresponding to the differential
genes were extracted, and the Pearson correlation coefficient
(r) between each site and its corresponding gene expression
level was calculated and tested for significance. Finally, the P <

0.05 and r < −0.4 were selected as cutoff values to screen the
methylation-related genes.

Prognosis Analysis Based on DEGs and
Methylation Sites
The expression value of DEGs in each sample and the associated
patient clinical survival information were used for the DEG
prognosis analysis. Univariate Cox regression analysis was used
to analyze the associations between DEGs and prognosis, and the
DEGs with P < 0.05 were considered as the prognosis-related
genes. Meanwhile, the methylation value of methylation sites that
correspond to prognosis-related genes and the associated patient
clinical survival information were used for the methylation site
prognosis analysis. The univariate Cox regression analysis was
used to analyze the relationship between each methylation site
and prognosis. P < 0.05 was considered as the cutoff value for
candidate prognostic methylation sites.

Prognostic Model Construction and
Verification
The prognostic gene that significantly negatively correlated
with the prognostic methylation site was considered as the
methylation site-regulated prognosis-related gene. Then, these
genes were screened by multivariate Cox expression regression.
Based on the prognostic correlation coefficient β and the
combination of the expression values of selected genes, the risk
score calculation model was defined as

Risk score = βgene1 × exprgene1 + βgene2 × exprgene2

+ . . . + βgeneN × exprgeneN

The corresponding risk score of each sample was calculated,
and the samples were divided into high-risk group or low-risk
group based on the median risk score. To reveal the relationship
between high/low-risk group and prognosis, the Kaplan–Meier
(KM) (28) survival curve and heat map were used to assess the
survival time distribution and gene expression value of the two
groups. To validate the risk model, the expression profile data
of WHO IV grade samples, including GBM, rGBM, and sGBM
(DataSet ID: mRNAseq_325) (29, 30), were downloaded from the
CGGAdatabase (http://www.cgga.org.cn/download.jsp). Clinical
information such as gender, age, chemoradiation information,
OS status, and OS time in these data were further enrolled in
this study.

Independence Analysis of Prognostic
Models
To investigate whether the prognostic model could be
independent of other clinical variables (including age, gender,

etc.), univariate Cox regression analysis was performed based
on independent variables including high/low-risk groups, age,
and gender. Then, the factors with P < 0.05 were enrolled for
the multivariate Cox regression analysis. All investigation was
performed based on TCGA and CGGA datasets, followed by
visualization with forest plots.

Protein Expression Level Verification
The Human Protein Atlas (HPA) is a database used to study
protein expression in different human tissues and organs from
RNA and protein levels by transcriptomics and proteomic
techniques (31). In order to verify the difference in protein level
of the key candidate genes, the HPA database was used to reveal
the protein immunohistochemical level of key genes in cortex of
normal people and GBM patients.

Drug–Gene Interaction Prediction
The drugs targeted by diseases-related genes were screened using
the Drug–Gene Interaction database (DGIdb, version: 2.0) (32).
Based on the drug–target gene relations, the drug–target gene
interaction network was constructed by using online database
STITCH (parameters: species= homo; medium confidence score
= 0.4) (http://stitch.embl.de/) (33).

RESULTS

DEGs Between Normal Group and Tumor
Group
A total of 41 TNF-related DEGs including 4 TNFSFs, 18
TNFRSFs, and 19 downstream signal molecules were identified
between the tumor and normal groups. The volcano plot
showed that the upregulated genes and downregulated genes
were significantly separated (Figure 1A). The heat map showed
that the samples could be obviously distinguished by DEGs
(Figure 1B).

Significant GO Function and KEGG
Pathways Enriched by DEGs
The obtained DEGs were significantly enriched in 103 GO-
BP, 1 GO-CC, 19 GO-MF, and 32 KEGG pathways in the
current functional enrichment analysis. These GO terms and
KEGG pathways were clustered into different categories based
on the similarity cluster analysis. The top 20 cluster is shown
in Figure 2A. The results showed that these DEGs were mainly
enriched in GO functions like response to tumor necrosis
factor (GO: 0034612), death receptor activity (GO: 0005035),
and tumor necrosis factor receptor superfamily binding (GO:
0032813). Meanwhile, these DEGs were mainly enriched
in KEGG pathways including the TNF signaling pathway
(hsa04668), apoptosis (hsa04210), and NF-kappa B signaling
pathway (sha04064) (Figure 2A). Moreover, the investigation
of the interaction among terms in each cluster is shown in
Figure 2B. Each node represents a term, and the nodes with
the same color represent the terms in the same cluster. As
expected, the terms with more similarity were always clustered in
a functional module, while the terms in different clusters showed
less interactions.
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FIGURE 1 | The volcano plots and heat map for DEGs between the tumor sample and normal sample. (A) The volcano plots of DEGs; the X-axis represents the value

of log2 fold change, while the Y-axis represents the value of –log10; red triangles represent the upregulated genes, blue squares represent the downregulated genes,

and black nodes represent genes with no significant difference. (B) The heat map for DEGs; colors from blue to yellow indicated low to high representation values. The

colored blocks at the top represent samples, of which brilliant blue represents tumor samples and pea green represents normal samples; the colored blocks at the left

represent DEGs.

The Methylation Site–DEG Interaction and
Prognostic Gene Investigation
Based on the corresponding relationship between methylation
sites andDEGs, all methylation sites corresponding toDEGswere
extracted. A total of 504 methylation sites were obtained. The
Pearson correlation coefficient (r) between each methylation site
and the expression level of its corresponding gene was calculated
to screen themethylation-related genes. A total of 39methylation
sites corresponding to 16 DEGs were obtained with the cutoff
value of P < 0.05 and r < −0.4.

Furthermore, a total of 14 prognosis-related genes were
obtained. The associations between methylation sites that
correspond to prognosis-related genes and prognosis were
calculated, and 74 methylation sites that correspond to 25
prognosis-related genes were obtained to be associated with
prognosis (Supplementary Table 2).

Prognosis Model Constructed by
Methylation-Driven Genes
A total of 5 methylation site-regulated prognostic genes
including CD40, lymphotoxin beta receptor (LTBR), TNF
receptor superfamily member (TNFRSF) 10C, TNFRSF 11B,
and TNFRSF12A (Supplementary Figure 1) were revealed.
Multivariate Cox regression was performed on these 5 candidate
genes, followed by the risk model construction. The results
showed that the survival time of the high-risk group was shorter
than that of the low-risk group (Figure 3A). With the increase
of the risk score, the expression level of these 5 candidate genes
was relatively higher, and the survival rate of the high-risk
group was significantly lower than that of the low-risk group
(Figure 3B). The heat map of these 5 candidate genes in each

sample is shown in Figure 3C. Moreover, the GBM samples in
the CGGA database were used to evaluate the above risk model.
The results showed that the prognosis effect of the risk model
on the CGGA database were the same with that on the TCGA
database (Supplementary Figure 2), which further indicated that
the prognosis model constructed by these 5 candidate genes
was effective.

Independence Analysis of the Prognosis
Model
In order to investigate whether the prognosis model could
be independent of other clinical variables, the univariate and
multivariate Cox regression analyses based on the TCGA dataset
and CGGA dataset were performed. In the TCGA cohort, on
univariate Cox regression analysis of clinical valuables and risk
score, the results showed that age, relapse or metastasis, drug
therapy, radiation therapy, and risk score had a statistically
significant impact (P < 0.05). These valuables were further
included in multivariate analysis; the results showed that relapse
ormetastasis (HR 0.49, 95%CI 0.316–0.762, P= 0.002), radiation
therapy (HR 0.276, 95% CI 0.127–0.599, P = 0.001), and risk
score (HR 1.659, 95% CI 1.080–2.550, P = 0.021) were variables
that independently affect survival (Table 1, Figure 4A).

In the CGGA cohort, on univariate Cox regression analysis
of clinical valuables and risk score, the results showed that
radiation therapy, chemotherapy, and risk score had a statistically
significant impact (P < 0.05). These valuables were further
included in multivariate analysis; the results showed that
radiation therapy (HR 0.580, 95% CI 0.361–0.930, P = 0.024),
chemotherapy (HR 0.434, 95% CI 0.288–0.654, P < 0.001),

Frontiers in Neurology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 576382

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xie et al. A TNF-Related Study for GBM

FIGURE 2 | GO/KEGG pathway enrichment cluster interaction analysis of the differentially expressed genes. (A) The X-axis represents the gene ratio (–log10); the

Y-axis represents the different items of functions or pathways. (B) The interactive network among terms; different node colors indicated different clusters, and lines

indicated gene similarities among terms.

and risk score (HR 1.604, 95% CI 1.102–2.335, P=0.014) were
variables that independently affect survival (Table 2, Figure 4B).

Moreover, the univariate and multivariate Cox regression
analyses based on the TCGA dataset showed that
radiation_therapy, Chemo_status, and RiskGroup were potential
clinical variables that independently affect survival (Table 2).
The forest plot for multivariate Cox regression is shown in
Figure 4B.

Protein-Level Verification of Genes in the
Prognosis Model
The protein-level verification based on the HPA database showed
that the upregulation and downregulation of proteins between

normal and tumor samples were consistent with the expression
of TNFRSF12A (Figure 5).

Drug Prediction Analysis
A total of 13 gene–drug interaction, including three genes
(TNFRSF12A, CD40, and TNFRSF11B) and 13 drug
molecules (enavatuzumab, dacetuzumab, pg-102 inhibitor,
teneliximab, tetanus toxoid, hydroquinone, streptozotocin,
fludarabine, lucatumumab, zoledronic acid, risedronic acid,
epinephrine, and testosterone), were explored based on the
online database DGIdb (Figure 6A, Supplementary Table 3).
Furthermore, the online database STITCH was further used
to verify the relationship between drugs and corresponding
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FIGURE 3 | Prognostic verification analysis for the current prognostic model based on tumor samples in the TCGA database. (A) Survival analysis for the high-risk

group and low-risk group; survival time of the high-risk group was shorter than that of the low-risk group. The X-axis represents the overall survival time (month), while

the Y-axis represents the survival rate (percent survival). P < 0.05 was considered to be significantly different. (B) The risk score and follow-up in the high-risk group

and low-risk group. (C) The heat map for methylation site-regulated prognosis-related genes including CD40, LTBR, TNFRSF10C, TNFRSF11B, and TNFRSF12A.

TABLE 1 | The univariate and multivariate Cox regression analysis results for the TCGA dataset.

Variables Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P-value

Gender

Male/female 0.792 0.529–1.184 0.255

Race

Black race/yellow race 2.361 0.428–13.019 0.324

White race/yellow race 1.862 0.458–7.580 0.068

Age

>60/≤60 1.745 1.171–2.600 0.006 1.399 0.919–2.128 0.117

Relapse or metastasis

Yes/no 0.439 0.292–0.660 <0.001 0.49 0.316–0.762 0.002

Drug therapy

Yes/no 0.415 0.271–0.635 <0.001 1.555 0.719–3.366 0.262

Radiation therapy

Yes/no 0.307 0.202–0.468 <0.001 0.276 0.127–0.599 0.001

Risk score

High/low 1.67 1.115–2.501 0.013 1.659 1.080–2.550 0.021

HR, hazard ratio; CI, confidence intervals. P < 0.05 was considered to be significantly different.

proteins in genes (Figure 6B, Supplementary Table 4).
The result showed that zoledronic acid–TNFRSF11B was
the common interaction in both DGIdb database and
STITCH database.

DISCUSSION

GBM is the most common malignant brain tumor in adults
(34). Although TNF and methylation sites are proved to be
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FIGURE 4 | Forest map of regression analysis based on the TCGA and CGGA datasets. (A) The forest plot for multivariate Cox regression of the TCGA dataset on

factors including age, relapse or metastasis, drug therapy, radiation therapy, and risk score. (B) The forest plot for multivariate Cox regression of the CGGA dataset on

factors including radiation therapy, chemotherapy, and risk score.

associated with the progression of disease (35), the detailed
mechanisms are still unclear. In this study, the bioinformatics
analysis showed that there were 41 DEGs between two groups.
These DEGs weremainly enriched in GO functions, like response
to tumor necrosis factor (GO: 0034612), and in KEGG pathways,
like the hsa04668∼TNF signaling pathway. Moreover, a total of
5 methylation site-regulated prognosis-related genes including
TNFRSF12A, CD40, TNFRSF11B, TNFRSF10C, and LTBR were
explored. The prognostic model constructed by the five genes was
highly correlated with prognosis both in the TCGA cohort and

in the CGGA cohort, and the higher risk score indicated lower
survival. Finally, zoledronic acid–TNFRSF11B was revealed as
key point drug–gene interaction by drug prediction analysis.

It is widely known that the response to TNF signaling plays
an important role during peripheral organ inflammation in the
brain (36). This signaling is widely proved to participate in
the development of various diseases like ovarian cancer and
lung cancer (37, 38). The response to TNF signaling mediates
primary resistance to epidermal growth factor receptor inhibition
in GBM (39). A previous study shows that TNF-α induces
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TABLE 2 | The univariate and multivariate Cox regression analysis results for the CGGA dataset.

Variables Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Gender

Male/female 1.296 0.890–1.886 0.177

Age

>60/≤60 1.284 0.733–2.250 0.381

Radiation_therapy

Yes/no 0.604 0.379–0.965 0.035 0.580 0.361–0.930 0.024

Chemotherapy

Yes/no 0.475 0.320–0.705 <0.001 0.434 0.288–0.654 <0.001

IDH

Mutant/wild 0.936 0.634–1.381 0.739

1p/19q deletion

Co-deletion/non-co-deletion 0.800 0.371–1.727 0.570

Risk score

High/low 1.438 1.005–2.060 0.047 1.604 1.102–2.335 0.014

IDH, isocitrate dehydrogenase; HR, hazard ratio; CI, confidence intervals. P < 0.05 was considered to be significantly different.

FIGURE 5 | Immunohistochemical staining results of TNFRSF12A based on

the HPA database. Immunohistochemical staining of TNFRSF12A in normal

tissue [male, age 45; cerebral cortex (T-X2020), NOS (M-00100)] and in tumor

tissue [male, age 47; brain (T-X2000) glioma, malignant, high grade

(M-938033)].

angiogenic factor upregulation in malignant glioma cells which
play a role in RNA stabilization during GBM (40). Actually, the
biological function of response to TNF is commonly realized
by certain genes. TNFRSF12A is the sole signaling receptor
for the proinflammatory cytokine TWEAK (TNFSF12) (41).
Via TNF signaling such as TWEAK–TNFRSF12A, TNFRSF12A
can regulate cellular activities including proliferation, migration,
differentiation, apoptosis, angiogenesis, tissue remodeling, and
inflammation (41). It has been proved that TNFRSF12A, which
plays a role in tumor growth and metastasis, is highly expressed
in solid tumor types (42). Yang et al. showed that the upregulation
of TNFRSF12A contributed to poor prognosis in cancer (43). A
previous study shows that differential expression of TNFRSF12A
and DNA methylation contributes to the development of brain
diseases such as epilepsy (44). Wang et al. proved that there

was a close relationship between TNFRSF12A methylation and
carcinoma prognosis (45). Based on the TCGA RNA-sequencing
and methylation data, a previous study indicates that the
methylation and expression levels of TNFRSF12A is significantly
associated with prognosis of hepatocellular carcinoma, which
can be used as a prognostic risk model (46). In the current
study, TNFRSF12A was one of the five methylation site-
regulated prognosis-related genes. Meanwhile, the enrichment
analysis showed that TNFRSF12A was one of the genes that
assembled in response to TNF function. Importantly, the
protein-level verification analysis showed that the upregulation
and downregulation of proteins between normal and tumor
samples were consistent with the expression of TNFRSF12A.
Thus, we speculated that methylation-driven gene TNFRSF12A
might take part in the progression of GBM through response
to the tumor necrosis factor biological process and TNF
signaling pathway and significantly associated with the prognosis
of GBM.

Zoledronic acid (ZA) is a potent inhibitor currently used in
the clinical treatment of cancer (47). A previous study shows
that ZA enhances T-lymphocyte antitumor response to human
GBM cell lines (48). The antitumor effect of ZA combined with
temozolomide can be used to against human GBM cell DNA
methyltransferase (49). Actually, the drug effect of ZA is realized
via stimulating the expression of certain genes in GBM cells
(50). Karabulut et al. indicated that an induction in mRNA
levels of TNFRSF family genes was observed in tumor cells
under ZA treatment (51). Genetically achieved disturbances to
the expression levels of TNFSF11B can modulate the effects of
ZA on growing mouse skeletons (52). TNFRSF11B is a potential
plasma biomarker for the clinical diagnosis of various cancers
(53, 54). TNFRSF11B is proved to be differentially expressed
in many immune cells in the brain (55). GBM is resistant to
TNF-receptor family gene-induced apoptosis (56). A previous
study indicates that the expression of TNF-receptor family
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FIGURE 6 | Drug- gene interaction network. (A) The drug–gene interaction network from the DGIdb database. Red ellipses represent genes, and rectangles represent

drugs; the lines represent drug–gene interactions, of which colored lines represent known interactions while gray lines represent unknown interactions. (B) The

drug–gene–gene interaction network from the STITCH database. The block represents the drug, while the circle represents gene. Red lines represent the drug–drug

interaction, and green lines represent drug–gene interactions, and gray lines represent gene–gene interaction.

genes including CD70 and TNFRSF11B was associated with the
progression of GBM (57). In this study, the drug prediction
analysis ZA–TNFRSF11B was revealed as the unique drug–
gene interaction in both databases. Meanwhile, TNFRSF11B
was revealed as one of the five GBM candidate genes in the
methylation site-regulated prognosis-related gene analysis. Thus,
we speculated that ZA targeting TNFRSF11B expression might
be a potentially effective drug for GBM clinical treatment.
However, there were some limitations in this study. Firstly,
we preliminarily constructed a five-gene prognosis model. The
prognostic performance of the five-gene prognosis model should

be further confirmed by clinical samples. Secondly, we identified
several potential drug targets. The drug–gene interactions should
be validated by experiments, and the clinical value should be
further investigated.

In conclusion, the methylation-driven gene TNFRSF12A
might take part in the progression of GBM through response
to the tumor necrosis factor biological process and TNF
signaling pathway and significantly be associated with the
prognosis of GBM. Moreover, ZA targeting TNFRSF11B
expression might be a potentially effective drug for GBM
clinical treatment.
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