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Identifying and explaining the structure of complex networks at different
scales has become an important problem across disciplines. At the mesoscale,
modular architecture has attracted most of the attention. At the macroscale,
other arrangements—e.g. nestedness or core–periphery—have been studied
in parallel, but to a much lesser extent. However, empirical evidence increas-
ingly suggests that characterizing a network with a unique pattern typology
may be too simplistic, since a system can integrate properties from distinct
organizations at different scales. Here, we explore the relationship between
some of these different organizational patterns: two at the mesoscale (modu-
larity and in-block nestedness); and one at the macroscale (nestedness).
We show experimentally and analytically that nestedness imposes bounds
to modularity, with exact analytical results in idealized scenarios. Specifically,
we show that nestedness andmodularity are interdependent. Furthermore, we
analytically evidence that in-block nestedness provides a natural combination
between nested and modular networks, taking structural properties of both.
Far from a mere theoretical exercise, understanding the boundaries that dis-
criminate each architecture is fundamental, to the extent that modularity
and nestedness are known to place heavy dynamical effects on processes,
such as species abundances and stability in ecology.
1. Introduction
The detection and identification of emergent structural patterns has been a main
focus in the development of modern network theory. Such interest is not surpris-
ing, because these arrangements lie at the core of the discipline as one of the keys
to the origin and dynamics of a network: which assembly rules have led to an
observed pattern? How is the system constrained by its structural organization?
Those questions, thus, have led to the detection and study of a wide variety of
structural patterns, at different scales.Within the ecological literature only, macro-
scale (i.e. system-wide) patterns such as gradient [1], spatial turnover [2],
checkerboard [3,4] and segregation [5] arrangements are prominent examples.
At the mesoscale (i.e. regarding groups of nodes), core–periphery [6,7] or
combined [1] structures have also attracted the focus of researchers.

But undoubtedly, in the ecological network context, two of these patterns
have, by far, concentrated most of the efforts: nestedness and modularity, see
figure 1a,b. Modularity [8–12], a mesoscale pattern [13,14], considers the organiz-
ation of species as a set of cohesive subgroups, where species within the group
interact among them with larger frequency than with species belonging to
other groups [15].Not exclusive to ecological systems,modularity is awidespread
organizational structure [16–20]. Nestedness [21,22], a prominent macroscale pat-
tern, quantifies to which extent specialist interacts with a subset of the species or
individuals that generalists interact with [23,24]. It stands as a frequent emergent
structural arrangement, which has been observed prominently in ecology [21,25],
but also in economy [26–28] and social systems [29].
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(a) (b) (c)

Figure 1. Idealized examples of the structural organization studied in the paper. (a) A perfectly nested organization. (b) The adjacency matrix of modular network
and (c) idealized network with in-block nested structure. (Online version in colour.)
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Overall, the knowledge acquired in the last 40 years has
unveiled some of the implications each of these individual
organizational patterns have on a system’s dynamics. How-
ever, we have limited knowledge on how different structural
signatures may interlace, or how—if ever—they affect and
limit each other. A clear example is the enduring debate
around nestedness and modularity, and their possible co-
occurrence in a single structure [30,31]. On one side, nested
arrangements promote the persistence (i.e. increase in abun-
dances) of mutualistic ecological systems [32–34]; but, at the
same time, they minimize the system’s linear stability [33,34].
On the other, modular organization maximizes stability
[35,36] and biodiversity [32].

Thus, we should expect abundant, diverse and stable sys-
tems to develop jointly both these structural arrangements, in
ecology and elsewhere [26,27,29]. So far, however, we lack con-
clusive evidence that fulfils such expectation: the analysis of
real data examples has repeatedly shown that nestedness and
modularity may [29–31,37,38] or may not [29] coexist. Further-
more, the combination of both structures in the same network
has been also assessed, either as communities with nested
structure within (in-block nestedness) [1,37–39] or as commu-
nities that organize forming a nested structure [31]. And yet,
we are missing a systematic approach that tackles the plausible
coexistence of nested and modular patterns.

In this work, we show that purely structural constraints
forbid interactions to be completely modular and completely
nested at the same time, with room, however, for a wide
range of intermediate possibilities. Such mutual constraints
offer an explanation to the inconclusiveness of the afore-
mentioned efforts: modular (but not nested), nested (but not
modular) and modular–nested networks are all feasible
outcomes for a system that is confronted with a multi-
objective (abundance versus stability) optimization problem,
i.e. without a solution that can simultaneously optimize each
objective separately. Thus, our contribution to understanding
the conditions for the coexistence of these structural patterns
may shed light on the dynamical trade-offs that either arrange-
ment can facilitate. It is worth highlighting that our approach
takes into account solely the structural aspect of the problem,
without considering a plausible dynamic co-emergence of
both patterns [40,41], which we foresee as the next relevant
problem along these lines.

The article is organized as follows: §2 provides the necess-
ary definitions for nestedness, modularity and in-block
nestedness. Section 3 provides the details for a toy model
that enables the construction of a suitable synthetic bench-
mark, which is fully exploited in §4. Sections 5 and 6 are
devoted to the analytical relationship between the three
structural patterns at stake. Sections 7 and 8 stretch the
analytical findings to provide, for empirical networks,
approximate bounds to nestedness and modularity. The dis-
cussion in §9 summarizes all the previous, and considers
some research lines that stem from the current findings.
2. Structural patterns in ecological networks
In this section, we introduce the basic notions that appear
throughout the paper. For the sake of simplicity, we only
report definitions for unipartite and symmetric networks.
The extension to asymmetric and bipartite systems is not dif-
ficult but requires more intricate notation, as well as the
consideration of the different number of species that may
compose each network dimension. These extensions are
provided in the electronic supplementary material.

Explanations in the subsequent sections refer to networks,
which are often represented in the ecological literature as
binary (presence–absence) adjacency matrices A, whose
elements are aij = 1 if species i has been observed in location
j, and zero otherwise (e.g. in biogeography); or whose
elements are aij = 1 if species i interacts with species j, regard-
less of spatial relations (e.g. community ecology). However,
in purely structural terms there are no main differences in
the structure of these two representations.

2.1. Nestedness
The concept of nestedness was introduced to describe the pat-
terns of distribution of species in isolated habitats [23].
Outside ecology, it has been observed in different contexts
[26,27,29]. Besides its interest as a descriptor, nestedness has
revealed itself as a key pattern in the dynamics of ecosystems
[32–34] (and not without debate).

In a perfectly nested network, the set of neighbour nodes
(neighbour species) with few interactions (or low degree) are
a subset of thosewith larger degree. (Without loss of generality,
in the following we consider purely unipartite networks. The
extension to bipartite ones is trivial; figure 1a.) From an alge-
braic perspective, the spectral properties of such perfectly
nested graphs have been studied by mathematicians [42–44],
which later facilitated the proposal of a robust detection
method [45], in which Staniczenko et al. quantified nestedness
with respect to the maximum eigenvalue of binary and
weighted graphs’ adjacency matrices. In a different tradition,
ecologists have also dedicated many efforts to quantify nested
structures in real systems. In first place, there are measures
based on counting misplaced relations to complete a perfect
upper triangular nested structure in A, such as the nested
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temperature (NT) measure, introduced by Atmar & Patterson
[21]. To overcome some pitfalls around placement-based
measures, Almeida-Neto et al. [46] developed overlap metrics,
such as the node overlap and decreasing fill (NODF), which
considers the amount of common neighbours between every
two pair of nodes in matrix A, alongside with its weighted ver-
sion [47–49]. In this work, we stick to a NODF-like descriptor
since it allows much easier analytical development.

For the case of a unipartite symmetric system with NT

species encoded in matrix A [ {1, 0}NT�NT and aij = aji,
nestedness can be measured as

N ¼ 2
NT

XNT

ij

Oij � hOiji
k j(NT � 1)

Q (ki � k j)
� �8<

:
9=
;, (2:1)

where Oij ¼
P

k aikajk accounts for the amount of commonly
shared neighbours between species i and j (a.k.a. overlap);
ki ¼

P
k aik corresponds to the degree of node i and quantifies

the number of species with whom i is related to; and Θ ( · ) is
the Heaviside step function that ensures that Oij has a positive
contribution when ki≥ kj. Additionally, Oij is conveniently cor-
rected by a null model that discounts the expected change
of each species have to share a neighbour [39], namely the
expected overlap hOiji. Assuming no correlation between
neighbouring species of i and j the probability of sharing a par-
ticular neighbour only depends on the degree of i and j and on
size of the network, (kik j)=N2

T . Hence, the average overlap is
hOiji ¼

PNT
k¼1 (kik j)=N

2
T ¼ (kik j)=NT . The presence of a null

model term enforces N [ [0, 1). Note that equation (2.1)
follows NODF closely (and often reduces exactly) (Almeida-
Neto et al.) if the term hOiji is suppressed.
2.2. Modularity
Modular structure is a rather ubiquitous mesoscale architec-
ture [16,17,19,20]. It comes under many names (communities,
compartments, modules, clusters), which amount to the fact
that nodes are organized to form groups, i.e. devoting many
links to nodes in the same group, and fewer links towards
nodes outside [15] (figure 1b). This simple intuition hides
behind an NP problem, provided that the number of possible
ways to partition a graph scales faster than polynomial with
respect to the network size: even for really small graphs, an
exhaustive assessment of every partition’s fitness becomes
unfeasible. For this reason, the network science community
has developed a rich collection of algorithms and method-
ologies to infer these communities from relational data.
Probably, the most popular method in network science, and
in particular in ecology, is through themaximization of a fitness
function called modularity Q∈ [0, 1) [13]. We opt for this
definition of communities because, besides being the most
popular, it allows for the set of analytical developments in
§§5 and 6. Formally,

Q ¼ argmax
a

1
2L

XNT

i,j¼1

aij �
kik j
2L

� �
d(ai, a j), (2:2)

where L is the total number of links in the network,α is a vector
representing the membership variable of species with entries
αi, δ(αi, αj) corresponds to the Kronecker delta, equal to one if
nodes i and j belong to the same community (zero otherwise)
and ki kj/2L is a regularization term to discount the expectation
that two nodes are connected by chance considering the degree
they have. Furthermore, the original fitness function can be
rewritten in terms of the total contribution per community as

Q ¼ argmax
a

XB
c¼1

lc
L
� dc

2L

� �2
" #

, (2:3)

where B is the number of communities, lc is the total number of
links in community c, and dc is the sum of the degrees of all
nodes in such community. To ease readability, there are no
explicit membership variables α in equation (2.3), which are
implicit in variables dc and lc.

The actual algorithms to find a (sub)optimal partition come
under different flavours, i.e. considering the dynamical proper-
ties of the network at stake [50], probabilistic inference [51], etc.
See [52] for an extensive review. Furthermore, equations (2.2)
and (2.3) can be adapted to account for the underlying nature
of the network (weighted [10], signed [53], multilayer [54],
etc.). Of special interest for ecology, Barber modularity [12]
addresses the specificities of bipartite networks, in which
relations between pairs of species in the same set or guild are
forbidden. In this case, the regularization term equation (2.3)
is modified accordingly.

2.3. In-block nestedness
The existence of concurrent nested and modular organizations
in networks has been debated in different contexts [29–31].
A step beyondmere concurrence, we find the possibility of com-
bined architectures [1,37–39], i.e. networks with a modular
layout, where interactions within each module (or block) are
nested (figure 1c).

The original approaches [1,37,38] to detect nested compart-
ments started by first optimizingmodularity, then subsequently
computing the level of nestedness exclusively for nodes within
the detected communities. Although this sequential procedure
delivers good results in many situations (as detected modules
oftengather nodeswithdegree heterogeneity [55]), a specialized
fitness function is required for the general case. Thus, as in the
case of modularity, in-block nestedness detection is a hard
computational problem where the use of heuristic algorithms
is mandatory. Using the formulation developed in [39],
the degree of in-block nestedness of a network I can be
computed as

I ¼ 2
NT

XNT

i,j

Oij � hOiji
k j(Ci � 1)

Q (ki � k j)d (ai, a j)
� �8<

:
9=
;, (2:4)

where Ci is the size of the community to which node i belongs
and as in the two previous cases, I [ [0, 1). It is worth high-
lighting that this hybrid structure reframes nestedness,
originally a macroscale feature, to the mesoscopic level. In this
sense, a perfectly nested structure corresponds to an in-block
nested structure with a single community, i.e. equation (2.4)
reduces exactly to equation (2.1) when B = 1.

Other methodologies that may detect communities with
similar structural arrangements within modules exist, e.g.
core–periphery [56], but there is no guarantee that the
detected communities have nested properties.
3. Synthetic network generation model
We start the analysis of the trade-offs between the different
patterns of interest (nestedness, modularity and in-block
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Figure 2. Examples of synthetic network generation with the model introduced in [39]. The top and middle rows show the effects of the shape parameter ξ and
the number of blocks B, respectively, in a noiseless scenario (p = μ = 0). The bottom row provides some examples of the effect of the noise parameters p and μ.
(Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190553

4

nestedness) by exploring an extensive, controlled synthetic set-
ting. To this aim, we have extended a network generative
model, recently proposed in [39], to generate networks with
a fixed block size and increasing number of blocks (hence,
increasing network size), instead of networks with a fixed
size. The model assumes statistical independence between the
existence of species interactions and pivots on four parameters:
the number of communities B∈ [1, ∞), noise regarding the
existence of interactions outside species communities μ∈ [0,
1], noise regarding interactions outside a perfectly nested struc-
ture p∈ [0, 1] and a shape parameter for the generation of the
nested structure ξ∈ [1, ∞]. The shape parameter controls the
slimness of the nested structure. Although ξ affects the overall
network connectance (total number of existing species inter-
actions), it does not determine it: for example, for a network
with a single block (B = 1) and ξ = 1, the matrix fill is 50%. For
the same ξ = 1, with B = 2, the fill is 25%. On the other hand, p
and μ do not alter the density of the network. We refer the
reader to [39] for a formal proof of this aspect.

Figure 2 shows some of the synthetic networks that the
model is able to generate. The first row of the figure shows per-
fectly nested networks generated with B = 1, varying values of
ξ and fixing p = μ = 0. The second row shows perfect in-block
nested networks obtained with the same settings B > 1 and
p = μ = 0. Finally, the third row shows intermediate scenarios
varying p and μ. The left example shows an ideal modular net-
work (in terms of modularity), i.e. with no links between
communities (bottom-left); and the right example is a purely
random Erdős–Rényi network, regardless of B (bottom-right).

Our procedure enables generation of networks with frac-
tional communities, in the sense that the integer part of
B ðbBcÞ controls the number of blocks of equal size, and the
decimal part determines the relative size of a remaining
block with respect to the others. Specifically, we construct
the adjacency matrix of a network by building bBc blocks
of size NB and a remaining block of size ðB� bBcÞNB, forming
a block diagonal matrix. The choice of generating fractional
communities allows for a smoother transition between net-
works of different integer community sizes (B = 1, 2, 3, 4,…),
which, in turn, contributes to generate a finer synthetic
evaluation.

Considering all the above-described parameters, we can
derive the independent probability expressions for having
an interaction between species i and j within community c as

P(Ac
ij) ¼ [(1� pþ ppr)Q (jNB � fn(iNB))

þ pr(1�Q (jNB � fn(iNB))] (1� pm), (3:1)

where the term fn corresponds to the p-norm ball curve,
drawn for a given ξ value, and employed to generate the
perfect nested structure. Equation (3.1) implicitly models a
two-step process:

— (T1) by which we first remove from the ideal nested struc-
ture the interactions that will be considered as noise,
and then,

— (T2) these interactions are randomly distributed over the
set of remaining non-existing interactions.

The term within square brackets differentiates between the
probability of having an interaction within the nested part
and outside the nested part inside the community. These
two components are separated by the Heaviside function Θ.
Having an interaction within the nested part implies either
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the interaction has not been removed in T1, (1− p), or that
has been removed in T1 then recovered in T2, ppr. The prob-
ability of recovering the interaction pr is proportional to the
number of interactions that have been removed in T1, pL
and inversely proportional to the number of non-existing
interactions in the network, NB− L + pL. That is, pr = pL(NB−
L + pL)−1, where L is the total number of interactions within
the network. The rest of equation (3.1), pr corresponds to the
probability of having a link outside the initially nested part.
Finally, the term (1� pm) stands for the probability of not
removing the link in the process of generating inter-block
noise and pm ¼ m(B� 1)=B. Finally, the probability of an
inter-block link, between species i and j belonging to different
communities is given by

P(Ao
ij) ¼

2Lpm
2(B� 1)N2

B
¼ mL

N2
BB

, (3:2)

where the numerator corresponds to the number of removed
interactions within communities in T1, and the denominator
corresponds to the possible places where each of those links
can be relocated in step T2.

The corresponding software codes to generate synthetic
networks with nested, modular and in-block nested struc-
tures, can be downloaded from the web page of the group
http://cosin3.rdi.uoc.edu/, under the Resources section.
4. Structural analysis of synthetic networks
We begin the study of the interdependence between the
different structural measures (N , Q and I ) with the analysis
of synthetic structures constructed with the model presented
in §3. We generated a set of 2 × 105 networks with varying
parameters, using equations (3.1) and (3.2). To be precise,
we cover the following parameter ranges: B∈ [1, 9]; ξ∈ [1.5,
7]; p∈ [0, 0.6]; and μ∈ [0, 0.6]. We restrict p and μ to 0.6 to
guarantee that some identifiable pattern is still present, e.g.
maintaining the requirements of weak community structure
as defined in [15], while avoiding spurious outcomes [57].
See section V of the electronic supplementary material for
detailed information. We have assumed a fixed community
size of NB = 50. Thus, as we add communities, network size
increases proportional to B parameter. The alternative process
of fixing NT and reducing the size of the communities as we
increase B produces equivalent results, but is difficult in the
analytical approach of the following sections. For modularity
and in-block nestedness maximization, we have used the
extremal optimization algorithm [8], adapted to the corre-
sponding objective functions (equations (2.3) and (2.4),
respectively). The corresponding software codes, both for
uni- and bipartite cases, can be downloaded from the web
page of the group http://cosin3.rdi.uoc.edu/, under the
Resources section.

Figure 3 presents the results over four ternary heat-map
plots. This is a convenient diagram, since it allows the joint
assessment of the mutual relationships between the three
different structural patterns under consideration. Figure 3a
shows a density plot, showing the structural properties of the
generated networks. The colour indicates the amount of net-
works in each bin of the ternary plot. As we see, the network
generationmodel does not produce structures homogeneously
distributed over all the domain. It is apparent that the predomi-
nant architecture is modular. This is expected, since any
parameter configuration with B > 1 (more than 95% of the
generated benchmark) presents some sort of community
organization. Furthermore, modularity is the most favoured
arrangement among the three under discussion: any departure
from B = 1, and any departure from p = 0, decreases nestedness
and in-block nestedness, but leaves Q unmodified. In other
words, only parameter μ affects modularity in a negative
way. However, this bias in the generation process does not
affect our conclusions since we ensured that expected values
for each hexagonal bin presented on the rest of the paper con-
tains aminimum sample size of 20 networks. An alternativeway
to overcome this sampling problem in the non-homogeneous
space may be to apply stratified sampling techniques.

Figure 3b–d of the same figure reports the average value of
N , I andQ in each hexagonal bin of the ternary. A preliminary
visual analysis shows that the highest values ofN andQ never
overlap (red areas in Figure 3b,d). By contrast, I is able to main-
tain high values for networks that are either modular or nested.
These are valuable insights for the analytical results in the
remainder of the article: they numerically confirm that networks
cannot acquire properties of nestedness and modularity
simultaneously, whereas in-block nested networks might.

Another remarkable feature of the results in figure 3 is the
existence of sharp boundaries in the ternary plots, con-
veniently marked in dashed red. The first boundary, F1,
results from the definition of I , which generalizes N . As
stated above, equation (2.4) reduces to equation (2.1) when
B = 1. Translated to coordinates on the ternary, F1 simply
reflects that the contribution of N is always equal to or smal-
ler than the contribution of I . Thus, this holds also in
fractions fN � fI . More interesting, however, is the existence
of F2, which suggests that there is an inherent limit that con-
strains in-block nestedness to dominate over Q. On close
inspection (see figure S2 of the electronic supplementary
material), networks which map onto F2 have high values
of ξ, and very low values of p and μ. We build on this
observation to elaborate our analytical exploration below.
5. Structural analysis for a ring of star graphs
In this section, we derive analytically the expressions forN , I
and Q at the boundary F2 represented in figure 3. This is
possible because, as mentioned, networks that map onto
that boundary have common and very specific features: an
extreme fill parameter, ξ→∞ (i.e. very sparse network), a
perfectly nested intra-block structure (p = 0), and minimum
inter-block connectivity (μ≈ 0); see figure S2 of the electronic
supplementary material. Such organization corresponds
exactly to a well-defined family of network configurations:
a ring of star graphs, G* hereafter that reduces to a single
star when B = 1, and resembles a set of stars connected with
a single link through their central nodes when B > 1 (so as
to guarantee a single giant component) (figure 4).

The exact expressions for N , I and Q for G* are the key to
understand the mutual constraints that the different network
arrangements impose on each other, strictly for such an ideal-
ized case, and more loosely in general. In the following, we
consider a ring of star graphs with B communities and NB

nodes per community. For such given graph, we find the
exact values N G� , IG� and QG*. The steps behind each
expression presuppose unipartite networks. We are aware
that, in ecology and elsewhere, bipartite networks are more
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Figure 3. Ternary plots showing the joint influence of the different structural patterns analysed within the paper. Each axis corresponds to the fractional values of
the three structural patterns, i.e. fN ¼ (N =N þ Qþ I ), fQ ¼ (Q=N þ Qþ I ) and fI ¼ (I=N þ Qþ I ). The bottom axis represents N , and its
right vertex corresponds to perfectly nested networks (fN ¼ 1). Other values of fN are indicated by the dashed blue lines in the direction b of the triangle.
The right axis represents fQ, and the top vertex thus corresponds to purely modular networks ( fQ = 1). Other fQ values are indicated by horizontal dashed blue lines.
Finally, the left axis represents fI , and the left vertex corresponds to networks that are purely in-block nested (fI ¼ 1). Other fI values are indicated by lines in the
direction d of the triangle. Additionally, the black dashed lines delimit dominance regions. Each dominance region indicates (by pairs) which is the dominating
structural pattern. For the sake of clarity, the dominant structure is also indicated close to the plot axis. We refer the reader to the electronic supplementary material
for further details on the construction and interpretation of ternary plots. (a) The distribution of the generated networks over the ternary plot. The colour bar
indicates the amounts of networks in each bin. (b–d ) The average values of N , I and Q, respectively. (Online version in colour.)

Figure 4. Design of a ring of star graphs. The star graphs are connected through their central nodes. (Online version in colour.)
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prominent when it comes to study nestedness, but the required
notation and length of the equations are much less manage-
able. Thus, below we restrict for the unipartite case and
we provide the analytical values for the bipartite case in the
electronic supplementary material.

5.1. Nestedness
We derive the analytical expression for N G� from the
expression in equation (2.1). The pair overlap of a generalist
node (the centre of each star subgraph), g, with a specialist
node (periphery of a star), s, is Ogs=ks ¼ 1 if g and s belong
to the same star (and 0 otherwise). For all those pairs (regard-
less of the star they belong to), the null model contribution is
hOgs=ksi ¼ (NB þ 1)=BNB. We can obtain in a similar way the
terms for the generalist–generalist pairs between stars. Sum-
ming up all the contributions, the final expression for N G�

is as follows:

N G� ¼ BN3
B � BN2

B � 3BNB þ Bþ 2NB þ 2
BNB (BN2

B þ BNB �NB � 1)
: (5:1)

The corresponding expression for bipartite networks can be
obtained following a similar logic, but taking into consi-
deration the contributions of rows and columns separately
(Nr and Nc). This consideration renders a cumbersome
equation which impedes the readability of the present section.
Hence, the corresponding expression, along with its complete
derivation, is available in section IIIA of the electronic
supplementary material.

5.2. Modularity
In general, the optimal partition for an arbitrary network
cannot be easily obtained, except for very idealized cases
such as G*, where each star in the ring forms a community
(note that G* does not suffer, like a ring of cliques, from the
well-known Q’s resolution limit [58]).

On such a setting, we can easily derive the contribution of
each star to the total Q following equation (2.3). The total
number of links within communities is lc =NB− 1 and the
amount of links of the network, including links within and
between communities, is L = B(NB− 1) + B = BNB. The last
term, the sum of the degrees of all the nodes in community
c, corresponds to dc = 2NB. Assembling these, we obtain the
modularity of G* as

QG� ¼ B
NB � 1
BNB

� 2NB

2BNB

� �2
" #

¼ 1� 1
NB

� 1
B
, (5:2)

which is equivalent to the general expression derived in [58].
The bipartite counterpart of equation (5.2) and its complete
derivation is available in section III-B of the electronic sup-
plementary material.

5.3. In-block nestedness
The derivation of IG* resembles that of NG*, with the
difference that only nodes within the same community con-
tribute; thus, all stars have the same contribution. Focusing
now on each star, we have only two contributing terms to
the sum: the pair overlap between specialist nodes, s,
and the pair overlap of the generalist node, g, with the
specialists. In both cases, the contribution is 1. The null
model corrections are hOgsi ¼ kgks=BNB ¼ (NB þ 1)=BNB and
hOssi ¼ ksks=BNB ¼ 1=BNB. Finally, the size of the commu-
nities is Cg =Cs =NB. Replacing all the contributions in
equation (2.4), we obtain

IG� ¼ 1� 3
BNB

� 2
NB

: (5:3)

The complete derivation of equation (5.3) for the bipartite
case is also available in section III-C of the electronic
supplementary material.

The expressions presented above consider a closed ring, on
which the number of inter-community links is B. For the cases
B = 1 and B = 2, the number of inter-community links is B− 1
and the degree of the generalist nodes is kg =NB− 1 and
kg =NB, respectively. Thus, the expressions for these particular
settings demand a specific treatment, see section II of the
electronic supplementary material for details on these cases.
6. Exact constraints between N G* and QG*
The interdependences of equations (5.1), (5.2) and (5.3)
become apparent when the number of blocks, B, or the size
of the blocks, NB, are large. For the case where NB→∞,
equations (5.1), (5.2) and (5.3) reduce to

lim
NB!1

N G� ¼ 1
B
, lim

NB!1
QG� ¼ 1� 1

B
¼ 1�N G� ,

lim
NB!1

IG� ¼ 1: (6:1)

As we see, for large G* networks, nestedness and modularity
are complementary corroborating the empirical observations
in [29]. This result shows analytically that, in large systems
with low fill, the ecosystem needs to choose (with the dyna-
mical consequences it may bear) between maximizing
community structure, or maximizing nested arrangements,
but not both at the same time.

With respect to the case B→∞, equations (5.1), (5.2) and
(5.3) reduce to

lim
B!1

N G� ¼ 0, lim
B!1

QG� ¼ NB � 1
NB

� 1,

lim
B!1

IG� ¼ NB � 2
NB

� 1: (6:2)

In this case, the existence of many communities implies the
impossibility to develop a purely nested pattern. Indeed,
the mutual bounds that NG* and QG* impose on each other
are evident, displaying a perfect anti-correlated behaviour.
A plausible way to preserve both nested arrangements and
community structure is under the form of in-block nested-
ness, which yields to the maximum possible value in both
limits. Importantly, this suggests that I does not show any
incompatibility with either N or Q.

Figure 5a illustrates these results, comparing the analyti-
cal estimation of NG*, QG* and IG* (equations (5.1)–(5.3))
against B, and the numerical results for networks generated
from different parameters. As the generated networks deviate
from the ring of stars G* (i.e. p > 0 and μ > 0), results show a
worse fit to the analytical prediction, but the overall anti-
correlated pattern clearly remains. Finally, we observe that
as networks transition from a nested (B = 1) to a modular
(B > 1) architecture, the values of in-block nestedness
remain very high (close to one as equations (6.1) and (6.2)
indicate) and almost constant. Figure 5b tests the same
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evolution for a much denser network (50% of matrix fill when
B = 1, clearly far above most real networks). The anti-corre-
lated behaviour of N and Q is preserved, but the effects of
the null model term are notable: the maximum value that
nestedness can take (at B = 1) is N � 0:3.
7. Approximate constraints N and Q
(general case)

Results in §6 obtained for idealized settings (G*) point to a
more general question: can the exact constraints in equations
(6.1) and (6.2) be used to understand the co-occurrence of
macro- and mesoscale patterns for the general case? Can
we exploit the complementarity between N and Q beyond
the strict conditions of G*? This and next section target
these questions, proposing soft bounds for Q (and for I ) in
terms of N when networks deviate from idealized scenarios.
We stress the importance of this attempt since N can be
obtained for any network in polynomial time, O(N3

T), while
the maximization of Q and I are NP problems. In this situ-
ation, these bounds offer a valuable a priori intuition of the
mesoscale organization of a network. The derivation of
these bounds for an arbitrary network G is presented below.

7.1. Upper bound
The calculation of N is computationally cheap even for very
large networks. Thus, given N for a graph G, to obtain the
maximum Q value compatible with this level of nestedness,
we assume G can be approximated to G* with the same
number of nodes, NT, and nestednessN . That is, G is assumed
to have a relatively large ξ. The rationale behind this mapping
(G to G*) responds to the fact that, for any network with the
given N , the largest possible modularity value corresponds
to a network lying on F2, i.e. the G* graph (figure 3d). With
this approximation, the upper bound reduces to computing
QG* (equation (5.2)) and IG* (equation (5.3)) for a G* network
compatible with the observed values of NG* (equations (5.1)).
To attain these, the only missing information is the number
of communities, B, which, for the case of G* with equally
sized modules (that is, NT = BNB), can be obtained exploiting
equation (5.1):

N G� (NT , B) ¼ (B3 þ B2(2� 3NT)� B(NT � 2)NT þN3
T)

B(NT � 1)NT(BþNT)
:

(7:1)

This polynomial equation has three possible roots, two of them
being in the imaginary domain. The upper bounds forQ and I
are thus readily available, applying B to equations (5.2) and
(5.3). We remark that this is a heuristic approximation to Q
upper bound. The consideration of amore nuanced estimation,
which should consider the density ofG and non-homogeneous
communities, is beyond the purpose of thiswork. Additionally,
we can obtain the fractional contributions of Q, I and N over
the F2 boundary, f

F2
Q , fF2I , fF2N (figure 3). In particular, fF2Q will be

required to estimate the lower bound.
7.2. Lower bound
We now turn our attention to the minimum value that Q can
attain, which is obtained at the boundary F1, see figure 3d.
Heuristically, this makes sense because networks which
belong to the region along F1 are thosewith B = 1, see electronic
supplementary material, figure S2a. To obtain the lower
bounds for Q we assume that N values are approximately
constant with respect to the contributions fQ. This is not a
strict fact, but an observation from figure 3b. Additionally, at
the boundary F1, we know that N ¼ I . Thus, with the actual
measure of N , and fF2Q obtained though the upper bound
estimation, we can obtain Q as

fF1Q � fF2Q ¼ Q
Qþ I þN ¼ Q

Qþ 2N : (7:2)

The lower bound for I does not need a heuristic estimation
because, as mentioned, its definition implies a hard lower
limit when B = 1, i.e. I ¼ N .

Figure 6a shows the values of Q as a function of N for the
previous synthetic ensemble (∼2 × 105 networks). Q values, as
obtained with the optimization algorithm, are plotted in grey
or yellow, and the values of the theoretical upper and lower
bounds are plotted in black. The red line indicates the average
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values ofQ for a fixedN , and the overlaid error area represents
one standard deviation above and below that average. Our
approximation of Q bounds is in good agreement with actual
values obtained after optimization: most of the optimized Q
values lie within the estimated soft bounds. Despite the wide
range of parameters ξ, B, p and μ—far from limiting cases in
most cases—estimated upper bounds behave like Q ¼ 1�N
almost perfectly, in accordance with our analytical insights.
While these bounds are trivial when N � 0, we observe
that, for intermediate-to-high values of nestedness, these pro-
vide relevant information about the possible mesoscale
organization of the network.

Modularity values, Q, above the upper bound correspond
to networks with a single community B = 1 and perfectly
nested structure, p = 0 (see electronic supplementary material,
figure S3). These networks, coloured as yellow in figure 6a
and less than 0.1% of the total, are dense enough to allow a par-
tition with B > 1 where the nodes of higher degree are gathered
in a block, resulting in values of Q larger than expected [39].
The small fraction of yellow values below the lower bound
approximation also correspond to networks with B = 1, but
with different (ξ, p) parameters. In the same spirit, the upper
and lower bounds for I can be as well approximated from
the actual value of N (see electronic supplementary material,
figure S4). For the sake of completeness, Q-I scatter plots are
shown in electronic supplementary material, figure S5, where
we reconfirm that I and Q can coexist, i.e. there is no clear
map or mutually imposed constraints from one to the other.

The corresponding software codes to obtain the upper
and lower bounds for Q and I are included in the package
that can be downloaded from the web page of the group
(http://cosin3.rdi.uoc.edu/), under the Resources section.
8. Application to real networks
For the conducted experiments with synthetic networks,
we have seen that N provides informative bounds to the
mesoscale organization. However, real networks differ from
idealized synthetic networks, e.g. the assumption of homo-
geneous sizes of communities or uncorrelated noise. To
assess the accuracy that our development has in real scenarios,
weperform experiments on 347 real networks, covering several
domains: 57 real unipartite networks [39] (mostly social and
economic networks) and 290 bipartite networks (ecological in
most cases [59], with some social networks [60] as well).

Remarkably, for these real networks, figure 6b,c, our bound
estimations also hold quite accurately. In general, we observe
that for both uni- and bipartite real networks, the limits and
bounds for the bipartite case behave as expected. In general,
the larger N , the tighter are the bounds of Q, and the smaller
the maximum value of Q. In 45 of these networks the bounds
fail: the obtained modularity is either above or below the
upper or lower bound, respectively. To ease visualization,
figure 7 presents the same results, sorted by the difference
between the upper and lower bounds. Results show that, in gen-
eral, we have a good estimation of the bounds. For the bipartite
networks, results are clearer, since higher values of nestedness
produce tighter bounds. For the unipartite case, the low
values of nestedness of these networks derive wider bounds.
9. Discussion
While macro- and mesoscale arrangements in complex net-
works have been studied in depth, we know little about how
they coexist and interfere with each other. Understanding
and, above all, quantifying such interferences and possible
mutual restrictions, becomes necessary for many reasons.
First, because empirical evidence suggests the concurrence of
more than one pattern within the same network [29–31,37].
Second, because a preliminary approximation of the mesoscale
structural features of a network is appealing, in the face of
prohibitive costs to analyse very large amounts of data. Finally,
the interplay between different arrangements (prominently
nestedness and modularity) is thought fundamental to
decipher the dynamical behaviour of many empirical systems
(like ecological, economic and technological networks among
others). Under this light, a network should not be regarded,
for example, as purely modular or purely nested; rather, it
may combine structural features that reflect the fact that
the system has evolved under different dynamical pressures,
favouring different—sometimes competing—arrangements.
Indeed, at least in ecology, it has been shown that each structural

http://cosin3.rdi.uoc.edu/
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pattern enables dynamical properties that may be beneficial for
an ecosystem in one sense, e.g. increasing species abundances
[32,34], but detrimental in another, e.g. diminishing the persist-
ence of species and the system’s resilience [33].

In this work, we have quantified, numerically and analyti-
cally, the interference between nestedness (at the macroscale),
modularity and in-block nestedness (at the mesoscale) struc-
tural organizations, in both uni- and bipartite settings. We
show that modularity and nestedness are antagonistic architec-
tures, the growth of one implies the decline of the other, which
can be used to estimate mutual bounds in synthetic and real
settings. The need to preserve ingredients from both arrange-
ments points at intermediate nested-modular regimes, which
are indeed possible with in-block nested structures.

Our results stand as a theoretical and numerical step for-
ward to better understand past empirical evidence, which
pointed at the harsh (but not impossible) coexistence of nest-
edness and modularity, in ecology and elsewhere. In doing
so, we pave the way to future research that aims to clarify,
from a richer perspective, the role of one or more structural
patterns in the assembly and evolution of networked systems.
The present paper leaves open three direct lines of develop-
ment: one, aiming at analytical results for a more general
family of networks, particularly for networks with higher
connectance (lower ξ ) and the inclusion of more realistic set-
tings, such as heterogeneous community size distributions.
The second line refers to the dynamical mechanisms that
enable the emergence of in-block nested structures, especially
from purely nested initial conditions, to reveal to what extent
such hybrid architecture is indeed a transitional organiza-
tion between nestedness and modularity. Finally, in-depth
evaluation of the dynamical properties of in-block nested
structures is needed, following the rich trail of works that
have studied ecologically relevant processes, e.g. abundance
maximization and stability.
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