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Abstract: Neurogenic thoracic outlet syndrome (nTOS) is a musculoskeletal disorder in which
compression of the brachial plexus between the scalene muscles of the neck and the first rib results in
disabling upper extremity pain and paresthesia. Currently there are no objective metrics for assessing
the disability of nTOS or for monitoring response to its therapy. We aimed to develop digital
biomarkers of upper extremity motor capacity that could objectively measure the disability of nTOS
using an upper arm inertial sensor and a 20-s upper extremity task that provokes nTOS symptoms.
We found that digital biomarkers of slowness, power, and rigidity statistically differentiated the
affected extremities of patients with nTOS from their contralateral extremities (n = 16) and from
the extremities of healthy controls (n = 13); speed and power had the highest effect sizes. Digital
biomarkers representing slowness, power, and rigidity correlated with patient-reported outcomes
collected with the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire and the visual
analog scale of pain (VAS); speed had the highest correlation. Digital biomarkers of exhaustion
correlated with failure of physical therapy in treating nTOS; and digital biomarkers of slowness,
power, and exhaustion correlated with favorable response to nTOS surgery. In conclusion, sensor-
derived digital biomarkers can objectively assess the impairment of motor capacity resultant from
nTOS, and correlate with patient-reported symptoms and response to therapy.

Keywords: thoracic outlet syndrome; wearables; sensors; disability; digital health; upper extremity

1. Introduction

Neurogenic thoracic outlet syndrome (nTOS) is a musculoskeletal disorder in which
the brachial plexus is dynamically compressed within the scalene triangle, an anatomic
space bordered by the anterior and middle scalene muscles where they insert on the
first rib. The etiology of nTOS is not well understood; however, it is believed to be a
consequence of traumatic or repetitive scalene muscle injury that narrows the scalene
triangle. Brachial plexus compression results in upper extremity pain and paresthesia
that are exacerbated by the organic narrowing of the scalene triangle that occurs with
hand-over-head activity. Neurogenic TOS is estimated to affect 3–80/1000 individuals, is
highly prevalent among industrial workers, athletes, computer users, and musicians [1–5],
and accounts for substantial loss of employment and inability to perform activities of daily
living (ADL) [6–9].

Patients with nTOS are generally first treated with physical therapy (PT) to relieve
muscular compression of the brachial plexus. Surgical decompression with first rib resec-
tion and scalenectomy is offered if PT is ineffective. However, there are no standardized
methods for assessing the severity of nTOS or for assessing the efficacy of any therapy for
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nTOS. This has resulted in highly variable nTOS treatment protocols and has perpetuated
confusion among patients and providers on assignment of best therapy. For example, PT
is ineffective in the majority of cases and commonly aggravates the symptoms of nTOS,
yet individuals with nTOS often undergo long unproductive periods of PT before being
offered surgery [10–16]. Further, PT is prescribed as a variety of regimens, and at least
seven approaches to first rib resection and scalenectomy are currently practiced. The lack
of reliable metrics for assessing the severity of nTOS has precluded the rigorous assessment
of nTOS therapy, limited confidence in available therapies, and constrained the design and
conduct of the clinical trials that are needed to advance the field.

We and others have investigated patient-reported outcome measures (PROMs) for
the semi-quantitative assessment of nTOS severity, including the Disabilities of the Arm,
Shoulder and Hand (DASH) questionnaire and other questionnaires for pain and quality
of life [6,17–21]. These instruments are subjective, however, and suffer from the selection
and scale perception biases inherent in self-reporting modalities [22]. Further, there is no
PROM designed specifically for nTOS, and PROMs do not capture the extremity-specific
physiologic limitations of nTOS. To address these challenges, we extracted sensor-based
metrics of extremity function during a brief hand-over-head extremity task that narrows
the scalene triangle and provokes the symptoms of nTOS. Our primary goal was to identify
digital biomarkers of upper extremity function that are impacted by nTOS and that can be
applied to objectively define its severity and monitor its response to therapy.

2. Materials and Methods

Participants. Eligible participants with nTOS were prospectively recruited from the
Baylor College of Medicine TOS Clinic in accordance with an approved IRB protocol
(H-38994). Inclusion criteria included age ≥18 years and diagnosis of unilateral nTOS.
Exclusion criteria were bilateral nTOS, prior surgical treatment for nTOS, and concomitant
pectoralis minor syndrome. To be assigned the diagnosis of nTOS, patients were required
to satisfy four of four Society of Vascular Surgeons (SVS) diagnostic criteria [14]:

(1) Central findings including symptoms of irritation/inflammation at the scalene trian-
gle and/or scalene muscle tenderness.

(2) Peripheral findings including upper extremity symptoms of central nerve compres-
sion (numbness, pain, weakness, etc.) at baseline or with provocative maneuvers.

(3) Absence of other diagnoses responsible for the majority of symptoms, in accordance
with a standard clinical evaluation that we have described previously [23].

(4) Response to ultrasound-guided scalene muscle block [24], considered as ≥30% sub-
jective improvement in the predominant nTOS symptom.

Healthy subjects ≥18 years old without a history of pain, surgery, or limitation of the
upper extremity were prospectively recruited to our IRB-approved protocol and included
students, research interns, and staff at our institution.
nTOS Therapy. All nTOS patients were initially treated conservatively with a standardized
outpatient PT regimen based on the Edgelow protocol [25] for at least 8 weeks. A sub-
sample of participants included those whose symptoms did not meaningfully improve
with PT and who desired and underwent surgery. Meaningful symptom improvement
by PT was a clinical decision made between the physician team, patient, and physical
therapist. This represents the current clinical standard for determining response to PT and
underscores the rationale for this study. Surgery for nTOS was performed by transthoracic
robotic first rib resection, scalenectomy, and brachial plexus neurolysis, an approach that
we have pioneered and that results in minimal surgical morbidity [26,27].
Sensor-based assessment of extremity function. We designed a “Press Test” to assess the
limitations of upper extremity motor capacity from nTOS using wearable sensors. The Press
Test was modeled after the elevated arm stress test (EAST), a provocative clinical test that
narrows the scalene triangle and exacerbates the prototypic symptoms of nTOS as a result of
hand-over-head activity [14]. An inertial measurement unit (IMU) (LEGSys™, BioSensics,
Newton, MA, USA) was placed on the upper arm using an adjustable strap. Each IMU
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includes a tri-axial accelerometer and a tri-axial gyroscope that enable continuous, wireless
measurements of upper-arm acceleration and rotation speed at high temporal resolution
(100 Hz). Sensors of the IMU were oriented to a set reference frame by axis correction
using quaternion algorithms [28,29]. A single research assistant performed the test on each
subject, who begins with the upper extremity abducted 90 degrees with the elbow flexed
90 degrees (position 1, Figure 1).

The subject then completed 180-degree arm abduction with elbow extension to the
“stick-up” position (position 2, Figure 1) and then returned to position 1, repeating the cycle
as rapidly as possible for 20 s. At the conclusion of the test, we extracted 3D angles, angular
velocity, and position parameters according to our prior methods [28,30]. A simple moving
average filter (6 points) was applied to reduce artifacts, and zero crossing (ZC) points
which did not satisfy minimum expected time-interval thresholds excluded [31]. Matlab
software (Mathwork, Inc., Ver R2018a) was used for signal pressing and feature extraction.
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Figure 1. Press Test. We designed a 20-s repetitive hand-over-head exercise that narrows the scalene
triangle and exacerbates the symptoms of nTOS by anatomically narrowing the scalene triangle
with arm elevation. Using an inertial measurement unit, digital biomarkers of nTOS were identified.
Copyright 2020 Baylor College of Medicine.

Patient-reported outcome measures (PROMs). Demographic information including age,
gender, height, weight, body mass index (BMI), hand dominance, and ethnicity was col-
lected at enrollment. Before undergoing the Press Test, participants completed the DASH
questionnaire, an instrument used to measure functional disability and QOL in individuals
with musculoskeletal conditions of the upper extremity, and which we have used to mea-
sure patient-reported disability in nTOS [17]. The DASH uses 11 items to measure physical
function and symptoms relevant to upper extremity disability and calculates a score from
0 (asymptomatic) to 100 (totally incapacitated). We captured patient-reported pain using
the visual analog scale (VAS) of pain, which ranges 0–10 [32]. Other assessments included
depression (Center for Epidemiologic Studies Depression (CES-D) scale [33]), activities
of daily living (Barthel Index), work disability (patient reporting), use of narcotic and/or
non-narcotic pain medication, and presence of headache associated with upper extremity
symptoms. A DASH score ≥85 was considered severe. A CES-D score of ≥16 identified
depression [33]. A Barthel Index ≤90 was considered moderate/total dependence.
Statistical analysis. Continuous variables were expressed as mean ± standard deviation
(SD). Unpaired t-tests, Mann–Whitney U-tests, or Chi-squared tests were used according
to the scale of the investigated variable and the distribution of data. Repeated measures
ANOVA tests compared affected and unaffected extremities within the nTOS group, and
dominant and non-dominant extremities in controls. ANCOVA tests were used for compar-
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isons between nTOS and control groups with adjustment for age and BMI. Cohen’s effect
sizes (‘d’) were determined to compare variables of interest, where d of 0.2–0.49 was small,
0.5–0.79 was moderate, 0.8–1.29 was large, and ≥1.3 was very large. Spearman correlation
coefficients (‘Rho’) were used to examine association of sensor features and DASH. To
determine the optimum cut point to distinguish between nTOS cases and healthy control
subjects, we applied receiver operating characteristic (ROC) curve analysis for the digital
biomarker with the largest effect size. Sensitivity, specificity, and area under curve were
reported for the digital biomarker with the largest effect size for distinguishing between
nTOS cases and healthy controls. Statistical significance was defined at p < 0.050, and all
statistical analyses were performed using SPSS software (v26; IBM).

3. Results
3.1. Patient Sample

Sixteen participants with nTOS and 13 age-matched control subjects were enrolled.
Table 1 displays the demographic and clinical characteristics of participants. No statistical
significance between nTOS and control participants was observed for age, height, and
hand dominance; however, the nTOS group participants were enriched for females and for
individuals with higher BMI.

Table 1. Patient Cohort.

nTOS
(n = 16)

Control
(n = 13) p-Value

Demographics

Age, years 36.3 ± 12.9 30.2 ± 9.1 0.163
Female, n (%) 16 (100%) 5 (38%) <0.001
Height, cm 162.8 ± 5.6 164.2 ± 10.1 0.717
Weight, kg 76.8 ± 14.8 64.5 ± 7.8 0.030
Body mass index, kg/m2 29.1 ± 4.5 24.5 ± 4.2 0.016
Right hand dominance, n (%) 13 (81%) 12 (92%) 0.606

Ethnicity, n (%)
0.008

Caucasian 10 (63%) 5 (38%)
African American 0 0
Hispanic 1 (6%) 0
Asian 1 (6%) 8 (62%)
Declined reporting 4 (25%) 0

Clinical characteristics

nTOS in dominant arm, n (%) 10 (63%) na na
Duration of nTOS diagnosis, years 3.6 ± 4.9 na na

Pain characteristics

DASH 54.5 ± 25.7 1.80 ± 4.8 <0.001
VAS 5.4 ± 2.9 0 ± 0 <0.001
Headache, n (%) 7 (43%) 0 (0%) 0.006
Non-narcotic pain medication, n (%) 12 (75%) 0 (0%) <0.001
Narcotics, n (%) 4 (25%) na na
Depression, CES-D 18.7 ± 12.4 na na
Depressed, n (%) 7 (44%) na na

Limitation in ADL

Barthel ADL Index 77.2 ± 34 100 ± 0 <0.001
Moderate/total dependence, n (%) 6 (38%) 0 (0%) 0.017
Moderate/severe ADL limitation, n (%) 12 (75%) 0 (0%) <0.001
Work disability, n (%) 4 (25%) 0 (0%) 0.152

Mean ± standard deviation is shown unless otherwise noted. na: not applicable; VAS: visual analog scale (0–10); ADL: activities of daily
living; CES-D: Center for Epidemiologic Studies Depression.
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Average duration of nTOS diagnosis was 3.6 ± 4.9 years. In 63% of cases, nTOS
affected the dominant extremity. DASH scores and Barthel indices were significantly
worse in the nTOS group, among which 44% had depression, 25% used narcotics, 38%
had moderate/total dependence, 75% had moderate/severe limitations in ADL, 31% had
severe extremity disability (DASH ≥ 85), and 25% reported work disability.

3.2. Sensor-Derived Assessment of Extremity Function

A typical pattern of sensor-derived angular velocity of the affected and unaffected
extremity of an nTOS patient during a Press Test is illustrated in Figure 2.
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measured during a Press Test is shown for the (A) affected extremity and (B) unaffected extremity in
a patient with unilateral nTOS.

Using ZC and peak detection algorithms, 18 kinetic and kinematic features of five
categories of motor capacity (slowness, weakness, rigidity, exhaustion, and unsteadi-
ness) were extracted (Table 2) using our previously validated algorithms [34–36]. Digital
biomarkers of slowness included speed (average range of angular velocity), duration of
abduction+adduction, rise time (duration of abduction acceleration), fall time (duration of
adduction acceleration), abduction time (duration from Position 1→2, Figure 1), adduction
time (duration from Position 2→1), and total number of cycles completed. To estimate
weakness, power was calculated as the product of range of angular velocity and range of
angular acceleration. To determine rigidity, range of abduction/adduction rotation was cal-
culated using quaternion and Kalman filters as we have described [28]. Each variable was
determined for each cycle, and their averages were compared between groups. Exhaustion
was determined by comparing change in features (including speed, rise time, power) in the
first and last 10 s. Unsteadiness was quantified using coefficients of variation for metrics
indicative of slowness, power, and rigidity.
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Table 2. Sensor-derived digital biomarkers of upper extremity motor capacity.

CATEGORY DIGITAL BIOMARKER DEFINITION

Slowness

Speed Elbow angular velocity range

Rise time Duration of abduction acceleration

Fall time Duration of adduction acceleration

Abduction time Duration for arm rising from Position 1 to Position 2 (Figure 2)

Adduction time Duration for arm returning from Position 2 to Position 1
(Figure 2)

Abduction+adduction time Total duration for a cycle of abduction and adduction

No. of cycles Number of abduction+adduction repetitions per 20 s

Weakness Power Product of angular acceleration range and angular velocity
range

Rigidity Range of motion Range of abduction/adduction rotation

Exhaustion

Decline in speed Difference between the first and last 10 s of angular velocity

Decline in power Difference between the first and last 10 s of power

Increase in abduction/adduction time Difference between the first and last 10 s of
abduction/adduction time

Increase in rise time Difference between the first and last 10 s of rise time duration

Unsteadiness

Speed variability Coefficient of variation (CV) of speed

Rise time variability CV of rise time

Abduction+adduction variability CV of abduction+adduction time

Power variability CV of power

Rigidity variability CV of rigidity

3.3. Digital Biomarkers of nTOS Severity

All participants were able to complete the Press Test. Six digital biomarkers were
statistically different between the affected and unaffected extremity of nTOS patients
(Table 3).

Table 3. Digital biomarkers of nTOS severity. Affected and unaffected extremities of nTOS patients were compared.
Shown are the variables that achieved statistical significance. Values for the dominant extremity of the control group are
included as reference healthy benchmarks.

Affected Unaffected p-Value * Effect Size ** Control Group †

Slowness

Speed (deg/s) 218.4 ± 91 322.4 ± 107.1 <0.001 1.05 898.3 ± 240.8
Abduction time (msec) 621.1 ± 461 398 ± 97.7 0.023 0.69 213.9 ± 46.3
Abd/add time (msec) 1186.5 ± 813.6 798.3 ± 300 0.039 0.63 350.0 ± 99.4
# cycles (n) 9.8 ± 5.0 12.6 ± 3.7 <0.001 0.64 30.4 ± 9.8

Weakness

Power (deg2/s3) 9358 ± 9361 20,519 ± 19,973 0.012 0.72 130,450 ± 86,355
Rigidity

RoM (deg) 60.4 ± 17.9 72.1 ± 16.4 0.022 0.68 88.8 ± 27.3

* Cohen d effect size; ** Results adjusted for age and BMI; † Values for dominant extremity; RoM: Range of motion; Abd: Abduction; Add:
Adduction; # cycles: number abduction/adduction cycles during 20 s; msec: milliseconds; s: second; deg: degree.

Speed (a measure of slowness) and power (a measure of weakness) had the largest
effect sizes for distinguishing the affected and unaffected extremities of nTOS patients
(d = 1.05 and d = 0.91; p < 0.001 and p = 0.039, respectively). Figure 3 graphically illustrates
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comparisons of speed and power, as well as range of motion (a digital biomarker of
rigidity) between the affected and unaffected extremities of nTOS patients. No digital
biomarkers of exhaustion or steadiness were statistically different between nTOS-affected
and unaffected extremities.
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Figure 3. Digital biomarkers of nTOS severity. Digital biomarkers of speed, power, and range of motion statistically
differentiated the affected and unaffected extremities of 16 nTOS patients. Each of these biomarkers in the affected
(and the unaffected) extremity in nTOS patients was statistically decreased compared with a healthy control population
(p < 0.05, * moderate effect size; ** large effect size).

In the control group, no difference was observed between the dominant and non-
dominant extremities for any digital biomarkers (p > 0.050, d = 0.02–0.25). Each of the nine
digital biomarkers of slowness, weakness, and rigidity was statistically different between
nTOS-affected extremities and dominant control extremities, with very large effect sizes
(d = 1.37–5.0, p < 0.050). Interestingly, these same nine digital biomarkers were also
statistically different between the contralateral extremity of nTOS patients and the dominant
(and also non-dominant) extremities of controls (p < 0.050, d = 0.89–4.1), suggesting that
the disability of unilateral nTOS can extend to the “unaffected” extremity. None of the
nine digital biomarkers of exhaustion and steadiness statistically differentiated the affected
(or unaffected) extremities of nTOS patients from healthy control extremities. Because the
control group was enriched for males compared with the nTOS group, we performed a
sensitivity analysis comparing digital biomarkers between the five males and eight females
in the control group and found no statistical differences in any of the 18 digital biomarkers
in this study. Using ROC curve analysis, we found that a cutoff for speed of 488.6 deg/s
had 100% sensitivity and specificity to distinguish between nTOS from healthy control
subjects (AUC = 1). To distinguish between non-affected nTOS and healthy controls, a
cutoff of 514.2 deg/sec had 100% sensitivity and 95% specificity (AUC = 0.996).

3.4. Digital Biomarkers and PROMs

Speed was the digital biomarker with the highest correlation to both DASH (rho =−0.53,
p = 0.041) and VAS (rho = −0.60, p = 0.018) (Figure 4). Significant correlations were
observed between DASH and other digital biomarkers of slowness (abduction time, rise
time, abduction+adduction time, and #cycles), rigidity, and weakness (rho = 0.42–0.53,
p < 0.050). Significant correlations were observed between VAS and these same digital
biomarkers of slowness, weakness, and rigidity (rho = 0.49–0.62, p < 0.050). Interestingly,
patients reporting work disability (n = 4) and those that did not report work disability
(n = 12) were statistically differentiated by digital biomarkers of speed (p = 0.044), rigidity
(p = 0.034), weakness (p = 0.021), and exhaustion (p = 0.045), whereas no other clinical,
demographic, or PROM variables were statistically different between these two groups
(p > 0.050).
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3.5. Digital Biomarkers for Predicting Response to PT

Of the 16 patients in our sample, eight (50%) experienced meaningful symptom
improvement and eight (50%) did not. Aside from pre-treatment DASH scores, which were
worse in non-responders (71.0 ± 20.0) compared with responders (45.5 ± 23.1, p = 0.023),
no clinical or demographic variables statistically differentiated these groups. Although
not statistically significant, those who did not respond to PT were older (40.1 ± 12.6 years
for non-responders vs. 32.9 ± 11.1 years for responders, p = 0.2), had higher pain scores
(VAS 5.9 ± 3.1 in non-responders vs. 4.4 ± 2.8 in responders, p = 0.3), and had worse
symptoms of depression by the CES-D scale (22.8 ± 16.4 in non-responders vs. 15.5 ± 5,
p = 0.4). Digital biomarkers indicating exhaustion of the affected arm were significantly
different between responders and non-responders and included decline in power (20.8%
in non-responders vs. 2.7% in responders, p = 0.048) and increase in rise time (27% in
non-responders vs. 5% in responders, p = 0.02).

3.6. Digital Biomarkers for Monitoring Response to nTOS Surgery

The subset of four patients who underwent surgery participated in follow-up assess-
ments that included a repeat Press Test 1 month later. At this time, each of the 18 digital
biomarkers statistically improved compared with their preoperative values. Biomarkers
with the greatest magnitude of change (large to very large effect sizes) were improvements
in speed and in power, as well a decrease in a biomarker of exhaustion (the rate of decline in
power). Speed was the dominant parameter, increasing 121% on average following surgery
with a very large effect size (d = 1.71, p < 0.050, Figure 5). DASH scores also improved after
surgery but with lesser magnitude and effect size (42%, d = 1.43, p < 0.050). Interestingly,
digital biomarkers of speed, power, and exhaustion on the contralateral side also improved
at 4 weeks following surgery. The largest effect size (d = 1.67, p < 0.050) was observed for
speed, and this is illustrated in Figure 5.
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4. Discussion

Neurogenic TOS is a debilitating condition. Seventy-five percent of the patients in
our cohort had at least moderate limitation in ADL, approximately half were depressed,
and one quarter reported work disability. The management of patients with nTOS is
controversial, and standardized treatment guidelines for nTOS have not been established.
This is due largely to the absence of objective metrics of nTOS severity to inform clinical
decision-making, monitor treatment outcomes, and evaluate new therapies. A monitor-
ing platform that objectively assesses function of the affected extremity would provide
especially meaningful data for the initial and ongoing assessment of patients with nTOS.

The prevailing mode of assessing disability in nTOS is the subjective impression of
the treating physician, and prior reports in the field relied on outcomes using provider
estimates of “excellent/good/fair/poor” results [9,13,15,24,37–50], often referenced as
“Derkash’s classification” [51]. Such models of practitioner-dependent reporting suffer
from observer and confirmation biases that are highlighted by studies in which patients
with favorable outcomes following nTOS therapy were subsequently judged to not have
benefited when reviewed by an independent observer [52,53]. More recently, a limited
number of different groups have investigated PROMs to assess the response to surgical
intervention for nTOS [6,17–21]; however, PROMs are also limited by their subjective nature
and by the scale and perception biases inherent in the survey platform. Further, there are
no PROMs designed specifically for nTOS, and available patient-reported questionnaires
may not appropriately capture the disability of this condition.

We designed a simple 20-s Press Test that narrows the scalene triangle and limits
upper extremity function by provoking the symptoms of nTOS. In support of feasibility for
clinical translation, each of the nTOS patients in our cohort was able to complete this task.
Using an inertial measurement unit placed on the upper extremity, we defined 18 kinetic
and kinematic digital biomarkers of upper extremity motor capacity. We investigated
which of these biomarkers could be useful for the clinical assessment of nTOS patients
by identifying which discriminated the affected extremity of nTOS patients from their
unaffected extremity, and from the extremities of healthy volunteers. Digital biomarkers
representative of slowness, weakness, and rigidity were statistically different between the
affected and unaffected extremities of patients with nTOS (six digital biomarkers) and
between nTOS-affected and control extremities (nine digital biomarkers). We reasoned
that digital biomarkers that are highly discriminatory in these analyses would be well-
positioned to quantify nTOS disability. With particularly large effect sizes, speed and
power emerged as candidate digital biomarkers.

To explore whether digital biomarkers of upper extremity motor capacity could have
a clinical advantage over patient-reported measures, we investigated their association with
work disability. We found that digital biomarkers of speed, rigidity, and exhaustion statis-
tically differentiated patients reporting work disability from those that did not, whereas
none of the clinical variables, demographic characteristics, or PROMs were able to do so.
We also explored the ability of digital biomarkers to predict response to PT, as such a test
would be useful in clinical practice to triage patients to best therapy and to limit periods of
unproductive therapy. In line with prior reports from several groups [10–16], PT was unsuc-
cessful in only 50% of the patients in our sample. While response to PT was not statistically
correlated with any clinical or demographic variable, digital biomarkers of exhaustion of
the affected arm (decline in power and increase in rise time) were significantly different
between responders and non-responders. These data indicate that the objective assessment
of nTOS-specific extremity function could provide clinically meaningful assessments of
nTOS disability.

To explore whether digital biomarkers of nTOS disability defined by a single inertial
measurement unit could be useful in addressing the challenges of monitoring response
to nTOS therapy, we investigated a subset of four nTOS patients who underwent first rib
resection and scalenectomy. In a Press Test performed one month after surgery, each of
18 digital biomarkers improved when compared with their preoperative assessment and
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biomarkers of speed, power, and exhaustion improved at higher rates than PROMs of
DASH and VAS. These data demonstrate that digital biomarkers of upper extremity motor
capacity could be useful for the objective assessment of nTOS therapies and may be more
sensitive to change than patient-reported outcomes.

In addition to its clinical potential, sensor-based assessment of extremity function in
nTOS provides unique insight into this condition that cannot be obtained from patient
reports. For example, our data showed that the functional impairment of unilateral nTOS
extended to the contralateral extremity. Nine digital biomarkers of slowness, weakness, and
rigidity were statistically worse in the contralateral extremity of nTOS patients compared
with the extremities of healthy individuals. Interestingly, these same digital biomarkers
improved in the contralateral extremity following surgery and suggest that effective therapy
for nTOS could also improve the functional performance of the “unaffected” side.

The strengths of this study include its prospective design and the development of
novel sensor-based biomarkers of nTOS disability. Limitations include the exploratory
nature of the clinical application of these biomarkers, such as prediction of response to
PT and of monitoring of response to surgery, both of which will require validation in
future studies. Additionally, compared with control patients, the nTOS group was enriched
for females and for individuals with higher BMI; however, this was at least somewhat
addressed by a sensitivity analysis that did not detect statistical differences in any of the
18 digital biomarkers between male and female control patients, and through statistical
analyses that controlled for sex and BMI.

5. Conclusions

Digital biomarkers of disability, measurable using a single wearable sensor, are a
promising, innovative platform for objectively assessing disability in nTOS. Our data
support future investigation of candidate digital biomarkers including speed, power, and
exhaustion to address major gaps in the field of nTOS, including predicting and monitoring
responses to therapy. Such individualized markers of motor capacity could personalize
the treatment of patients with nTOS by setting functional expectations and designing
management strategies tailored to the recreational and work activity requirements of an
individual. Perhaps most importantly, digital biomarkers of nTOS severity can provide the
much needed framework of outcome metrics for clinical trials needed to advance the field.

6. Patents

Some of the results and methodologies described in this study were protected by a
patent pending by the Baylor College of Medicine.
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