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Poly (ADPribose) polymerase inhibitors (PARPis) are clinically approved drugs designed according to the
concept of synthetic lethality (SL) interaction. It is crucial to expand the scale of patients who can benefit
from PARPis, and overcome drug resistance associated with it. Genetic interactions (GIs) include SL and
synthetic viability (SV) that participate in drug response in cancer cells. Based on the hypothesis that
mutated genes with SL or SV interactions with PARP1/2/3 are potential sensitive or resistant PARPis
biomarkers, respectively, we developed a novel computational method to identify them. We analyzed fit-
ness variation of cell lines to identify PARP1/2/3-related GIs according to CRISPR/Cas9 and RNA interfer-
ence functional screens. Potential resistant/sensitive mutated genes were identified using
pharmacogenomic datasets. We identified 41 candidate resistant and 130 candidate sensitive PARPi-
response related genes, and observed that EGFRwith gain-of-function mutation induced PARPi resistance,
and predicted a combination therapy with PARP inhibitor (veliparib) and EGFR inhibitor (erlotinib) for
lung cancer. We also revealed that a resistant gene set (TNN, PLEC, and TRIP12) in lower grade glioma
and a sensitive gene set (BRCA2, TOP3A, and ASCC3) in ovarian cancer, which were associated with prog-
nosis. Thus, cancer genome-derived GIs provide new insights for identifying PARPi biomarkers and a new
avenue for precision therapeutics.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

Poly (ADP-ribose) polymerases (PARPs) are DNA repair enzymes
that play roles in DNA damage repair and replication fork protec-
tion. In cancer therapy, PARP inhibitors (PARPis) target PARP genes
by reducing DNA repair function and increasing replication fork
errors in cancer cells [1]. Currently, four PARPis (olaparib, ruca-
parib, niraparib, and talazoparib) have been approved by the U.S.
Food and Drug Administration. Additionally, PARPis have been
included in the clinical guidelines for treatment of ovarian, breast,
pancreatic, and prostate cancers, and clinical trials of PARPis in
other cancers are under way.

PARPis are associated with resistance in clinical therapeutics. A
possible mechanism of PARPi resistance includes restoration of
homologous recombination (HR) repair ability due to secondary
mutations in BRCA1/2, and depletion of HR compensatory repair
pathways such as the non-homologous end joining pathway
[2,3]. Patients with BRCA1/2 mutations are sensitive to PARPis,
where PARPis lead to cancer cell death by utilizing a synthetic
lethality (SL) interaction with BRCA1/2 deficiency. However, it is
necessary to identify effective biomarkers to predict the response
to PARPis in patients without BRCA1/2 mutations as well [4]. Thus,
it is important to identify genomic biomarkers that overcome
PARPi resistance and expand its application to promote precision
medicine.
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SL and synthetic viability (SV) interactions are known as genetic
interactions (GIs). GIs refer to the effect of simultaneous changes in
two genes that is different from the expected additive effect of an
individual change [5]. SL interaction is a phenomenon when two
gene defects that cause cell death or significant impairment of fit-
ness, emerge simultaneously. SL interactions contribute to the
identification of new drug targets or drug sensitivity biomarkers
[6]. Meanwhile, SV interaction refers to the combination of gene
effects that rescue the lethal effects of single gene alterations.
Our previous work has demonstrated that SV interactions in the
cancer genome could induce drug resistance [7,8]. Our study aimed
to detect PARPi response biomarkers using the GI network in can-
cer cells based on the hypothesis that genes with SL interactions
with PARP1/2/3 may be potential sensitive biomarkers for PARPis,
and genes with SV interactions with PARP1/2/3 may induce resis-
tance to PARPis. However, the GI network for each cancer type is
unavailable. Recent functional genomic technologies such as
CRISPR/Cas9 assays and RNA interference (RNAi) have aided in
detection of essential genes by gene knockdown and knockout,
and have provided innovative tools to screen for cancer GIs [9].
For instance, CRISPR-based genetic screens have identified SL
interactions and molecular functions of genes in acute myeloid leu-
kemia cell lines [10]. Horn et al. have annotated metazoan genes
based on GI profiles that were integrated by an RNAi-based
experimental approach [11]. However, most studies focused on
SL interactions and have ignored SV interactions as well as predic-
tion values for determining drug response.

Thus, in this study, we proposed a novel computational method
to identify candidate responsive resistant and sensitive biomarkers
for PARPis by utilizing CRISPR/Cas9 and RNAi screens, and pan-
cancer pharmacogenomic datasets.
2. Results

2.1. Identification of gene mutations as candidate biomarkers for
PARPis

We used CRISPR/Cas9 and RNAi screens to identify PARP1/2/3-
related GIs (Fig. 1A). If PARP1/2/3 was knocked down and gene A
mutations caused a significant selective enhancement (or reduc-
tion) in cancer cell viability, then gene A mutations may have an
SV (or SL) relationship with PARP1/2/3 inhibition. We identified
mutated genes that significantly affected PARPi response (IC50 or
area under the curve [AUC]) in specific cancer cell types (Fig. 1A;
P < 0.01; one-sided Wilcoxon rank-sum test). Mutated genes, have
SL interactions with PARP1/2/3 knockdown, were associated with
PARPi sensitivity in cancer cells and predicted as candidate sensi-
tive biomarkers of PARPis. Whereas, mutated genes that had an
SV effect with PARP1/2/3 knockdown, and were associated with
PARPi resistance in cancer cells, were predicted as resistant candi-
date biomarkers of PARPis (Fig. 1A; P < 0.01; one-sided Wilcoxon
rank-sum test). In total, 41 resistant and 130 sensitive genes were
identified as candidate biomarkers for PARPis (Fig. 2; Table S1).

Patients with BRCA1/2 mutations are sensitive to PARPis in can-
cer cells. Our results showed that cancer cells with BRCA2 muta-
tions were sensitive to olaparib and niraparib in large intestine
tissues (Fig. 3A, B; P < 0.01; one-sided Wilcoxon rank-sum test).
In the Achilles shRNA dataset, after PARP1 knockdown, large intes-
tine cancer cells with BRCA2 mutation showed poorer proliferation
than cancer cells with wild type BRCA2 (Fig. 3C; P < 0.01; one-sided
Wilcoxon rank-sum test). Besides, according to olaparib response
data in Genomics of Drug Sensitivity in Cancer (GDSC) and PARP2
knockdown data, mutation of BRCA1 was confirmed as a sensitive
biomarker for PARPis (Fig. S1; P < 0.05; one-sided Wilcoxon
rank-sum test). Moreover, mutations in some cancer genes, such
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as RB1 (Fig. 3D-I; P < 0.01; one-sided Wilcoxon rank-sum test)
and MACF1 (Fig. S2A-F; P < 0.01; one-sided Wilcoxon rank-sum
test), were predicted as candidate sensitive biomarkers for PARPis,
and RB1 and TOP3A mutations were predicted as candidate sensi-
tive biomarkers for PARPis based on both AUC and IC50 values
(Fig. 3D-P; P < 0.01; one-sided Wilcoxon rank-sum test). In GDSC
database, TTN and TRIP12 mutations were predicted as resistant
biomarkers for PARPis based on both AUC and IC50 values (Fig. 3-
Q-V; P < 0.01; one-sided Wilcoxon rank-sum test). Importantly,
RB1 and NRDC mutations were predicted as candidate sensitive
biomarkers in both the GDSC database and Cancer Therapeutics
Response Portal (CTRP; Fig. 3D-I for RB1; Fig. S2G-S for NRDC;
P < 0.01; one-sided Wilcoxon rank-sum test).

The triple-negative breast cancer patients who treated with
veliparib plus DNA-damaging agents (carboplatin and paclitaxel)
were used to validate proposed biomarkers [12]. Mutations of
PPP1R12Bwas predicted as a sensitive biomarker of PARPi in breast
cancer (BRCA). BRCA with PPP1R12B mutations showed lower
expression than BRCA with wild type PPP1R12B in The Cancer
Genome Atlas (TCGA) (Fig. S3A; P = 9.0E-02; one-sided Wilcoxon
rank-sum test). The expression of PPP1R12B in pathological com-
plete response (pCR) patients were significantly lower than those
in residual disease (RD) patients (Fig. S3B; P = 5.0E-02; one-sided
Wilcoxon rank-sum test).

In addition, we obtained drug response data (IC50 and AUC) of
four PARPis (PARP_0108, PARP_9482, PARP_9495 and TANK_1366)
from GDSC for further validation. IC50 and AUC values in cell lines
with mutations of resistant genes (e.g. FREM1 and PCDH12) were
higher than cell lines with wild type resistant genes in at least
three PARPis (Fig. S4A, B; P < 0.05; one-sided Wilcoxon rank-sum
test). IC50 and AUC values in cell lines with mutations of some sen-
sitive genes (e.g. MACF1, TOP3A, and NOTCH1) were lower than cell
lines with wild type resistant genes in three PARPis (Fig. S4C-E;
P < 0.05; one-sided Wilcoxon rank-sum test).

2.2. Disrupting HR to mediate response to PARPis in cancer cells

PARP inhibition causes SL in cancers with defects in HR. How-
ever, HR restoration leads to resistance to PARPis even in cancers
with BRCA1/2 mutations or hypermethylation [13]. Thus, we inves-
tigated whether the genomic biomarkers predicted by GI could dis-
rupt HR to mediate the response of PARPis in cancer cells (Fig. 1B).
We found that HR proteins were significantly differentially
expressed in cancer samples with mutations of biomarker genes
than in cancer samples with wild type biomarker genes (Fig. 4;
P < 0.05; one-sided Wilcoxon rank-sum test). According to HR pro-
tein expression analysis, resistant genes affected the expression of
HR proteins such as RAD51 and BRCA2 (Fig. 4A, B). Expression of
RAD50 was significantly downregulated by 44.0% (62/141)
sensitive genes in TCGA data and 44.3% (43/97) sensitive genes
in Cancer Cell Line Encyclopedia (CCLE) data (Fig. 4C, D). RAD50
deletion is a candidate marker of response to PARPis in BRCA wild
type ovarian cancer [14]. Furthermore, expression of ATM protein
was significantly downregulated by 37.6% (53/141) sensitive genes
in TCGA data and 42.3% (41/97) sensitive genes in CCLE data
(Fig. 4C, D). Further, ATMmutant cell line significantly reduces can-
cer load and increases survival of animals after olaparib treatment
in vivo, and ATM depletion sensitizes breast cancer cells to PARP
inhibition [15,16].

Homologous recombination deficiency (HRD) genomic scarring
was scored by sum of telomeric allelic imbalance (TAI) score, the
large-scale state transitions (LST) score and the loss of heterozy-
gosity (LOH) score [17]. We investigated the effect of candidate
biomarker mutation on HRD by testing the HRD score between
groups of mutated and wild type candidate biomarkers. HRD score
was significantly lower in the mutation group than wild type of



Fig. 1. Workflow of the study. (A) Identification of potential biomarkers for PARP inhibitors (PARPis) using cancer genome data. (B) Mechanism analysis for biomarkers. (C)
Verification of biomarkers for PARPis in The Cancer Genome Atlas (TCGA). (D) Prediction of drug combination with PARPis.
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Fig. 2. Candidate genomic biomarkers for PARP inhibitors (PARPis) in cancer. Each diamond-marked module shows mutated genes as biomarkers for PARPis predicted in 11
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proposed resistant genes in TCGA, such as DYNC1H1, BCL9L, and
MFHAS1 (Fig. S5A-C; P = 3.1E-09 for DYNC1H1, P = 4.6E-05 for
BCL9L, P = 7.1E-04 forMFHAS1; one-sidedWilcoxon rank-sum test).
HRD score was significantly higher in the mutation group than
wild type of proposed sensitive genes, such as PCDH10, GHR, and
TRIP11 in LUAD (Fig. S5D-F; P = 1.2E-05 for PCDH10, P = 1.5E-05
for GHR, P = 4.9E-04 for TRIP11; one-sided Wilcoxon rank-sum
test). The above results confirmed that mutated genes that were
predicted as candidate biomarkers might affect the therapeutic
effect of PARPis by disrupting the HR mechanism.
4437
2.3. PARPi response proposed biomarkers have functional interactions
with PARP1/2/3

We suspected that PARPi-related resistant or sensitive genes
might interact with PARP1/2/3 to affect the pharmacodynamic
effect of PARPis through functional regulation. Thus, we con-
structed protein–protein interaction (PPI) networks of proposed
resistant or sensitive genes and PARP1/2/3. Most drug response
genes directly or indirectly interacted with PARP1/2/3, especially
cancer-related genes (e.g., EGFR, ABL1, and RB1) and DNA damage
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Fig. 3. Candidate biomarkers for PARP inhibitors (PARPis) in cancer. (A-C) Large intestine cell lines with BRCA2 mutation are sensitive to PARPis in Genomics of Drug
Sensitivity in Cancer (GDSC) data, and have worse viability when PARP1 is knocked down in DepMap_shRNA data. (D-J) Lung cell lines with RB1 mutation are sensitive to
PARPis in GDSC and Cancer Therapeutics Response Portal (CTRP), and have worse viability when PARP3 is knocked down in DepMap_shRNA data. (K-P) Large intestine cell
lines with TOP3A mutation are sensitive to PARPis in GDSC, and have worse viability when PARP2 is knocked down in ProjectScore_CRISPR data. (Q-S) Central nervous system
cell lines with TTNmutation are resistant to PARPis in GDSC, and have better viability when PARP3 is knocked down in DepMap_CRISPR data. (T-V) Central nervous system cell
lines with TRIP12mutation are resistant to PARPis in GDSC, and have better viability when PARP3 is knocked down in DepMap_CRISPR data. Biomarkers identified in GDSC1 or
GDSC2 are labeled as ‘‘GDSC”.

Q. Dong, M. Liu, B. Chen et al. Computational and Structural Biotechnology Journal 19 (2021) 4435–4446
repair (DDR) genes (e.g., BRCA2, ASCC3, TOP3A, and SMARCA4). EGFR
was a hub gene in the PARPi-resistant PPI network, and controlled
the state change of PARP1. Candidate resistant TJP1 and TTN genes,
neighbors of EGFR, indirectly interacted with PARP1 (Fig. 5A). TJP1
plays a role in regulating cell adhesion and matrix remodeling,
and loss of TJP1 causes MCF10A cells to become resistant to PARPis,
including olaparib, veliparib, talazoparib, and rucaparib [18,19].
Fig. 5B shows the proposed sensitive genes of PARPis and
PARP1/2/3 interaction network, within which the SL effects
observed between hub genes (RB1, BRCA2, KRAS, etc.) and
PARP1/2/3 have been reported in previous studies. For instance,
mutations in KRAS have SL interactions with PARP1/2 knockout
in colon adenocarcinoma [20]. Large intestine cancer cell lines
with KRAS mutations were sensitive to PARPis in GDSC (AUC;
P = 5.8E-03 for niraparib; one-side Wilcoxon rank-sum test) and
had SL interactions with PARP3 in ProjectScore_CRISPR data
(P = 2.5E-04; one-sided Wilcoxon rank-sum test). Moreover, we
found that RB1 mutations could mediate the sensitivity to PARPis
4438
in lung cancer cell lines (Fig. 3D-J), which is consistent with previ-
ous findings that RB1 has SL interactions with PARP1 in multiple
cancers, including lung adenocarcinoma [9]. Large intestine cell
lines with cancer gene STAT3 mutation were sensitive to PARPis
in GDSC (IC50; P = 7.3E-03 for veliparib; one-sided Wilcoxon
rank-sum test) and had SL interaction with PARP1 in Dep-
Map_shRNA (P = 4.3E-03, one-side Wilcoxon rank-sum test), and
STAT3 had indirect interaction with PARP1.
2.4. Functional analysis of candidate PARPis responsive biomarkers

PARPi-related resistant or sensitive genes had the same Gene
Ontology (GO) term annotations as that of PARP1/2/3 (Fig. S6),
which suggests that the biomarkers have SL or SV effects with PAR-
Pis by disrupting specific molecular functions and biological pro-
cesses. To explore the biological functions of candidate PARPi
response biomarkers, we performed enrichment analysis using
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Fig. 4. Differential expression of homologous recombination (HR) proteins. (A) Resistant genes disrupt the expression of HR proteins in The Cancer Genome Atlas (TCGA). (B)
Resistant genes disrupt the expression of HR proteins in Cancer Cell Line Encyclopedia (CCLE). (C) Sensitive genes disrupt the expression of HR proteins in TCGA. (D) Sensitive
genes disrupt the expression of HR proteins in CCLE. Rows of the matrix indicate resistant/sensitive genes. Red entries represent upregulation of the HR proteins, and green
entries represent downregulation of the HR proteins in the heatmap. Heatmap shows -logP values, where P values were calculated by one-sided Wilcoxon rank-sum test. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Q. Dong, M. Liu, B. Chen et al. Computational and Structural Biotechnology Journal 19 (2021) 4435–4446

4439



interacts-withct

interacts-witheracts-wwithintera
controls-state-change-oftate-ch e o-ofo

interacts-withct
interacts-withacts

nteracts-withacts

controls-state-change-ofntrols-state-cate-change-ofchange-ofs-state-change-ofe chan

i

interacts-withacts

ge ofinterainteraate-changte-ccontrols-statetrols-sta ngiitate-

interacts-withract

DYNC1H1 CMYA5
TJP1PLEC

PCDH12

RYR2PARP3

ABL1
POLE

PARP2

SMARCA4

EGFR

PARP1

PCDHA6

RNF213
RELN

PCDHB6
TTN

USP34

Catalysis precedes
Controls expression of
Controls phosphorylation of
Controls state change of
Controls transport of
In complex with
Interacts with

PARP

Direct action 
with PARP

Indirect action 
with PARP

interacts-withacts

interacts-withacts- controls-expression-ofthth xpr

interacts-withct

interacts-withact

-o

interacts-withct

interacts-withracts-w

controls-state-change-ofcontrols-state-change

controls-state-change-oftate-

interacts-withct

h

interacts-withinterainteracts

in-complex-within-complex-w

io

interacts withct

n

te

w

onn

controls-state-change-ofs-interacts-withinteracts-withct teww

catalysis-pre
catalysis-precedess-p ed

-precedescatalycatalycatalysis-pal
y pp

s-p

lele

e

precedesesex withex withex withithcatalysis-in complin comp-pe

nge-
interacts-withinte acts

acts-withthinteracts-weracts-wi

int thtatalysis-precedeslyeracts-witheracts-withctc -pititcatet
es

edeses
yy

catalysis-precedcataly s-p
i

e

ec

i

interacts-withct

cae
ed

lysis precedesysis-precedesysis-precedesis-prs-pssss--edeysisysisysisysis eeceeceeceece cts wits wiedesedesedesdectctss siits-wits-wts-wits-wedesedesedesedesedesedesedesctctctctsssssss iiieeeees-ps-s--ess-ss-s-- ceceeeeedededeeee

controls-stateols-teracts-withteracts-withctsts te-change-ofate an
-phosphorylation-ofpcontrols-olss-ps

gg
sp

ge-g

thceitit

ith

catalysis-precedes

acts-withwithhhnteractsracts-wintinte

catalysis-

catalysis-precedesysis-prall

catalysis-precedesc s-py
edesedesedes escatalysislyysis-preceysis-prec-p ee

catalysis-precedessatalysis-preatalysis-prec
des

catalysis-precedesataata is-pr

cts-with-witinteracts-withtct

ols-expression-of-expre

-expression-ofn-controls-expresol
t t ithtt

c ols-expressiol f

interacts-withi acts

in-complex-withpl
nteracts-withactsinint

complex-withwithmplein-chhex-w

cts-withctinteractctctsct

c

ithols-eols-eeeontroontrolcococompcc rorompcocolononin-c

thnhh

ith

-c
ate-change-ofgechhas-stascontrolss at

e-cha
acts-withtsinteractser tseracts-we ts

of
sis-

cha
ort-ofranspo

g
an

g
-ocontrols-tracon tratranra f

ctst

acac

f
e-oe

ntent

in

por

ffstataae-change-ogng
i

ls-sts ss-scontrolcontrololsolsols-states-controltrools statte

s cedesssis-precdesdestalysrecedececat-prpr- -ps

interacts-withracts-
sis-precesis precedesedesecatalysis-precelysss-precedesprecedeprecedreced s-precedeecedescedes

pre
prpataprere

eses edesdesdesssprecesprecrecedreced
scatalysis-cprecedesprecedespp

catalysis pcatalysis pcc ppyeeyy
edese eprecep ec-pp ee -pspprppp

s
de

edseded

ss
eddd

-precedescessalysis-ecedesecedecatacaprepreddss ptaee s-peses

in
ece

ls-expression-ofls-expressiocontrols-ntro ono

controls-state-change-ofstate-ccts withcontrolscontrolsinteraccctcc

controls-state-change-ofcc a

ols-rols

ols nge offte-chate-chate chate chate chae cols-staols stas stas stantrols
h

con
it
ont
th

t s stacontrocontrosccl natatataatrolo

it

coc

a
s

ra
offstasta

ts-withwits rorororoontrontrontrtrcococom trotrotrorommcccoocinteracti acin coin coten ctscttso

interacts-withracts-w

interacts-withcts

with

with
in-complex-withi mple

controls-state-change-ofontrols-state-change-oco

controls-state-change-ofstate-c a

ann

-oo

controls-state-change-ofate

in-complex-withn-c pl

interacts-withct

in-complex-withmplex

ion

cinter

inter

s-state-te
in

acts-withctts-interactseracnterinten racts-ac s

ssion-of
ge ofe

ctscacccinteras-withit ra
t ithhtthange-ohange-oe-oe-oanananganaaaaaai ttte-chae-chahahaaaateateteteaaaa hange-hange-e-eaaaaaatte che ch

nteracts-withctinnt

ls-switolsols

ls-els-el
ana

in

-withit
hahahahaaaaahchcha

interacts-withinte acts

s-withs withinteractsinteracts

e-ce

w
ww

tss

e-change-ofe-ccontrols-stateateontr tete

controls-state-change-ofntrols-state-change-ooonn

ts-withs-winteracnte ct

ng

e-

h

te-change-oftees-stattatatettrolswithwithconts-wts wntww

ha

ha

witwi

wit

s- edese offprecphangehysis-s-catalylyte chte chchs stats statatt cege
state chastate chastatecontrolscontrolsntnt -p-phahhh

s

controls-state-change-of
ith

s- te

interacts-witheracts-w

controls-state-change-ofe-ch

wi

controls-phosphorylatofof phosphorylat on-ofon-of interacts-withacts

interacts-withct

interacts-withon ofon ofootttt inteinteacts

t-of-ofcontrols-transporcontrols-transpo

controls-state-chawithwithntrwithith tate-change-of-state-change-of

tion-ofn-ofcontrols-phosphorylacontr phosphoryl

interacts-withn acts

iintitii

geg

a
rt

a

interacts-withct h

interacts-withracts-

h

plex-withwitin-complemple iththwitht
ate-change-ofhacontrols-states-withs-witholsh ate-

nteracts-withinteninten racts-f
ts-withwithinteracct

interacts-withsinteracts-withsinteracts-withs

f
cts-withs-interac

ange ofange of
te
gg

in ct
f

interacts-withnteracts-wit

ge

interacts-withct

interacts-within acts

nte

controls-state-change-ofate

i

interacts-withs-withs-with -wct

ate-change-ofhcontrols-statecontrols-statecontrols-statecontrols-statcontrols-stateooc nnn statccateatcccconnn

lation-ofnonnphoryphospcontrols-phospis-precedesis-precedess-p-pis-is-s deseeceec sp ryllspsp

ol

yla
cts-withthnteractntettininnn ct

interacts-withcts

racts-withe-ofe-of ct

ssctctstss

mplex-withthx-wiin-complein mple

interacts-withcontrocontroeracts-w

interacts-withct

interacts-withct

interacts-withactscts-with-winteractactsinteracts-withintnct

interacts-withct

in

a

with

in

ts withtcts-withcts-withctctinteraccinteracinteracctctacaccc

ange ofecontrols-state-chate a tion ofwithwithcont ange-ofange-ofe-e-omplexomplexomplexomplexppntrols-state-chantrols-state-chatete aa ofhh

in-complex-withmplexini

-ofthth

ini
hange-offf ge-oftate-chx withx with-wi-wi-w-w oithhthtatwiwwithitwrols sts exexex-ex-exeexxexxntnco

hh
f

ntrols-phosphorylation-ofntroontcococo atic spho

e-c-c
o mplepmplepplpplpcomcomn cn cn ccccccorols ss sssompleomplemplempleppppmplemplempleemplempleepppmplemplempleplplplplntrcocococoncccccomcococoo-cc-c-c-ccomcomcon cn ccccccccccccomos ps ppptatetatet tt t ininnnttttin-ctroltrols ss s

cocininininhhhhininininininininnnnnoonnnnnnn-nnnnnnroororo

-of-angean ee--controls-state-chaate

sststclslsststt

a

off

mp
chhhof

rolsol

gegng
trmmromomomomomommommmm

-o

ioww

inin
staxxx-x-x--xxx

cocococcccccccc

co p e t

mplex withmp hh

ontr rylatiioni

in-complex-withomplex-with

e-change-ofphorylationphorylatiocontrols-stn rols-stattcontrols phosphot l hcoont hosphntrnntrotc ls state cs stat fcccc ofono e-cteosphorylaosphoryntrols-stasta iointrols-stattl hl hnt te-chttateatennn

controls-phosphorylation-oft l h hh

in-complex-withn mple
x-x wx w

complex withex wx wwitwhorylationhorylationcomplex-withomplex-withcomplex-withomplex withcomplex-omplexcomplexomple woowitwitwitwitwsphsphosphcooooininn-n-controls-phoscontrols-phools pls pin cin cin cin cin-cin-cin-cin-ctrotr ppin-ciin-ciin-cin-cin-cin-cn-cc-ccccccspsss-cocococococo

om
it

rororortttrrttrrt

thth

PEG3

RB1

UNC79 PARP2

PARP3

SCN5A

PPP1R26

PPP1R12B

TOP3A

RBAK

RABGAP1L

SLC4A4

STAT3

ASIC2

FMO1

EPHA5

SCN3A

SLC9A8 PARP1

TRIP11

MYBPC2

CACNA1E

CEP290

ZFPM2

IKZF1

LAMB2SLC6A2 ITGA2

NOTCH1

CNTN1
PLCG1

TRPA1

OPTN

USP24

MACF1MYH6

C3

KRAS

CFTR

PLK1

DOCK8

BRCA2

USP19

PPP1R9A

CHD7

ITIH2

GNAS

GHR

UBR5 SORBS2ATXN2L

CPSF3
SH3KBP1

ASCC3

GLG1

PRRC2A

IL1RAP

DLGAP2

VWF

PCDH10

CDH23

PCDHGA2

CTNND1

PCDHA8

FAT2

FAT3

PCDHA11

Cancer Related Genes

DNA Damage Repair Genes

interacts wc

rols state chte-che-chte-chte-cls-stals-stastastaroro atataolo

ation-ofon-noryloryla

icontrols-siit
t l

ntnt

A

B

Fig. 5. Protein-protein interaction networks (PPI) between PARP1/2/3 and resistant or sensitive genes of PARP inhibitors. (A) PPI network of resistant genes and PARP1/2/3.
(B) PPI network of sensitive genes and PARP1/2/3. Red nodes represent PARP1/2/3, orange nodes indicate genes that have direct interactions with PARP1/2/3, and gray nodes
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article.)
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molecular function and biological process terms from the GO
database.

Resistant genes of PARPis were significantly enriched in molec-
ular functions associated with microtubule and dynein activities,
such as ‘‘ATP-dependent microtubule motor activity, minus-end-
directed” (Fig. 6A; P = 9.28E-06, hypergeometric test), ‘‘dynein
intermediate chain binding” (Fig. 6A; P = 4.08E-05, hypergeometric
test), and ‘‘dynein light intermediate chain binding” (Fig. 6A;
P = 4.08E-05, hypergeometric test). Paclitaxel can stabilize cellular
microtubules and block chromosome segregation, and has shown
success in clinical treatment of breast and ovarian cancers. There-
fore, PARPi resistance can be overcome by combining it with pacli-
taxel. Sensitive genes of PARPis were significantly enriched in
‘‘calcium ion binding” (Fig. 6B; P = 3.97E-06; hypergeometric test),
‘‘alpha-1, 4-glucosidase activity” (Fig. 6B; P = 1.61E-04; hypergeo-
metric test), and ‘‘maltose alpha-glucosidase activity” (Fig. 6B;
P = 1.61E-04; hypergeometric test). Calcium (Ca2+) signaling is
involved in regulating important biological processes such as
apoptosis [21]. Thus, these results indicate that mutations in sensi-
tive genes induce an increase in free Ca2+, which could promote
cancer cell death.

Resistant genes of PARPis were significantly enriched in biolog-
ical processes of tyrosine phosphorylation and synaptic transmis-
4440
sion, such as ‘‘peptidyl-tyrosine phosphorylation” (Fig. 6C;
P = 1.02E-05; hypergeometric test), ‘‘positive regulation of synaptic
transmission, glutamatergic” (Fig. 6C; P = 1.96E-05; hypergeomet-
ric test), and ‘‘positive regulation of excitatory postsynaptic poten-
tial” (Fig. 6C; P = 2.87E-05; hypergeometric test). Tyrosine
phosphorylation governs many cancer hallmarks, such as cell pro-
liferation [22], which could induce resistance to PARPis. Sensitive
genes of PARPis were significantly enriched in multiple biological
processes such as ‘‘homophilic cell adhesion via plasma membrane
adhesion molecules” (Fig. 6D; P = 3.69E-06; hypergeometric test),
‘‘aortic valve morphogenesis” (Fig. 6D; P = 4.91E-05; hypergeomet-
ric test), and ‘‘sodium ion transmembrane transport” (Fig. 6D;
P = 1.51E-04; hypergeometric test). Adhesive interactions play a
critical role in metastatic cancer dissemination [23].

2.5. Mutations in PARPi response-related gene sets to indicate
prognosis

As the mutation frequency of individual PARPi response-related
genes was quite low, we merged the PARPi resistant or sensitive
genes in one specific cancer tissue or biological process to form a
gene set. For candidate resistant genes, we focused on three genes
(TNN, PLEC, and TRIP12) in the central nervous system cell lines,



Fig. 6. Gene Ontology (GO) enrichment terms for candidate resistant and sensitive genes of PARP inhibitors. (A) Resistant and (B) sensitive gene enrichment with GO term
‘‘molecular function.” (C) Resistant and (D) sensitive gene enrichment with GO term ‘‘biological process.” Red and green circles indicate resistant and sensitive gene
enrichment, respectively. Graph exhibits the top 10 enrichment results with false discovery rate (FDR) < 0.1. Left part of the circles represent resistant or sensitive genes, and
right part of the circles represent the enrichment terms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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which were detected in lower grade glioma (LGG) and glioblas-
toma (GBM) from TCGA (Fig. 3Q-V and 7A-C). In LGG patients with
PARP copy number deletions (as a simulation of PARP inhibition),
those with mutations in the resistant gene set showed poorer prog-
nosis than those without mutations in this gene set (Fig. 7D, E;
P = 0.27; log-rank test with overall survival [OS]; P = 9.4E-03,
log-rank test with Progress Free Survival [PFS]). At the transcrip-
tome level, in cancer patients with PARP1/2/3 downregulation
(also a simulation of PARP inhibition), cholangiocarcinoma (CHOL)
and kidney renal papillary cell carcinoma (KIRP) patients with
mutations in this candidate resistant gene set had worse PFS than
those without mutations in this candidate resistant gene set
(Fig. S7A, B; P = 1.9E-04, log-rank test with PFS, CHOL; P = 9.4E-
03, log-rank test with PFS, KIRP).

For candidate sensitive genes, we focused on three DDR genes
(BRCA2, TOP3A, and ASCC3), which interacted with PARP1/2/3
(Fig. 3A-C, 3K-P, and 7F, G). Ovarian cancer (OV) patients with
PARP copy number deletions and mutations in the DDR gene set
showed better survival than those without mutations in this gene
set (Fig. 7H, I; P = 0.011, log-rank test with OS; P = 0.023, log-rank
test with PFS). In OV patients with PARP1/2/3 downregulation,
patients with mutations in the DDR gene set showed better prog-
nosis than those without mutations in this gene set (Fig. S7C, D;
P = 1.4E-03, log-rank test with OS; P = 0.011, log-rank test with
PFS). Prognostic analysis demonstrated the reliability of our pre-
dicted candidate biomarkers for PARPis.

2.6. Prediction of drug combination for PARPis

Frequently acquired resistance to PARPis has spurred efforts to
combine PARPis with other agents, such as chemotherapeutic
agents, cell cycle checkpoint inhibitors, antiangiogenic agents, and
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PI3K inhibitors [1]. Inhibition of resistance-related activated muta-
tions may provide clues to develop a combination strategy for PAR-
Pis (Fig. 1D). Cancer cell lines with EGFR mutations tended to be
resistant to olaparib according to the pharmacogenomic data in
CTRP (Fig. 8A; P = 6.5E-03, one-sided Wilcoxon rank-sum test),
and had SV interaction with PARP2 knockdown (Fig. 8B;
P = 9.9E-03, one-sided Wilcoxon rank-sum test). Cancer patients or
cell lines with EGFR mutations showed significantly higher expres-
sion of EGFR at the gene and protein levels than those without EGFR
mutations (Fig. 8C-G; P < 0.05, one-sided Wilcoxon rank-sum test).
EGFR is one of the targets of erlotinib. According to the drug combi-
nation sensitivity score (CSS) for PARPis fromDrugCombdata portal,
the CSS of the EGFR inhibitor erlotinib andPARPi ABT-888 (veliparib)
in human lung cancer cell line MSTO were ranked one and two
(Fig. 8H).

Fig. S8 shows the drug-target and PPI networks provided by
DrugComb. Many targets of erlotinib interacted with veliparib or
PARP1/2, indicating the potential cross talks between erlotinib
and veliparib. Cancer xenografts show that combination treatment
with erlotinib and olaparib has a markedly enhanced anticancer
effect in human ovarian cancer cell line A2780 [24].

In LGG patients with PARP1/2/3 copy number deletions or
downregulation of expression, patients with TTN mutations
showed worse prognosis than those with wild type TTN (Fig. S9A,
P = 8.4E-06, log-rank test with OS; Fig. S9B, P = 1.7E-05, log-rank
test with PFS). The mutation frequency of TTN was 48.6% (17/35)
and 43.2% (19/44) in Catalog of Somatic Mutations in Cancer (COS-
MIC) and CCLE central nervous system cell lines, respectively, and
11.4% (58/508) and 26.1% (6/23) in LGG patients from TCGA and
cBioportal, respectively. In cancers, TTN stimulates angiogenesis
by elongation, migration, and sprouting of endothelial cells [25].
According to a phase III PAOLA-1/ENGOT-ov25 trial, the combina-
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tion of olaparib and bevacizumab extended PFS in patients with
advanced-stage ovarian cancer, regardless of the mutation status
of BRCA1/2. Hence, we conjectured that LGG patients with TTN
mutations might benefit from the treatment of combining PARPis
and antiangiogenic drugs, such as bevacizumab.
3. Discussion

Our study proposed a novel computational methodology to
identify candidate responsive biomarkers for PARPis based on the
GI network of PARP1/2/3 according to large-scale CRISPR/Cas9
and RNAi screens, and PARPi pharmacological screening data. In
total, we identified 41 resistant genes and 130 sensitive genes
related to PARPis. Most PARPi response-related genes were associ-
ated with HR deregulation, and interacted with PARP1/2/3 in the
PPI network. Functional analysis indicated that tyrosine phospho-
rylation imbalance might mediate the response of PARPis in cancer
cells. Furthermore, in patients with copy number deletion or
downregulation of PARP 1/2/3, LGG patients with mutations in
the candidate resistant gene set (TNN, PLEC, and TRIP12) showed
poor prognosis, and OV patients with mutations in the sensitive
gene set (BRCA2, TOP3A, and ASCC3) had better prognosis. In addi-
tion, we predicted a combination therapy of EGFR inhibitor (er-
lotinib) and PARPi (veliparib) in lung cancer patients, and that
LGG patients with TTNmutation can be treated with a combination
of PARPis and antiangiogenic drugs (bevacizumab). Thus, our find-
ings provide an avenue for expanding the scale of beneficiary can-
cer patients for whom PARPi can be considered, and provide novel
treatment options to target resistance mechanisms of PARPis.

Among the 41 resistant and 130 sensitive genes, PRRC2A, USP34,
and DNAH10 overlapped, which was not contrary to our hypothesis
because mutations of these three genes mediate the response to
PARPis in different cancer types. In different cancers, the gene
mutation frequency is quite different. For example, IDH1 was
mutated in 77.3% (394/510) LGG samples, but showed < 12% muta-
tion in other cancer types in TCGA. Moreover, the basic drug sensi-
tivity of cell lines is tissue-specific. Therefore, we used our
computational methodology on samples of specific cancer types
and cell lines from specific tissues. However, statistical power
was limited by the small sample sizes of specific cell line tissues.
Thus, we did not use FDR to filter the biomarkers. Notably, PARPi
biomarkers revealed by our method were validated in different
pharmacological datasets via the HR mechanism and function
correlation.

Preclinical and clinical research on combination strategies
encompassing PARPis are ongoing to expand the scope of benefit
in patients and overcome resistance to PARPis. Relevant clinical
studies have suggested the use of a combination of PARPis and
immune checkpoint inhibitors with anticancer activity in many
cancer types. Combination of PARPis with bevacizumab or
chemotherapy has significantly improved PFS in patients with OV
[26]. In our study, we predicted combination strategies for PARPis
by directly targeting PARPi resistant biomarkers such as EGFR and
TTN. We estimated the functional effects of somatic mutations
according to transcriptome and proteome expression data, and
identified EGFRmutations as gain-of-function mutations. However,
further detailed and in-depth analyses, such as structure analysis
and animal model experiments, are warranted in future.

Cancer patients with HR defect can benefit from the use of PAR-
Pis, thereby providing new opportunities for cancer treatment
modalities. We proved our hypothesis that resistant or sensitive
genes could disrupt HR to mediate the response to PARPis in cancer
cells. HR analysis results showed that downregulated expression of
RAD50 and ATM protein expression were associated with candi-
date sensitive gene mutations. Moreover, we found that RAD51
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expression was significantly upregulated by 51.1% (72/141) sensi-
tive genes in TCGA. However, previous studies have indicated that
upregulation of RAD51 contributes to drug resistance in cancer
cells [27]. RAD51 has also been identified as a tumor suppressor,
and the upregulation of RAD51 may mediate cancer cells to be sen-
sitive to PARPis, which warrants further experiments [28].

In summary, our study systematically predicted candidate
resistant and sensitive biomarkers for PARPis, pan-cancer, by con-
structing a cancer genome GI network. Consequently, this could
pave the way for novel treatment options to target resistance
mechanisms or acquired vulnerabilities of target drugs, and guide
precise combination therapies.
4. Conclusion

PARPis have emerged as a beneficial therapeutic option for
ovarian, breast, pancreatic, and prostate cancers. However,
expanding the scale of patients who can benefit from PARPis and
overcoming drug resistance are critical for furthering precision
medicine. Our study systematically identified candidate responsive
biomarkers (resistant and sensitive biomarkers within specific can-
cer tissues) for PARPis, by constructing GIs in the cancer genome.
Gene mutations may mediate resistance or sensitivity to PARPis
by disrupting the HR mechanism. Furthermore, by analyzing the
transcriptome and proteome data, we found that EGFR with gain-
of-function mutation induced resistance to PARPis, and predicted
the combination therapy of PARPi (veliparib) and EGFR inhibitor
(erlotinib) for lung cancer. Therefore, this study paves the way
for precise combination therapies with PARPis for cancer.
5. Material and methods

5.1. Identification of PARP-related GIs

We used two publicly available CRISPR-Cas9 screening datasets.
DepMap Portal (https://depmap.org/portal/) (version, 19Q1),
which consists of 558 cell lines, and parental cell lines from CCLE.
DepMap Portal (version, 19Q1) uses Avana CRISPR-Cas9 genome-
scale knockout library and CERES algorithm to estimate gene
dependency, wherein a lower CERES score indicates more essential
genes [29]. Gene mutation information of cell lines was down-
loaded from the DepMap Portal (version, 19Q1). Another CRISPR-
Cas9 fitness screen was obtained from DepMap Project Score
(https://score.depmap.sanger.ac.uk/). We used the CRISPR deple-
tion log-transformed fold change values (fitness scores) to repre-
sent the ability required for cell growth or viability, wherein a
lower score indicated that a gene was more essential [30]. Gene
mutation profiles of 324 cell lines were downloaded from COSMIC
(https://cancer.sanger.ac.uk/cosmic).

RNAi screens were downloaded from the DepMap Portal,
Achilles 2.20.2, which includes genome-scale RNAi-based loss-of-
function screens of 501 cell lines [31]. We used gene knockdown
viability effects (gene dependency scores) for further analysis.
Here, higher shRNA scores indicated enhancement of cell viability
and a gene with lower dependency score was considered more
essential. However, there was no shRNA depletion scores for PARP2
in this dataset.

For somatic mutation data processing, we excluded mutations
in the 50-flanks, introns, intergenic regions, 50-UTR, and 30-UTR,
and excluded silent mutations [32]. For cell lines with knockdown
of PARP1/2/3, a one-sided Wilcoxon rank-sum test was used to test
whether the fitness scores were significantly different in cell lines
with and without mutation of gene A. If the fitness scores of gene A
mutation samples were significantly higher or lower than that of
the wild type samples (P < 0.01), gene A was predicted as a candi-

https://depmap.org/portal/
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date partner gene with an SV or SL interaction with PARP1/2/3
(Fig. 1A).

5.2. Identification of PARPi candidate responsive biomarkers

We downloaded pharmacological screening data from GDSC
(https://www.cancerrxgene.org/), CTRP, and Cancer Genome Pro-
ject (CGP) (Table S2) [33]. We obtained LN_IC50 (natural log of
the fitted half-maximal inhibitory concentration) values and AUC
(area under the drug inhibition curve) values of five PARPis (ola-
parib, veliparib, talazoparib, rucaparib, and niraparib) from GDSC,
two PARPis (olaparib, veliparib) from CTRP, and IC50 values of
two PARPis (olaparib, veliparib) from CGP. The cell line information
of the GDSC and CGP datasets was referenced from COSMIC, and
cell line information of CTRP was available from CCLE.

For more than three cell lines in a specific tissue, we tested the
difference in drug response values using a one-sided Wilcoxon
rank-sum test between cell lines with mutated and wild type gene
A. If the IC50/AUC values of cell lines with gene A mutation sam-
ples were significantly higher or lower than that of the wild type
samples (P < 0.01), we predicted that mutations in gene A might
induce resistance or sensitivity to PARPis in cancer cell lines.

5.3. Genome data from TCGA

Somatic mutation and copy number alteration (CNA) data of 32
cancer types from TCGA consortium were downloaded from Geno-
mic Data Commons (GDC, https://portal.gdc.cancer.gov/). CNAs
were determined by Genomic Identification of Significant Targets
in Cancer (GISTIC2) [34]. As per Shi et al., the log2 ratio cutoff val-
ues <-0.25 were defined as deletion of PARP1/2/3 [35]. To further
optimize CNAs, a one-sided t-test was used to select PARP1/2/3,
whose copy numbers had a positive correlation with gene
expression.

5.4. Survival analysis

We downloaded the OS and PFS data from TCGA. For PARP1/2/3
deficiency (deletion or downregulation), log-rank test was used to
assess the difference in the survival time between patients with
and without mutations of PARPi response-related genes. Kaplan-
Meier plots were used to present the results (Fig. 1C). We ranked
samples according to gene expression values of PARP1, PARP2,
and PARP3. Lower quartile expression values were defined as the
downregulation of PARP1/2/3.

5.5. Expression analysis

Protein expression data of CCLE cell lines were downloaded
from DepMap (version 18Q4), consisting of 213 proteins across
899 cell lines. Protein expression data of 31 cancer tissues were
downloaded from TCGA. All protein expression data were mea-
sured using reverse phase protein arrays. Gene expression values
(transcripts per million reads) of CCLE cell lines were downloaded
from the DepMap Portal (version 19Q1). Gene expression of COS-
MIC cell lines was log scale robust multi-array from microarray
analysis. Fragments per kilobase per million mapped fragments
values were used to evaluate the gene expression of TCGA samples.

We grouped samples according to the status (mutated or wild
type) of PARPi response-related genes. One-sided Wilcoxon rank-
sum test was used to identify the significant differential expression
of HR proteins (P < 0.05; Fig. 1B).

To investigate the activities (gain-of-function or loss-of-
function) of gene A mutation, we grouped the gene or protein
expression data into two groups (gene A mutation vs. gene A wild
type). Gene A mutation was considered a gain-of-function muta-
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tion if the gene or protein expression in mutated samples was sig-
nificantly higher than that in the wild type samples, which was
tested using the one-sided Wilcoxon rank-sum test (P < 0.05).
5.6. Functional analysis of PPI network

We collected 241 DNA repair-related genes from the Kyoto
Encyclopedia of Genes and Genomes database, and studies by Liu
et al. and Kang et al. [36–38]. There were 88 homology-
dependent recombination genes. Cancer-related genes were down-
loaded from the Cancer Gene Census of COSMIC to explain how
dysfunction of these genes drives cancer.

GO terms were downloaded from http://geneontology.org/, and
a hypergeometric distribution model was used to test whether the
GO terms (molecular function, biological process) were signifi-
cantly enriched in the PARPis response-related genes. P values
were corrected using the Benjamini-Hochberg correction for mul-
tiple tests, and the top 10 results with a false discovery rate
(FDR) < 0.1 were reported (Fig. 1B).

The PPI network of PARPi response-related genes was con-
structed, and Cytoscape software was used to visualize the net-
works (https://cytoscape.org/). PPI data were assembled from the
Pathway Commons database (Fig. 1B) [39].
5.7. Drug combination prediction

Drug combination prediction data were downloaded from the
DrugComb Portal Database [40]. DrugComb provides drug CSS,
which were interpreted as a normalized average inhibition of the
drug combination response, and four other synergy prediction
indexes, including bliss independence (BLISS), highest single agent
(HSA), Loewe additivity (LOEWE), and zero interaction potency
(ZIP). DrugComb recommends that only a drug combination that
achieves a higher synergy score in all the models as well as a
higher CSS should be a reliable drug combination (Fig. 1D).

We extracted the synergy prediction indexes greater than zero
of PARPis, and sorted them by CSS, which involved olaparib,
veliparib/AT-888, and rucaparib with 46 combination drugs from
46 cell lines. The drug-target profiles and PPI networks provided
by DrugComb were obtained from PubChem (https://pubchem.
ncbi.nlm.nih.gov/), ChEMBL (https://www.ebi.ac.uk/chembl/), and
STITCH (http://stitch.embl.de/) databases.
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