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Clustering of tumor samples can help identify cancer types and discover new cancer subtypes, which is essential for effective
cancer treatment. Although many traditional clustering methods have been proposed for tumor sample clustering, advanced
algorithms with better performance are still needed. Low-rank subspace clustering is a popular algorithm in recent years. In this
paper, we propose a novel one-step robust low-rank subspace segmentationmethod (ORLRS) for clustering the tumor sample. For
a gene expression data set, we seek its lowest rank representation matrix and the noise matrix. By imposing the discrete constraint
on the low-rank matrix, without performing spectral clustering, ORLRS learns the cluster indicators of subspaces directly, i.e.,
performing the clustering task in one step. To improve the robustness of the method, capped norm is adopted to remove the
extreme data outliers in the noise matrix. Furthermore, we conduct an efficient solution to solve the problem of ORLRS.
Experiments on several tumor gene expression data demonstrate the effectiveness of ORLRS.

1. Introduction

Tumor is a group of cells that have undergone unregulated
growth and often form a mass or lump. It is critical to reveal
the pathogenesis of cancer by analyzing tumor gene ex-
pression data. *e advances of various sequencing tech-
nologies have made it possible to measure the expression
levels of thousands of genes simultaneously [1]. Increasingly,
one challenge is how to interpret these gene expression data
to gain insights into mechanisms of tumors [2]. Many ad-
vanced machine learning algorithms [3–9] have thus been
proposed to analyze various data. Among them, clustering
can be used for discovering tumor samples with similar
molecular expression patterns [10, 11].

Many traditional clustering methods, such as hierar-
chical clustering (HC) [12, 13], self-organizing maps (SOM)
[14], nonnegative matrix factorization (NMF) [15, 16], and
principal component analysis (PCA) [17–20] have been used
for gene expression data clustering.*e gene expression data
often contains structures that can be represented and pro-
cessed by some parametric models. *e linear subspaces are
possible to characterize a given set of data since they are easy

to calculate and often effective in real applications. *e
subspace methods, such as NMF, are essentially based on the
assumption that the data is approximately drawn from a
low-dimensional subspace. In recent years, these methods
have been gaining much attention. For example, Yu et al.
proposed a correntropy-based hypergraph regularized NMF
(CHNMF) method for clustering and feature selection [21].
Specifically, the correntropy is used in the loss term of
CHNMF instead of the Euclidean norm to improve the
robustness of the algorithm. And, CHNMF also uses the
hypergraph regularization to explore the high-order geo-
metric information in more sample points. Jiao et al. pro-
posed a hypergraph regularized constrained nonnegative
matrix factorization (HCNMF) method for selecting dif-
ferentially expressed genes and tumor sample classification
[22]. HCNMF incorporates a hypergraph regularization
constraint to consider the higher order data sample rela-
tionships. A nonnegative matrix factorization framework
based on multisubspace cell similarity learning for unsu-
pervised scRNA-seq data analysis (MscNMF) was proposed
byWang et al. [23]. MscNMF can learn the gene features and
cell features of different subspaces, and the correlation and
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heterogeneity between cells will be more prominent in
multisubspaces, resulting in the final cell similarity learning
will be more satisfactory.

However, real data rarely can be well represented by a
single subspace. A more reasonable model is to assume that
the data are lying near multiple subspaces (i.e., the data are
considered as samples approximately drawn from a mixture
of multiple low-dimensional subspaces). Subspace clustering
(or segmentation) has been proposed to improve clustering
accuracy. It is assumed that the data points are drawn from
the combination of multiple low-dimensional subspaces.
*e goal of subspace clustering is to obtain such multiple
low-dimensional subspaces with each subspace corre-
sponding to a cluster. Subspace clustering has obtained
promising results in previous studies, and subspace clus-
tering methods have been found widespread applications in
many areas, such as pattern recognition [24], image pro-
cessing [25], and bioinformatics [26].

When the data are clean, i.e., the samples can be strictly
drawn from multiple subspaces, several existing methods,
such as sparse subspace clustering (SSC) [27], low-rank
representation (LRR) [5], and low-rank model with discrete
group structure constraint (LRS) [28], are able to solve the
subspace clustering problem. SSC clusters the data drawn
from multiple low-dimensional subspaces based on sparse
representation (SR) [29]. Since low-rank structure can well
perform matrix recover, the multiple subspaces can be ex-
actly recovered by LRR. Recently, many excellent works
based on low-rank representation are published. For ex-
ample, Tang et al. proposed a multiview subspace clustering
model by learning a joint affinity graph for multiview
subspace clustering based on low-rank representation with
diversity regularization and rank constraint [30]. *is
method can effectively suppress redundancy and enhance
the diversity of different feature views. In addition, the
cluster number is used to promote affinity graph learning by
using a rank constraint. In [31], an unsupervised linear
feature selective projection (FSP) method was proposed for
feature extraction with low-rank embedding and dual
Laplacian regularization. FSP can take advantage of the
inherent relationship between data and can effectively
suppress the influence of noise. LRR have two steps in the
clustering task: building the affinity matrix and performing
spectral clustering. How to define an excellent affinity matrix
is crucial. Furthermore, the clustering problem will be
transformed into a segmentation problem of graph by using
spectral clustering. *e choice of segmentation criteria will
directly affect the clustering results. To address the above
concerns, LRS directly grasps the indicators of different
subspaces via the discrete constraint. As a result, multiple
low-rank subspaces can be obtained clearly. Furthermore,
Nie et al. introduced a piecewise function to relax the rank
constraint which makes LRS better at handling the noisy
dataset than the preliminary version [32].

As pointed out in [33], one major challenge of subspace
clustering is to deal with the outliers that exist in data.
*erefore, robust subspace clustering has become an active
research topic. To address the robustness issue, the main idea
is to explore the L2,1-norm based objective functions since

the nonsquared residuals of L2,1-norm can reduce the effects
of data outliers. In [34, 35], the L2,1-norm is adopted in
robust PCA (RPCA) for detecting outliers. In [33], Liu et al.
proposed a robust LRR model via L2,1-norm for subspace
clustering. Although the L2,1-norm is robust to outliers, it
still suffers from the extreme data outliers. *e L2,1-norm
just reduces, not completely removes, the effects of the
outliers. Capped norm is a more robust strategy than L2,1-
norm due to the fact that it can remove the effects of the
outliers. It has been recently studied in many applications
[36, 37].

In this paper, a one-step robust low-rank subspace
segmentation (ORLRS) method via the discrete constraint
and capped norm is proposed for clustering tumor sample.
For a data set X ∈ Rm×n with m genes and n samples, a low-
rank representation matrix A ∈ Rm×n and a noise matrix
E ∈ Rm×n, i.e., X � A + E, are being sought. *e low-rank
representation of the i-th subspace Ai can be denoted as
rank(Ai). Here, we impose the discrete constraint on a
diagonal matrix Ii ∈ Rn×n to obtain the low-rank repre-
sentation rank(XIi), where Ii⊆ 0, 1{ } and 

c
i�1 Ii � I (c is the

number of total subspaces and I is an identify matrix). *e
indicators of the i-th cluster are included in Ii. In contrast to
traditional low-rank based models, we can directly learn the
cluster indicators. To avoid trivial solutions and approximate
the low-rank constraint, the rank of all subspace simulta-
neously can be minimized as 

c
i�1 (‖AIi‖

k
Sp

)2, where ‖•‖k
Sp

denotes the Schatten p-norm which has a better relaxation
than the nuclear norm [38]. For the noise matrix E, capped
norm is used to improve the robustness. We define θ as a
thresholding parameter for choosing the extreme data
outliers, and then the capped norm of E can be formulated as
‖E‖Capped � minE 

n
i�1 min ‖Ei‖2, θ . *is function treats Ei

equally if ‖Ei‖2 is smaller than θ. Hence, it is more robust to
outliers than L2,1-norm. Meanwhile, we derive an efficient
optimization algorithm to solve ORLRS with a rigorous
theoretical analysis.

*emain contributions of our paper are given as follows:

①Compared with traditional low-rank representation-
based methods, ORLRS can obtain the clustering result
directly by learning a subspace indicator matrix from
the low-rank representation matrix without spectral
clustering. *is avoids the graph construction process
in spectral clustering and makes the clustering process
simpler.
②We introduced the capped norm into our model and
formed a novel objective function for the gene ex-
pression data clustering task. Capped norm is used to
constrain the noise matrix to improve the robustness of
ORLRS.
③ Optimizing the objective function of ORLRS is a
nontrivial problem, thus we derive a new optimization
algorithm to solve the problem. Furthermore, we have
also given a rigorous convergence analysis of ORLRS.

*e remainder of the paper is structured as follows. In
Section 2, the proposed ORLRS is presented, and the the-
oretical analysis of the proposed method is provided.
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Experimental results are presented in Section 3. In Section 4,
the conclusions are given.

2. Methods

We start with a brief introduction of several classical
clusteringmethods.*en, the proposed ORLRS is presented,
and the optimal solution and convergence analysis of
ORLRS is provided.

2.1. Subspace Clustering via LRR. Denote X ∈ Rm×n as a
data set with m features and n samples. LRR can be
defined as

min
A,E

‖A‖∗ + λ‖E‖2,1,

s.t.X � DA + E,
(1)

where ‖A‖∗ � iσi(A), i.e., the nuclear norm of A [33],
‖E‖2,1 � 

n
j�1

�������


m
i�1 E2

ij


can detect outliers with column-wise

sparsity, D is a dictionary, and λ> 0 is a balance parameter.
A brief explanation of LRR subspace clustering

process is provided as follows. Firstly, the low-rank
problem is solved by equation (1). *en, the optimal
solution A∗ to equation (1) is used to calculate the affinity
matrix by (|A∗| + |(A∗)T|)/2, where |A∗| is the absolute
value function. Finally, the data are clustered by using
spectral clustering [39].

2.2. One-Step Robust Low-Rank Subspace Clustering. In this
paper, we propose the one-step robust low-rank subspace
clustering (ORLRS) method via discrete constraint and
capped norm. Different from LRR, ORLRS was proposed for
clustering the data by learning the indicators.

Suppose the data matrix X has c subspaces
X1, X2, . . . , Xc , the low-rank representation of each
subspace needs to be optimized. In the clustering task, we
want each subspace to belong to its own cluster. To obtain
a low-rank representation of each subspace, the following
formula should be computed: rank(Xi), which has trivial
solution. *erefore, we need to solve the problem in
another way. We define a cluster indicator matrix as
C ∈ Rc×n: C(i, j) � 1 if the j-th sample belongs to the i-th
subspace, and C(i, j) � 0 otherwise. And, the c diagonal
matrices are defined as I1, I2, . . . , Ic ∈ I, where the diag-
onal elements of Ii (1≤ i≤ c) are formed by the i-th row of
C and I is the identity matrix. *en, XIi can be repre-
sented as the i-th subspace of X. *at is, rank(Xi) can be
rewritten as rank(XIi). We can get the clustering label in
one step by directly optimizing Ii [28].

Finally, the problem of the one-step low-rank subspace
clustering method can be defined as

min
Ii|

c
I�1



c

i�1
XIi

����
����

p

Sp
 

2
,

s.t.Ii|
c
I�1⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I.

(2)

where ‖XIi‖
p

Sp
is the Schatten p-norm of XIi. *e clustering

indicators of each subspace can be obtained from the op-
timized diagonal matrix Ii|

c
i�1 directly.

However, equation (2) is sensitive to data outliers in
practical problems since it does not consider the noise in
data. To address the robustness problem, we represent the
gene expression data X ∈ Rm×n with m genes and n

samples as the addition of low-rank representation ma-
trix A ∈ Rm×n and the noise matrix E ∈ Rm×n, i.e.,
X � A + E, which is the same strategy as in RPCA. Our
one-step low-rank subspace clustering problem can be
written as

min
A,E,Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
+ λ‖E‖L,

s.t.X � A + E, Ii|
c
i�1⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I,

(3)

where λ> 0 is a balance parameter and ‖•‖L indicates certain
regularization strategy. Note that Schatten p-norm is used to
approximate the low-rank problem in equation (3) since it is
a better relaxation for the rank constraint problem than
nuclear norm [38]. *e Schatten p-norm (0<p<∞) of a
matrix G ∈ Rm×n was defined as ‖G‖Sp

� (
min(m,n)
i�1 σp

i )1/p,
where σi is the i-th singular value of G. In [38], the con-
vergence of Schatten p-norm with 0<p≤ 2 is proved. Here,
we set 0< 2k≤ 2 to guarantee the convergence of first term in
equation (3). So, the range of k is 0< k≤ 1.

To seek a better robustness strategy for the outliers, we
adopt capped norm to regularize the noise matrix E, i.e.,
‖E‖Capped. *en, equation (3) becomes

min
A,E,Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
+ λ

n

i�1
min Ei

����
����2, θ ,

s.t.X � A + E, Ii|
c
i�1⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I,

(4)

where θ> 0 is a thresholding parameter for choosing the
data outliers. If the data point ‖Ei‖2> θ, we consider Ei as
extreme outlier, and it is capped as θ. In this way, the
influence of extreme outliers is fixed. For other data point
‖Ei‖2≤ θ, equation (4) will minimize 

n
i�1 ‖Ei‖2, i.e., the

L2,1-norm.*at is, if θ is set as∞, ‖E‖Capped is equivalent to
‖E‖2,1. *us, the capped norm is a more robust strategy
than L2,1-norm.

As a result, ORLRS provides a more robust low-rank
subspace clustering model by using capped norm. And, the
clustering indicators of each subspace can be obtained from
the optimized diagonal matrix Ii|

c
i�1 directly. We will pro-

pose an efficient optimization algorithm to solve equation
(4) in Section 2.3.

2.3. Optimization Algorithm. *e objective function equa-
tion (4) of the ORLRS is nonconvex, thus jointly optimizing
A, E, and Ii|

c
i�1 is extremely difficult. *e augmented

Lagrange multiplier (ALM) algorithm is used to optimize
equation (4).*e Lagrangian function of equation (4) can be
written as
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min
A,E,Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
+ λ

n

i�1
min Ei

����
����2, θ 

+〈Y, A + E − X〉 +
μ
2
‖A + E − X‖

2
F + g Λ, Ii|

c
i�1( ,

(5)

where Y is a Lagrange multiplier, μ> 0 is a penalty pa-
rameter, ‖•‖F is the Frobenius norm, and g(Λ, Ii|

c
i�1) en-

codes the constraints of Ii|
c
i�1. We rewrite equation (5) as

follows:

min
A,E,Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
+ λ

n

i�1
min Ei

����
����2, θ 

+
μ
2

A + E − X +
Y
μ

��������

��������

2

F

+ g Λ, Ii|
c
i�1( .

(6)

We divide equation (6) into three subproblems: opti-
mizing A while fixing E and Ii|

c
i�1, optimizing E while fixing

A and Ii|
c
i�1, and optimizing Ii|

c
i�1 while fixing A and E.

2.3.1. Fixing E and Ii|
c
i�1 to Optimize A. Equation (6) can be

simplified to

min
A



c

i�1
AIi

����
����

k

Sp
 

2
+
μ
2
‖A − B‖

2
F, (7)

where B � X − E + (Y/μ).

Lemma 1 (Araki-Lieb-Thirring [40, 41]). For any positive
semidefinite matrices P, Q ∈ Rn×n, q> 0, the following in-
equality holds when 0≤ h< 1:

Tr PhQhPh
 

q
≤Tr(PQP)

hq
. (8)

While for h≥ 1, the inequality is reversed.
Following 0< k≤ 1, ‖G‖

p

Sp
� Tr((GTG)p/2) [28] and

Lemma 1, the first term in equation (7) can be denoted as


c
i�1 Tr(Ii(ATA)k) � 

c
i�1 (‖AIi‖

k
Sp

)2 since Ii|
c
i�1⊆ 0, 1{ }n×n.

According to 
c
i�1 Ii � I, we convert the first term in

equation (7) to



c

i�1
Tr Ii ATA 

k
  � Tr I1 ATA 

k
+ I2 ATA 

k
+ · · · + Ic ATA 

k
  � Tr ATA 

k
. (9)

*en, equation (7) can be represented as

J1 � min
A

Tr ATA 
k

+
μ
2
‖A − B‖

2
F. (10)

Taking derivative w.r.t A and setting to zero, the above
formula becomes

zJ1

zA
� 2AH + μ(A − B) � 0, (11)

where H � k(ATA)k− 1. So, we can achieve the optimal A:

A � μB(2H + μI)
−1

. (12)

2.3.2. Fixing A and Ii|
c
i�1 to Optimize E. Here, we can denote

equation (6) as

min
E

λ

n

i�1
min Ei

����
����2, θ  +

μ
2

‖E − F‖
2
F, (13)

where F � X − A + (Y/μ). It can be easily verified that the
derivative of equation (13) is equivalent to the derivative of

min
E

λ
n

i�1
oi Ei

����
����
2
2 +

μ
2
‖E − F‖

2
F, (14)

where

oi �

1
2 Ei

����
����2

, if Ei

����
����2< θ;

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

Equation (14) can be formulated as

J2 � min
E

λTr OETE  +
μ
2
‖E − F‖

2
F, (16)

where O is a diagonal matrix with Oii � oi. *e problem of
equation (16) can be optimized by using the iterative
reweighted optimization strategy.

When fixing O, taking derivative w.r.t E and setting it to
zero, the above formulation can be written as

zJ2

zE
� 2λEO + μ(E − F) � 0. (17)

So, we can obtain the optimal E:

E � μF(2λO + μI)
−1

. (18)

When fixing E, the updating rule for O is as follows:

Oii �

1
2 Ei

����
����2

, if Ei

����
����2< θ;

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

2.3.3. Fixing A and E to Optimize Ii|
c
i�1. We can rewrite

equation (6) as

J3 � min
Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
+ g Λ, Ii|

c
i�1( . (20)

Taking derivative w.r.t Ii|
c
i�1 and setting to zero, the

above formulation can be written as
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zJ3

zIi|
c
i�1

� 
c

i�1
2ATLiAIi +

zg Λ, Ii|
c
i�1( 

zIi|
c
i�1

� 0, (21)

where Li � k‖AIi‖
k
Sp

(AI2i AT)(k− 2)/2.
Since Li depends on Ii, an iteration-based algorithm is

used to obtain the solution of equation (21). Firstly, we
calculate Li by using the current solution of Ii. If Li is given,
the solution of Ii to the following objective function will
satisfy equation (21):

min
Ii|

c
i�1



c

i�1
Tr IT

i ATLiAIi ,

s.t. Ii|
c
i�1⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I.

(22)

*e current solution of Ii can be updated according to
the optimal solution to equation (22).

Denote that Zi � ATLiA, equation (22) can be written as

min
Ii|

c
i�1



c

i�1
Tr ZiIi( ,

s.t.Ii|
c
i�1 ⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I.

(23)

Due to Ii|
c
i�1 are n × n diagonal matrices, the above

formulation becomes

min
rci∈ 0,1{ },

c

i�1 rci�1


c

i�1


n

i�c

zcirci( , (24)

where rci is the c-th diagonal element of matrix Ii and zci is
the c-th diagonal element of matrix Zi. We can optimize
equation (24) by

rci �
1, if i � argmin

l
zcl( ,

0, otherwise.

⎧⎨

⎩ (25)

*e algorithm to solve the problem of ORLRS is sum-
marized in Algorithm 1.

2.4. Convergence Analysis. In this section, the convergence
analysis of the proposed algorithm will be proved.

Theorem 1. At each iteration, the updating rule in Algo-
rithm 1 for matrix A while fixing others will monotonically
decrease the objective value in equation (4) when 0< k≤ 1.

Proof. It can be verified that equation (12) is the solution to
the following problem:

min
A

Tr ATAH .

s.t.X � A + E.
(26)

*en, at the t iteration

At+1 � argmin
A

Tr ATAHt . (27)

*at is,

Tr AT
t+1At+1Ht ≤Tr AT

t AtHt . (28)

Equation (28) can be converted to

kTr AT
t+1At+1 AT

t At 
k− 1

  ≤ kTr AT
t At AT

t At 
k− 1

  ,

(29)

according to Lemma 2 in [38]. □

Lemma 2. For any positive definite matrices P, Pt ∈ Rm×m,
the following inequality holds when 0<p≤ 2.

Tr Pp/2
  −

p

2
Tr PP(p−2)/2

t  ≤Tr Pp/2
t  −

p

2
Tr PtP

(p−2)/2
t  ,

(30)

Note that, here, we set 0< k≤ 1, so equation (30) is
equivalent to

Tr Pk
  − kTr PPk−1

t  ≤Tr Pk
t  − kTr PtP

k−1
t  , (31)

;en, we have

Tr ATA 
k

  − kTr ATA AT
t At 

k− 1
 

≤Tr AT
t At 

k
  −kTr AT

t At AT
t At 

k− 1
 .

(32)

Combining equations (29) and (32), we have

Tr ATA 
k

 ≤Tr AT
t At 

k
 . (33)

*at is to say,

At+1
����

����
k

Sp
 

2
≤ At

����
����

k

Sp
 

2
. (34)

*us, the updating rule for matrix A in Algorithm 1 will
not increase the objective value of the problem in equation
(10) at each iteration t when 0< k≤ 1.

Theorem 2. At each iteration, the updating rule in Algo-
rithm 1 for matrix E while fixing others will monotonically
decrease the objective value in equation (4).

Proof. We fist prepare the following lemma in [37]. □

Lemma 3. Given s �
(1/2|e|), if |e|< θ,

0, otherwise, , we have the
following inequality:

min(|e|, θ) − se
2 ≤min(|e|, θ) − se

2
. (35)

It can be verified that equation (18) is the solution to the
following problem:

min
E

Tr OETE ,

s.t. X � A + E.
(36)

Suppose the updated E in Algorithm 1 is E while fixing
others. Since E is the optimal solution to equation (4), we
have
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λTr OET E ≤ λTr OETE . (37)

According to the definition of Oii in equation (19) and
Lemma 3, we have

λ
n

i�1
min Ei

����
����2, θ  − λ

n

i�1
Oii

Ei

����
����
2
2

≤ λ
n

i�1
min Ei

����
����2, θ  − λ

n

i�1
Oii Ei

����
����
2
2.

(38)

Summing over equations (37) and (38) at both sides, we
can obtain

λ
n

i�1
min Ei

����
����2, θ ≤ λ

n

i�1
min Ei

����
����2, θ . (39)

*erefore, at each iteration, the updating rule in Algo-
rithm 1 for matrix E while fixing others will monotonically
decrease the objective value in equation (4).

Theorem 3. At each iteration, the updating rule in
Algorithm 1 for Ii|

c
i�1 while fixing others will monoton-

ically decrease the objective value in equation (4) when
k � 1.

Proof. It can be easily verified that equation (25) is the
solution to the following problem:

min
Ii|

c
i�1



c

i�1
AIi

����
����

k

Sp
 

2
,

s.t.Ii|
c
i�1 ⊆ 0, 1{ }

n×n
, 

c

i�1
Ii � I.

(40)

Assume the updated Ii in Algorithm 1 is Ii.
Since Ii is the optimal solution to the equation (22), we
can have



c

i�1
Tr IT

i ATLiAIi ≤ 
c

i�1
Tr IT

i ATLiAIi . (41)

According to the definition of Li in Algorithm 1,
equation (41) can be written as



c

i�1
AIi

����
����

k

Sp
Tr AI2i AT

 
(k− 2)/2

AT IT

i 
2
A ≤ 

c

i�1
AIi

����
����

k

Sp
 

2
.

(42)

According to the Cauchy–Schwarz inequality, it can be
proved that, when p � 1, we have



c

i�1
AIi

����
����

k

Sp
 

2

≤ 

c

i�1
Tr AI2i AT

 
k/2

 Tr AI2i AT
 

(k− 2)/2
AT IT

i 
2
A  .

(43)

*us, combining inequations (42) and (43), we can
obtain



c

i�1
AIi

����
����

k

Sp
 

2
≤ 

c

i�1
AIi

����
����

k

Sp
 

2
. (44)

Equation (44) indicates that the updating rule in Al-
gorithm 1 for Ii|

c
i�1 while fixing others will monotonically

decrease the objective value in equation (4) during the it-
eration until the algorithm converges when k � 1. In
practice, the algorithm is also converged when 0< k< 1. If
the objective function of equation (40) is changed to


c
i�1 (‖AIi‖

k
Sp

)d, (d> 2) (Li in Algorithm 1 becomes
(dk/2)(‖AIi‖

k
Sp

)d− 1(AI2i AT)(k− 2)/2), the convergence is also
observed [28].

As a result, the objective of equation (4) is nonincreasing
under the updates of A, E, and Ii|

c
i�1 according to *eorems

1–3, respectively. *erefore, the iteratively updating Algo-
rithm 1 converges to a local optimal. □

Input: data matrix: X ∈ Rm×n, number of subspace c, the low-rank constraint parameter k, balance parameter λ, threshold
parameter θ.
Initialize: A � X, E � 0, Y � 0, μ � 10− 6, ρ � 1.1, maxμ � 1010, ε � 10− 8, O as the identity matrix, Ii|

c
i�1 such that the discrete

constraints in equation (16) are satisfied.
Output: the optimal Ii|

c
i�1 for the i-th cluster.

while not converge do
(1) Fix the others and update A: ① calculate B � X − E + (Y/μ), ② calculate H � k(ATA)k− 1, ③update A by A � μB(2H + μI)− 1.
(2) Fix the others and update E: ① calculate F � X − A + (Y/μ), ② update E by E � μF(2λO + μI)− 1, ③ calculate

Oii �
(1/2‖Ei‖2), if ‖Ei‖2< θ;

0, otherwise. .

(3) Fix the others and update Ii|
c
i�1:① calculate Li � k‖AIi‖

k
Sp

(AI2i AT)(k− 2)/2,② calculate Zi � ATLiA,③ update Ii|
c
i�1, where the c-th

diagonal element rci of matrix Ii is updated by equation (33).
(4) Update the multiplier: Y � Y + μ(X − A − E).
(5) Update the parameter μ by μ � min(ρμ,maxμ).
(6) Check the convergence condition

‖X − A − E‖∞ < ε.
end while

ALGORITHM 1: An efficient algorithm to solve the problem in equation (4).
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2.5. Complexity Analysis. In Algorithm 1, the most com-
plicated calculations are Li � k‖AIi‖

k
Sp

(AI2i AT)(k− 2)/2 and
Zi � ATLiA in Step 3. We suppose m> n in the low-rank
representation matrix A ∈ Rm×n. Firstly, Li needs to be
computed. Denoting the SVD of AIi is UΣVT. Computing
‖AIi‖

k
Sp

needs SVD of AIi, which takes O(mn2).

(AI2i AT)(k− 2)/2 can be decomposed as UΣk−2UT by SVD,
which takes O(m3). So, computing Li takes O(m3) and
computing Li|

c
I�1 takes O(m3c), where c is the number of

clusters. For Zi, we only need to compute the diagonal el-
ements, which takes O(m3). And, computing Zi|

c
I�1 takes

O(m3c). In summary, the computational complexity of
Algorithm 1 is O(m3ct), where t is the iteration number.

3. Results and Discussion

We test ORLRS on six publicly available gene expression
data sets, i.e., Leukemia [42], DLBCL [43], Colon cancer
[44], Brain_Tumor1 [43], Brain_Tumor2 [43], and 9_Tu-
mors [43].

Following [28, 45–47], clustering accuracy (ACC) is a
widely used evaluation method for tumor clustering. Given a
data point xi, suppose Ni as the target label and Ti as the
truth label. ACC can be denoted as [45]

ACC �


n
i�1 φ Ti,map Ni(  

n
, (45)

where φ(x, y) � 0 if x≠y and φ(x, y) � 1 if x � y, map(Ni)

maps Ni to the equivalent label from the raw data and n is
the number of tumor samples.

We also evaluate the clustering performance by nor-
malized mutual information (NMI) [48]. NMI is defined as

NMI �
M(S, C)

((H(S) + H(C))/2)
, (46)

where M(S, C) is the mutual information function between
the true class labelC and the clustering label S andH(·) is the
entropy function. *e larger the NMI value is, the better the
clustering result is.

3.1. Gene Expression Data Sets. A brief introduction of six
gene expression data sets is presented, and the detailed
information of these datasets is summarized in Table 1.

Leukemia data contain 25 cases of AML and 47 cases of
ALL. It is packaged into a 7129× 72 matrix [42].
DLBCL data consist of 5469 genes and 77 samples.
*ese samples include 58 patients of diffuse large B-cell
lymphoma (DLBCL) and 19 patients of follicular
lymphomas (FL) [43].
*e colon cancer data [44] consists of a matrix that
includes 2000 genes and 62 tissues. *ese tissues are
divided into 22 normal and 40 colon tumor samples
Brain_Tumor1 data set consists of 5920 genes in 90
patient samples. *ese samples contain 5 types of
histological diagnoses, i.e., 60 cases of

medulloblastoma, 10 cases of malignant glioma, 10
cases of atypical teratoid/rhabdoid tumors (AT/RTs), 4
cases of normal cerebellum, and 6 cases of primitive
neuroectodermal tumors (PNETs).
*e Brain_Tumor2 data set contains 10367 genes in 50
samples. It contains 4 types of malignant glioma, i.e.,
classic glioblastomas (CG), classic anaplastic oligo-
dendrogliomas (CAO), nonclassic glioblastomas
(NCG), and nonclassic anaplastic oligodendrogliomas
(NCAO) [34].
9_Tumors data set integrates 9 tumor types to develop a
genomics-based approach to the prediction of drug
response. It contains 5726 genes in 60 samples. *e
number of samples of 9 tumor types is shown as fol-
lows: 9 samples of non-small-cell carcinoma (NSCLC),
7 samples of colon cancer, 8 samples of breast cancer, 6
samples of ovary cancer, 6 samples of leukemia, 8
samples of renal cancer, 8 samples of melanoma, 2
samples of prostate cancer, and 6 samples central
nervous system cancer (CNS).

3.2. Comparison Algorithms. We compare LRS [28], Ext-
LRR [32], RPCA [3], PLRR [47], robust LRR [33], LatLRR
[49], robust NMF [50], and K-means [51] with the proposed
method for tumor clustering. In these methods, LRS is the
basic version of our method to implement the one-step
clustering, and Ext-LRR is a simpler and more effective
extension work compared with LRS; RPCA is a classic robust
learning algorithm; PLRR (projection LRR) is one of the
latest subspace clustering methods for tumor sample clus-
tering; Robust LRR and LatLRR are the best state-of-art low-
rank subspace segmentation algorithms; robust NMF is a
classic NMF-based method and is widely used for tumor
clustering. K-means is the most commonly used clustering
method and is embedded into many methods including
PLRR, robust LRR, and LatLRR to achieve better perfor-
mance. Since our proposed method is a novel one-step
robust low-rank subspace clustering model, we choose these
methods as our comparison algorithms.

3.3. Parameter Setting. Since gene expression data have the
characteristics of high-dimensional and small samples, we
use PCA to perform dimensionality reduction. And, we use
the K-means method to initialize Ii|

c
i�1 in the proposed

ORLRS. Here, three parameters, i.e., threshold parameter θ,
balance parameter λ, and low-rank constraint parameter k,
need to be determined. In the experiment, we investigated
one parameter by fixing the other two parameters. Since the
initialization of Ii|

c
i�1 will bring some uncertainty, the pro-

posed ORLRS method run 100 times, and the average of the
accuracies of 100 times is reported. *e choices of param-
eters in the following are heuristic and might not be the best
for tumor clustering.

3.3.1. Determination of ;reshold Parameter θ. In the
ORLRS model, data outliers are not heuristically determined
based on the magnitude. *ey are selected during the

Computational Intelligence and Neuroscience 7



Table 1: Summary of tumor gene expression data sets.

Data set Diagnostic task
Number of

Genes Samples Classes
Leukemia AML, ALL 7129 72 2
DLBCL DLBCL, FL 5469 77 2
Colon cancer Tumor, normal 2000 62 2
Brain_Tumor1 Medulloblastoma, malignant glioma, normal cerebellum, AT/RTs, PNETs 5920 90 5
Brain_Tumor2 CG, CAO, NCG, NCAO 10367 50 4
9_Tumors NSCLC, colon, breast, ovary, renal, leukemia, melanoma, prostate, CNS 5726 60 9
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Figure 1: Clustering accuracies of the proposed ORLRS on six data sets with different values of θ. (a) Leukemia. (b) DLBCL.
(c) Colon. (d) Brain_Tumor1. (e) Brain_Tumor2. (f ) 9_Tumors.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Different values of λ

60

65

70

75

80

85

90

Cl
us

te
rin

g 
Ac

cu
ra

cy
 (%

)

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
65

70

75

80

85

90

95

Cl
us

te
rin

g 
Ac

cu
ra

cy
 (%

)

Different values of λ

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
65

65.5

66

66.5

67

67.5

68

68.5

69

69.5

70

Cl
us

te
rin

g 
Ac

cu
ra

cy
 (%

)

Different values of λ

(c)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
55

60

65

70

75

Cl
us

te
rin

g 
Ac

cu
ra

cy
 (%

)

Different values of λ

(d)

Figure 2: Continued.

Computational Intelligence and Neuroscience 9



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

57
Cl

us
te

rin
g 

Ac
cu

ra
cy

 (%
)

Different values of λ

(e)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
44

44.5

45

45.5

46

46.5

47

47.5

48

Cl
us

te
rin

g 
Ac

cu
ra

cy
 (%

)

Different values of λ

(f )

Figure 2: Clustering accuracies of the proposed ORLRS on six data sets with different values of λ. (a) Leukemia. (b) DLBCL.
(c) Colon. (d) Brain_Tumor1. (e) Brain_Tumor2. (f ) 9_Tumors.
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Figure 3: Continued.
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optimization process. *e data outliers may be distinct at
different iterations (with the same thresholding parameter),
while we iteratively optimize the objective function of
ORLRS method. When the algorithm converges, likely
correct extreme data outliers can be found. So, we just need
to determine one value of θ for each data set.

Figure 1 presents the results of ORLRS with different
θ. Since the gene expression levels in different data are
very different, the values of extreme data outliers are
also very different. So, the value of θ has a large range in six
data sets. From Figure 1, we can observe that ORLRS
can obtain the best performance in the case of
θ � 103, 105, 40, 90, 400, 106  in Leukemia data, DLBCL
data, Colon cancer data, Brain_Tumor1 data, Brain_Tumor2
data, and 9_Tumors data, respectively. *e results indicate
that the value of θ should be determined appropriately. If the
value of θ is too large, we will miss some extreme outliers. If
the value of θ is too small, some important information may
be removed, thereby affecting the clustering performance.

3.3.2. Determination of Balance Parameter λ. Figure 2
presents the results of ORLRS with different λ. ORLRS
can obtain the best results in the case of
λ � 0.6, 1, 1, 1, 0.9, 1.1{ } in Leukemia data, DLBCL data,
Colon cancer data, Brain_Tumor1 data, Brain_Tumor2 data,

and 9_Tumors data, respectively. According to the experi-
mental results in each data set, before reaching the best
results, the clustering accuracies showed an overall upward
trend when λ increases; after achieving the best results, the
clustering accuracies showed an overall downward trend
when λ increases. So, we suggest a rough range 0.1≤ λ≤ 2 on
the choice of λ.

3.3.3. Determination of Schatten P-Norm Parameter k.
Since the algorithm is converged for the Schatten p-norm
parameter 0< k≤ 1, we determine the value of k in this
range. Figure 3 presents the results of ORLRS with different
k. ORLRS can achieve the best performance in the case of
k � 1, 1, 1, 1, 0.7, 0.4{ } in Leukemia data, DLBCL data, Colon
cancer data, Brain_Tumor1 data, Brain_Tumor2 data, and
9_Tumors data, respectively. So, a general guidance is given
0< k≤ 1 on the choice of k.

3.4. Experimental Results. In this section, experimental re-
sults of our proposed method and six comparison algo-
rithms, i.e., LRS, Ext-LRR, RPCA, PLRR, robust LRR,
LatLRR, robust NMF, and K-means, are reported. ORLRS,
LRS, and Ext-LRR use K-means to initialize the indicator
matrix Ii|

c
i�1. PLRR, robust LRR, and LatLRR use the nor-

malized cuts method to segment data, which cluster data

Different values of k
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Figure 3: Clustering accuracies of the proposed ORLRS on six data sets with different values of k. (a) Leukemia. (b) DLBCL.
(c) Colon. (d) Brain_Tumor1. (e) Brain_Tumor2. (f ) 9_Tumors.

Table 2: Clustering accuracy (%) and standard error (%) of different methods on six gene expression data sets.

Data sets
Methods

ORLRS LRS PLRR Robust
LRR LatLRR Robust

NMF K-means RPCA Ext-LRR

Leukemia 83.33± 0.00 74.63± 2.14 74.57± 2.56 63.89± 0.00 66.67± 0.00 66.25± 5.03 68.06± 2.93 46.69± 0.00 65.28± 0.00
DLBCL 88.70± 3.50 76.62± 0.00 79.35± 0.41 76.62± 0.00 76.62± 0.00 68.96± 7.71 68.83± 0.00 57.49± 0.00 73.64± 2.87
Colon 74.63± 2.14 55.16± 1.59 72.79± 2.87 60.81± 1.09 58.06± 0.00 70.65± 7.25 53.71± 2.12 39.71± 0.00 64.52± 0.00
Brain_Tumor1 71.67± 2.30 60.22± 4.53 69.22± 10.32 68.89± 0.00 69.69± 2.19 66.11± 2.58 43.78± 1.83 57.67± 0.00 67.00± 4.86
Brain_Tumor2 55.74± 2.93 55.36± 2.51 54.20± 2.36 44.00± 0.00 50.00± 0.00 34.00± 2.98 39.20± 1.03 46.00± 0.00 48.40± 4.60
9_Tumors 46.77± 4.62 45.85± 2.90 41.67± 1.05 38.67± 1.05 43.33± 0.00 35.50± 3.60 45.52± 3.16 33.33± 0.00 31.67± 2.83
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points by using the K-means method. For robust NMF
method, we initial the coefficient matrix and basis matrix
randomly. To avoid randomness, we run all methods 100
times, and the mean and standard error results of the

clustering accuracies of 100 times are shown in Table 2. *e
best result of each data is indicated in bold.

Based on the results reported in Table 2, we have the
following observations and discussions. ORLRS extends
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Figure 4: *e convergence of ORLRS on six data sets. (a) Leukemia, (b) DLBCL, (c) Colon, (d) Brain_Tumor1, (e) Brain_Tumor2,
(f ) 9_Tumors.
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LRS by adding a noise matrix into the objective function
to enhance the robustness, which contributes to the ob-
servation that ORLRS outperforms LRS. From the results
shown in Table 2, it can be observed that ORLRS achieves
generally 8%–19% higher performances than LRS in terms
of the clustering accuracy on four data sets, i.e., Leukemia
data, DLBCL data, Colon cancer data, and Brain_Tumor1
data. On Brain_Tumor2 and 9_Tumors data sets, ORLRS
has a slightly better performance than LRS. ORLRS has
better results than Ext-LRR on all datasets. Compared to
the three classical low-rank based methods, PLRR, robust
LRR, and LatLRR, the clustering accuracy of ORLRS is
1%–9% higher on all six data. *e main reason is that we
use capped norm to remove the extreme outliers in the
noise matrix and Schatten p-norm to better approximate
the low-rank representation. Compared with traditional
clustering methods, RPCA, robust NMF, and K-means,
ORLRS achieves outstanding results on all of the six data
sets.

*e NMI results on five gene expression data sets are
shown in Table 3. *e best result of each data is indicated in
bold. Due to the NMI results of all the methods on colon
data is less than 0.1, we only reported the results of remain
five data sets. From Table 3, we can observe that ORLRS has
better results on all the five data sets than PLRR, robust LRR,
LatLRR, robust NMF, RPCA, and Ext-LRR. Except on
9_Tumors data set, our method outperforms LRS and
K-means on the other four data sets.

3.5. Convergence Curves and Running Time. We plotted the
convergence curves of our ORLRS on different datasets. *e
convergence curves can be found in Figure 4. It shows that
our method can converge around the 10-th iteration on all
six data sets. In Table 4, we also reported the running time of
ORLRS on six gene expression data sets without dimen-
sionality reduction by PCA. We implement our experiment
with MATLAB R2020b on an ordinary computer, which is
configured with Intel i9-10900KF (up to 3.70GHz) cores,
8GB RAM, and Windows 10 operating system.

4. Conclusions

In this paper, a novel one-step robust low-rank subspace
clustering method (ORLRS) is proposed for tumor clus-
tering, where the gene expression data set is represented by a
low-rank matrix and a noise matrix. By using the Schatten
p-norm and discrete constraint, low-rank representation of
each subspace can be well obtained. Different from tradi-
tional low-rank-based methods, such as LRR and LatLRR,
ORLRS learns indicators directly and perform clustering
process in one step by using the discrete constraint. Capped
norm is used to improve the robustness of ORLRS since it
can effectively remove the extreme data outliers in the noise

matrix. Furthermore, we propose an efficient algorithm to
solve the proposed subspace clustering model, and the
convergence of the proposed algorithm is proved. We thus
can discover the clusters of tumor data depending on the
optimal cluster indicators. We tested the proposed ORLRS
method on six tumor data. *e results are proved that
ORLRS is an excellent method for clustering tumor sample.

*ere remain several interesting directions for future
work. First, it might be better to learn a dictionary for
ORLRS since some low-rank subspace segmentation
methods achieve significant improvements by learning a
dictionary. Second, ORLRS may be extended to solve other
problems, such as matrix recovery and classification. *ird,
ORLRS may be employed in other applications, such as gene
clustering and coclustering.
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[48] P. A Estévez, M Tesmer, C. A Perez, and J. M Zurada,
“Normalized mutual information feature selection,” IEEE
Transactions on Neural Networks, vol. 20, no. 2, pp. 189–201,
2009.

[49] G. Liu and S. Yan, “Latent low-rank representation for
subspace segmentation and feature extraction,” in Proceedings
of the International Conference on Computer Vision, no. 4,
pp. 1615–1622, Barcelona, Spain, November 2011.

[50] D. Kong, H. Huang, and H. Huang, “Robust nonnegative
matrix factorization using L21-norm,” in Proceedings of the
ACM International Conference on Information and Knowledge
Management, pp. 673–682, Scotland, UK, October 2011.

[51] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of
the American Statistical Association, vol. 67, no. 337,
pp. 123–129, 1972.

16 Computational Intelligence and Neuroscience


