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Background: Lipid metabolism pivotally contributes to the incidence and

development of lung adenocarcinoma (LUAD). The interaction of lipid metabolism

and tumor microenvironment (TME) has become a new research direction.

Methods: Using the 1107 LUAD records from the Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases, a comprehensive exploration

was performed on the heterogeneous lipid metabolism subtypes based on lipid

metabolism genes (LMGs) and immune-related genes (LRGs). The clinical

significance, functional status, TME interaction and genomic changes of

different subtypes were further studied. A new scoring system, lipid-immune

score (LIS), was developed and validated.

Results: Two heterogeneous subtypes, which express more LMGs and show

the characteristics of tumor metabolism and proliferation, are defined as lipid

metabolism phenotypes. The prognosis of lipid metabolism phenotype is poor,

and it is more common in patients with tumor progression. Expressing more

IRGs, enrichment of immunoactive pathways and infiltration of effector

immune cells are defined as immunoactive phenotypes. The immunoactive

phenotype has a better prognosis and stronger anti-tumor immunity and is

more sensitive to immunotherapy. In addition, KEAP1 is a driving mutant gene

in the lipid metabolism subtype. Finally, LIS was developed and confirmed to be

a robust predictor of overall survival (OS) and immunotherapy in LUAD patients.

Conclusion: Two heterogeneous subtypes of LUAD (lipid metabolism subtype

and immune activity subtype) were identified to evaluate prognosis and

immunotherapy sensitivity. Our research promotes the understanding of the

interaction between lipid metabolism and TME and offers a novel direction for

clinical management and precision therapy aimed to LUAD patients.
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Introduction

As the most frequent malignancy, lung cancer causes the

highest cancer-related deaths around the world (1). Lung cancer

can appear in different histological types among which, non-

small cell lung cancer (NSCLC) is the most common type with

about 85% proportion of all lung cancer patients (2). Lung

adenocarcinoma (LUAD) is the most abundant subtype of

NSCLC, accounting for about 55% (3). LUAD is a

heterogeneous disease with different clinical prognosis and

drug response results. It is worth noting that despite the great

progress in clinical diagnostic methods and multimodal treating

approaches, the 5-year overall survival (OS) rate of patients with

advanced lung cancer has remained very low (4). Therefore,

LUAD patients are still in an urgent need for new early diagnosis

and clinical intervention methods.

During cancer occurrence and progression, the immune

system and the tumor cells are in complex interaction. On one

hand, demand for local nutrition and oxygen highly increases

due to fast proliferation of tumor cells. On the other hand, the

same reason causes poor local vascularization, resulting in

acidosis and hypoxia in the tumor microenvironment (TME)

as well as local glucose deficient (5–7). Eventually, lipids existing

in the TME begin to be used main as the alternative source of

energy in both tumor tissues and immune cells to compensate

for the energy shortages (8). Lipids also contribute to the biofilm

formation, supplying the biomass production, and mediating

some complex signaling pathways contributing to the growth

and migration of cancer cells (9). In addition, the affinity of

cancerous cells for lipids and cholesterol increases, directly

leading to lipid accumulation in the TME and developing

malignancy in the tumor tissues (10). Although, the lipid

metabolic reprogramming and dysfunction as well as its dual

impact in the TME and immune responses to tumor is not

exactly recognized yet. Such further elaboration is essentially

required for developing specific treatments based on the anti-

tumor immune responses.

The present study aimed to survey the crosstalk between

lipid metabolism and tumor immune response in LUAD

patients and identified two heterogeneous subtypes (lipid

metabolism subtype and immune activity subtype). These two

subtypes show specific differences in clinical outcomes,

biological functions, immune infiltration and genomic

variation. In addition, a lipid-immune score (LIS) was

developed and validated, which shows significant advantages
02
in predicting prognosis and immunotherapy response. In

conclusion, our work strengthens the understanding of the

complex role between lipid metabolism and immune system in

LUAD and provides a new perspective and reference for the

accurate prediction and immunotherapy of LUAD patients.
Methods

Data extraction

Transcriptome RNA-seq data (HT-seq FPKM), mutation

data (mutect2 tool), copy number variation (CNV), and their

corresponding clinical information (from Cancer Genome

Atlas-lung adenocarcinoma, tcga-LUAD queue) were obtained

(https://portal.gdc.cancer.gov/repository). After excluding

patients who lost follow-up and clinical information, 492

LUAD samples were collected. These data were used as

discovery queues after Transcripts per million (TPM)

standardization. In addition, three independent data sets from

the GEO database were collected, including GSE30219 from

GPL570 platform, GSE42127 from GPL6884 platform, and

GSE72094 from GPL15048 platform. In order to prevent the

batch effect of chips, three GEO data sets were combined

through the combat function of the “sva” package and the data

were log2 standardized (11). Finally, a total of 615 GEO meta

queues containing LUAD samples with complete clinical

information were used as external validation queues. Finally,

two immunotherapy cohorts were collected to verify the model’s

prognostic power: NSCLC cohort GSE135222 receiving

Programmed Death-1(PD-1) treatment, including 27 patients

(12) and Imvigor210, a cohort of advanced urothelial carcinoma

cases undergoing anti-Programmed Cell Death-Ligand 1 (PD-

L1) immunotherapy, including 298 patients (13).
Identification of lipid and immune
subtypes of LUAD

Lipid metabolism genes (LMGs) were obtained from the

Molecular Signatures Database (MSigDB) (http://www.gsea-

msigdb.org/gsea/index.jsp), containing 1426 LMGs (14). The

immune-related genes (IRGs) were obtained from the

“ImmPort” database (https://www.immport.org/resources)

(15). It contains a total of 1638 IRGs defined as functional and
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immune related. A detailed list in Table S1 to indicate the lipid

genes and immune genes we used. First, LMGs and IRGs with

independent prognostic efficacy were evaluated by univariate

Cox regression analysis, and candidate genes were identified

according to the threshold of p < 0.05. According to the

transcriptional map of candidate genes, consensus clustering

was conducted in the discovery queue and validation queue

through the ConsensusClusterPlus package (16). Pam

unsupervised clustering algorithm was adopted in this analysis,

and 1000 iterations were carried out based on Euclidean

distance. Eighty per cent of the samples were randomly

selected in each iteration. The number of clusters was set to 2-

5, and the optimal cluster number was jointly determined using

the consensus matrix and cumulat ive distr ibut ion

function (CDF).
Functional enrichment and immune
infiltration analysis

Significant differentially expressed genes (DEGs) between

subgroups were identified by ‘limma’ package in R program

according to the threshold of False Discovery Rate (FDR) < 0.05

and fold change (FC) > 2. The functional enrichment of DEGs

was achieved using metascape (www.metascape.org/) database.

Gene Set Enrichment Analysis (GSEA) was conducted among

subgroups and significantly altered pathways were selected using

Kyoto Encyclopedia of Genes and Genomes (KEGG) by p < 0.05.

Based on the previously published molecular markers,

ssGSEA analysis was performed using the ‘gsva’ package in R

program to evaluate the biological pathway activity of the

samples which included angiogenesis, epithelial-mesenchymal

transition (EMT), myoid inflammation, and molecular markers

of other immune related pathways (17–20). Molecular markers

of hypoxia were collected from MSigDB (14). Detailed pathway

gene markers were displayed in Table S2. The relative infiltration

abundance of 22 different immune cell types was evaluated by

‘cibersoft’ package in R program (21). The immune activity and

tumor purity of tumor samples were evaluated by Estimate

algorithm (22). Finally, the microsatellite instability (MSI)

score, indel neoantigens and SNV neoantigens of samples

from the study of Thorsson et al. (23).
Analysis of the genome variation map
between subgroups

The mutation data was processed with ‘maftools’ package in

R package. First, the total number of mutations in the sample

was measured, and then, the genes with the minimum mutation

number > 30 were identified. The difference of mutation

frequency of high-frequency mutation genes between the two
Frontiers in Immunology 03
subgroups was compared using the chi square test and visualized

with maftools (24). CNV data were processed by Gistic 2.0

software. Based on the threshold of 0.2, significantly amplified

and deleted chromosome segments were identified, and CNV

differences on chromosome arms were evaluated. The CNV

results were visualized by ‘ggplot2’ R package.
Constructing lipid-immune score

DEGs contained in all cohorts were selected for further

analysis based on the above identified DEGs between the two

subtypes. Univariate Cox regression analysis revealed the

prognostic value of these genes. Subsequently, genes with

statistical significance (p < 0.05) were incorporated into the

Cox proportional hazard model with Least absolute shrinkage

and selection operator (Lasso) penalty, and 300 iterative searches

were carried out to find the most robust model. In order to

prevent over fitting, five-cross validation was set up. The model

with the highest frequency in 300 iterations was used as the final

prognostic model and the lipid-immune score (LIS) was

generated according to the formula: LIS = ∑iCoefficient

(mRNAi) × Expression(mRNAi). The ‘survcomp’ package in R

program was used to calculate the consistency C index and

evaluate the prognostic value of the risk score (RS) in the

training and verification sets. The higher C index indicates the

more accurate prognostic power of the model (25). The high-risk

group and low-risk group were divided based on their median

FRS, and the prognostic value of the risk model was calculated

using Kaplan-Meier (KM) survival curve, univariate and

multivariate Cox regression, time-dependent ROC curve

(tROC), and subgroup analysis system.
Predicting immunotherapy response

According to previous studies, the immunophenoscore (IPS)

of the sample was calculated. Briefly, IPS is calculated from

transcriptomic data of representative genes for different

immunophenotypes and normalizes the final result to 0-10.

Samples were positively weighted according to effective

immune cells and negatively weighted according to

suppressive immune cells, and then applied Z-score averaged.

Z-score ≥ 3 was defined as IPS10 and Z-score ≤ 0 was defined as

IPS0. The higher the IPS, the better the immunotherapy

response (26). The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu) was

applied to predict the patients’ response to the anti-PD-1 and

anti-CTLA-4 treatments (27–30). Finally, the predictive power

of LIS was evaluated in two external immunotherapy cohorts

(GSE135222 and Imvigor210).
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Statistical analysis

Pearson chi square or Fisher exact tests were applied to

compare categorical variables. The continuous variables were

compared between the two groups by Wilcoxon rank sum test.

The KM curve was drawn by ‘survminer’ package and the

tROC analysis was carried out by ‘survivalROC’ package both

in R program. The univariate and multivariate Cox regression

was completed by ‘survival’ package in R program. The ‘rms’

package in R was used to draw nomograms and calibration

curves, and decision curve analysis (DCA) was carried out

through DCA package (31). The ROC curve used to predict

immunotherapy was performed by the ‘pROC’ package. Two

tailed p < 0.05 was considered statistically significant unless

otherwise specified.
Frontiers in Immunology 04
Results

Parsing LMGs and IRGs in LUAD

The design of our study is shown in Figure S1. Univariate

Cox regression analysis displayed 155 LMGs and IRGs with

prognostic value (p < 0.05). The forest map showed the

prognostic candidate genes of top15 (Figure 1A). Detailed Cox

results are provided in Table S3. Figure 1B summarizes the

mutation of top15 candidate genes. Specifically, the mutation

type is single nucleotide mutation, and the genes with the highest

mutation frequency are VEGFC (24%) and tnfrsf11a (10%). The

waterfall diagram shows their mutation map in the tcga-LUAD

cohort (Figure 1C). The histogram summarizes the CNV of the

top15 candidate genes in tcga-LUAD, and the results show that
B

C

D

E F

A

FIGURE 1

Genomic map of LMGs in LUAD. (A) univariate Cox regression analysis revealed the prognostic LMGs of Top15. (B) Summary of LMGs mutation
events in tcga-LUAD. (C) Oncoplot showed the mutation map of LMGs. (D) Summary of CNV events of LMGs in tcga-LUAD. (E) The circle
diagram shows the overall CNV characteristics of LMGs on chromosomes. (F) Correlation network of LMGs.
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they have a wide range of CNV events. Lpgat1 was the most

amplified gene, and raet1e was the most deleted gene

(Figure 1D). The circle chart shows the overall CNV of the

top15 candidate gene on the chromosome (Figure 1E). Finally,

the interaction of top15 candidate genes was analyzed, and the

correlation network showed that they were highly positively

correlated (Figure 1F).
Identification of lipid and immune
subtypes

Consensus clustering was performed on the discovery queue

and GEOmeta queue from tcga-LUAD by ConsensusClusterPlus.

According to the CDF curve of consensus score, k = 2 was found

to be the best choice (Figure 2A, Figure S2A). The consensus

matrix also confirmed this result (Figure 2B, Figure S2B). Based

on the transcriptional profiles of candidate LMGs and IRGs, lipid

metabolism subtypes and immune activity subtypes were defined
Frontiers in Immunology 05
(Figure 2C, Figure S2C). IRGs were significantly increased in

immunoactive subtypes, while LMGs were significantly increased

in lipid metabolism subtypes. According to the survival analysis,

lipid metabolism subtypes in the cohort was significantly worse

compared to that of immune activity subtypes (p = 0.001,

Figure 2D). A worse clinical outcome of lipid metabolism

subtypes was confirmed in the validation cohort (p < 0.001,

Figure S2D). In addition, the tcga-LUAD cohort had more

detailed clinical follow-up information. There was a significant

increase in patients with disease progression in the lipid

metabolism subtype (Figures 2E, F).
Biological function difference between
two subtypes

First, the DEGs between the two subtypes were identified

by limma package. According to the threshold of FDR < 0.05

and FC > 2, a total of 1597 DEGs were identified, of which
B

C

D E F

A

FIGURE 2

Identification of lipid and immune subtypes. (A) CDF curve of consensus matrix of different K (B) Consensus matrix when k = 2. (C) Expression
heat maps of LMGs and IRGs in the two subtypes. (D) Survival curve of two subtypes in TCGA cohort. (E) The proportion of subtypes in LUAD
patients with different outcomes. (F) Clinical outcomes of patients with different subtypes of LUAD.
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1233 were up-regulated in immunoactive subtypes and 362

were up-regulated in lipid metabolism subtypes. Detailed

results are provided in Table S4. Based on the functional

enrichment analysis, the up-regulated genes in immunoactive

subtypes mainly regulate cell activation, inflammatory

response, cel l adhesion and lymphocyte migrat ion

(Figure 3A), and Figure 3C showed the functional

interaction network of immunoactive subtypes. The up-

regulated genes in lipid metabolism subtypes mainly

regulate biological oxidation, epithelial cell differentiation

and glucose homeostasis (Figure 3B). Figure 3D shows the

functional interaction network of lipid metabolism subtypes.

GSEA analysis showed that the pathways enriched in

immunoactive subtypes were mainly B-cells receptor, T-

cells receptor, Toll-like receptor signal pathway and NK-

cells killing activity (Figure 3E). The pathways enriched in

lipid metabolism subtypes were fatty acid metabolism,

protein secretion and TCA cycle pathway (Figure 3F). In

conclusion, these results confirm that the immunocompetent

subtype has stronger antitumor immune activity, while the

tumor cells of the lipid metabolism subtype have stronger

metabolic and proliferative activity, which may lead to the

difference in prognosis between the two.
Frontiers in Immunology 06
Difference of immune infiltration
between two subtypes

The immune infiltration degrees were systematically

compared between the two subtypes. First, the estimate

algorithm showed that the immune activity subtype had a

higher immune score, while the lipid metabolism subtype had a

higher tumor purity (Figure 4A), which was confirmed in the

validation queue (Figure S3A). The expression differences between

five classical immune checkpoints and therapeutic targets (PD-L1,

CD8A, CTLA-4, LAG-3, PD-1) were then examined. The results

showed that the five checkpoints were significantly up-regulated

in immunoactive subtypes (Figure 4B), and the validation cohort

(Figure S3B). Through ssGSEA algorithm, we found that except

for myeloid inflammation, other immune pathways were up-

regulated in the immune activity subgroups. In particular, the

activity of EMT pathway in the immunoactive pathway was also

up-regulated (Figure 4C). Similar results were observed in the

validation cohort. It is worth noting that the activity of

angiogenesis pathway in lipid metabolism subtypes was up-

regulated in the validation cohort (Figure S3C). Finally,

cibersort results showed that NK cells, plasma cells and natural

B cells increased in immunoactive subtypes, while Tregs increased
B

C D

E F

A

FIGURE 3

Functional enrichment of different subtypes. (A) Functional enrichment of characteristic genes of immune activity subtypes. (B) Functional
enrichment of lipid metabolism subtype characteristic genes. (C) Functional network of immunoactive subtypes. (D) Functional network of lipid
metabolism subtypes. (E) KEGG pathway enriched in immunocompetent subtypes. (F) KEGG pathway enriched in lipid metabolism subtypes.
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in lipid metabolism subtypes (Figure 4D). In addition, higher

Tregs in lipid metabolism subtypes were also confirmed in the

validation cohort (Figure S3D). In conclusion, these results convey

that the immunoactive subtype has more antitumor immune

activity and effector immune cells, while the lipid metabolism

subtype is inhibited by higher Tregs infiltration.
Analysis of genome changes among
subtypes

The original mutation data were processed with maftools

package. Chi square test showed that the mutation frequency of
Frontiers in Immunology 07
KEAP1, KRAS and SPTA1 in lipid metabolism subtypes

increased, especially KEAP1 (Figure 5A). The waterfall

diagram shows the mutation map difference of a total of 32

high-frequency mutant genes between the two subtypes

(Figure 5B). The TMB of each patient was calculated, and the

results showed that the lipid metabolism subtype had a higher

TMB, but the difference between the two subtypes was not

significant (Figure 5C). CNV leads to chromosome variation in

another way. We then evaluated the correlation between FRS

and CNV and found that the amplification and deletion levels of

immunoactive subtypes were significantly higher at the

chromosome arm level (Figure 5D). The box diagram showed

no significant difference in the total number of chromosome
B

C

D

A

FIGURE 4

Immune infiltration analysis of different subtypes. (A) The difference of Estimate score between the two subtypes. (B) Differences in the
expression of six typical immune checkpoints (PD-L1, CD8A, CTLA-4, LAG-3, PD-1) between the two subtypes. (C) Differences in the activity of
immune related pathways between the two subtypes. (D) The difference of immune cell infiltration between the two subtypes. *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001; ns p > 0.05.
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amplification between the two subtypes (Figure 5E), and the

number of chromosome deletions in the lipid metabolism

subtype increased significantly (Figure 5F).
Immunoactive subtypes that are more
sensitive to immunotherapy

The functional differences and immune landscape among

subgroups suggest that patients with immunoactive subtypes

may have better immune treatment response. According to the

literature, better immunotherapeutic efficacy is in close relation to

the increase in the number of neoantigens (32, 33). Therefore, we

first evaluated the difference in the number of neoantigens

between the two subtypes, and the results showed that the

immunoactive subtypes have more SNV neoantigens and Indel

neoantigens (Figures 6A, B). Recent studies have shown that MSI

score is expected to become a new predictor of immunotherapy

(34). However, there is no significant difference in MSI score

between the two subtypes (Figure 6C). IPS can systematically

evaluate the activity of effector immune cells and immune

treatment response of patients. The discovery queue showed
Frontiers in Immunology 08
that IPS of immunoactive subtypes was significantly higher than

that of lipid metabolism subtypes (Figure 6D), and the response

rate of immunoactive subtypes to immunotherapy predicted by

TIDE algorithmwas higher than that of lipid metabolism subtypes

(Figure 6E). Although there was no significant difference in IPS

between the two subtypes in the validation cohort, the

immunoactive subtypes in the validation cohort also had a

higher response to immunotherapy (Figures 6E, F). In

conclusion, our results suggest that immunoactive subtypes are

more sensitive to immunotherapy.
Constructing and validating LIS

First, 1597 DEGs were analyzed by univariate Cox regression

to identify the prognostic valuable DEGs. According to the

threshold of p < 0.001, a total of 88 DEGs with prognostic

significance were identified. Then, these 88 DEGs were recruited

for Lasso regression to simplify the model. After 300 iterations,

the model with 22 DEGs was the most stable showing a suitable

efficacy in the training queue as well as the validation queue (C

index > 0.6, Figure 7A). According to the best l (0.02631), the
B

C

D
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FIGURE 5

Genome driven events of different subtypes. (A) The forest map shows the genes with significant mutation differences between the two
subtypes. (B) Oncoplot showed the mutation landscape of top25 mutation driver gene among subtypes. (C) The difference of TMB between the
two subtypes. (D) The histogram analyzed the CNV events on the chromosome arm among subtypes. (E) Differences in overall amplification
events among subtypes. (F) Differences in overall missing events among subtypes. *p < 0.05; ***p < 0.001;
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best model of 22 genes was identified (Figure 7B), and LIS was

generated according to the formula: LIS = ∑iCoefficient(mRNAi)

× Expression(mRNAi), detailed coefficients of 22 LIS genes can

be found in Table S5. According to the survival analysis, patients

with high LIS showed significantly less survival rate compared to

the patients with low LIS (p < 0.001, Figure 7C), which was

confirmed in the validation cohort (p < 0.001, Figure S4A).

Based on the ROC analysis, the AUC values of the model in 1

year, 3 years, and 5 years were 0.792, 0.714, and 0.711,

respectively (Figure 7D). In the external validation queue, LIS

also had satisfactory prediction efficiency, specifically, 0.68 in 1

year, 0.69 in 3 years, 0.69 in 5 years and 0.71 in 8 years (Figure

S4B). Figure 7E shows that the survival status of patients with

high LIS were significantly worse compared that of patients with

low LIS, and similar results were observed in the validation

cohort (Figure S4C). TROC analysis showed that LIS was the
Frontiers in Immunology 09
best predictor of OS (Figure 7F), and the effectiveness of LIS and

Stage was equivalent in the validation queue (Figure S4D).

Finally, univariate Cox regression confirmed that LIS was an

independent prognostic indicator in both training and validation

sets (p < 0.0001, Figure 7G). Multivariate Cox regression showed

that LIS was still an independent prognosticator for OS in the

training and validation cohorts after correcting for other factors

(p < 0.0001, Figure 7H).
Quantifying the risk of individual LUAD
patients

Subgroup analysis showed that LIS in the training cohort

showed excellent predictive ability in different clinical subgroups

except patients in stage 3 and stage 4 (p < 0.001, Figure 8A). In the
B C

D E

F G

A

FIGURE 6

Immunotherapeutic sensitivity of different subtypes. (A) Differences in SNV neoantigens between the two subtypes. (B) The difference of indel
neoantigens between the two subtypes. (C) The difference of MSI score between the two subtypes. (D) IPS differences between subtypes in
TCGA cohort and (F) GEO cohort. The TIDE algorithm predicts the immune treatment responses of different subtypes in (E) TCGA queue and
(G) GEO queue.
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validation cohort, LIS was able to distinguish patients with poor

survival except for patients in stage 2-4 (p < 0.05, Figure S4E). These

results suggest that LIS shows better performance in predicting early

LUAD patients. For better quantifying of the death risk in

individual LUAD patients, nomograms were constructed based

on LIS (Figure 8B). Nomogram correction curve shows that

nomogram model has good stability and accuracy in 1, 3 and 5

years (Figure 8C). TROC analysis showed that compared with

clinical characteristics, nomogram model was the best predictor

(Figure 8D). DCA was then performed to calculate the decision-

making benefits of nomogram model. The results showed that

nomogram was suitable for risk assessment of LUAD patients in 1,

3 and 5 years (Figure 8E).
LIS in predicting immunotherapy

First, TIDE was used to evaluate the difference of

immunotherapy response between patients with high LIS and
Frontiers in Immunology 10
patients with low LIS. According to the results, patients with low

LIS showed to be more benefitting from immunotherapy

(F igure 9A , F igure S5A) . Then five wide ly used

immunotherapy biomarkers were calculated, including MDSC,

MSI score, IFNG, CD8 and CD274. In the training cohort and

validation cohort, LIS provided higher accuracy in predicting

immunotherapy (Figure 9B, Figure S5B). Then, two

immunotherapy cohorts were included to further study

whether LIS cou ld pred ic t pa t i en t s ’ re sponse to

immunotherapy. Consistent with the above, patients with high

LIS showed worse survival in these two immunotherapy cohorts

(Figures 9C, D). Finally, the relationship between LIS and

neoantigens and TMB in Imvigor210 cohort was evaluated.

The results showed that LIS had no strong correlation with

neoantigens and TMB. However, patients with low LIS had

higher neoantigens (Figures 9E, F). Overall, our study strongly

confi rms LIS a s a prognos i s f a c to r fo r OS and

immunotherapeutic response of patients, and is superior to

widely used biomarkers.
B C

D E
F

G H

A

FIGURE 7

Building and verifying LIS. (A) Identifying the best Lasso model. Left: the frequency of different gene combinations in Lasso Cox regression
model; Right: the best model is C-index in TCGA and GEO queues. (B) According to the best l = 0.02631, the best 22-genes model was
selected. (C) Survival curve of high and low LIS subgroups. (D) ROC analysis of LIS in TCGA queue. (E) The scatter plot shows the survival status
of patients with different LIS in the TCGA cohort. (F) TROC curve of LIS in TCGA queue. (G) Univariate Cox regression analysis of OS in TCGA
and GEO cohorts. (H) Multivariate Cox regression analysis of OS in TCGA and GEO cohorts.
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Discussion

Lung cancer is themain cause of cancer-related death and LUAD

is themost common histological subtype with themost patients at the

advanced stage on the initial diagnosis (35, 36). Although a variety of

targeted therapies and new chemotherapeutic drugs have been
Frontiers in Immunology 11
approved, the OS of advanced patients is still not ideal (4). Lipid

metabolism has long been reported as the main energy source of

cancer cells and is involved in the incidence and development of

cancer (8). Recently, the dual regulation of lipid metabolism on

immune response in TME has attracted extensive attention and has

become a promising target for targeted therapy (6, 10). Our study
B C

D

E

A

FIGURE 8

Quantifying individual LIS related risks. (A) Subgroup analysis of LIS in patients with different clinical characteristics. (B) LIS based nomograms
were used to quantify individual patient risks. (C) Nomogram calibration curves at 1, 3 and 5 years. (D) TROC curve of nomogram. (E)
Nomogram DCA curve in 1, 3 and 5 years.
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identified and verified two heterogeneous subtypes in LUAD, one of

which was an effector immune cell with more expression of IRGs,

enrichment of immunoactive pathways and high abundance, which

was defined as an immunoactive subtype. Another kind of

suppressive immune cells expressing more LMGs and high

abundance, showing the characteristics of tumor metabolism and

proliferation, was defined as lipid metabolism subtype. We verified

the stability and repeatability of the two subtypes in a GEO meta

cohort. These two subtypes also showed heterogeneity in genome

driven events, clinical outcomes, and immunotherapy responses. In

addition, a robust prognostic feature was proposed based on these

two subtypes: LIS. Further analysis showed that LIS shows a leading

advantage in predicting the immunotherapy of LUADpatients. These

results promote the understanding of the interaction between lipid

metabolism and TME and offer a new direction for clinical

management and precision treatment of LUAD patients. These two

subtypes showed different clinical characteristics. The survival of

immunoactive phenotype was significantly better than that of lipid

metabolism phenotype, and patients with more disease progression

were in lipid metabolism phenotype. Functional enrichment

indicated that metabolic related pathways and cell-cycle related

pathways were enriched in the lipid metabolism phenotype, while

effector immune cell receptor signaling pathways and immune related

pathways were enriched in the immunoactive phenotype. In addition,

immune infiltration analysis also suggested that there was higher

effector immune cell infiltration in the immunoactive phenotype, and

more tumor cells and inhibitory immune cells in the lipidmetabolism

subtype. These results suggest the hypermetabolism and proliferation
Frontiers in Immunology 12
of tumors in the lipid metabolism subtype and explain the worse

survival rate and tumor progression of patients with this subtype (37).

More effector immune cells and stronger immune activity in the

immunoactive phenotype play an anti-tumor role, resulting in better

survival and tumor remission of patients (38).

Next, in order to elaborate the molecular characteristics of

the two subtypes, the genomic alterations of the two subtypes

were compared. In general, there was a higher TMB in the lipid

metabolism subtype. It is worth noting that the mutation

frequency of KEAP1 gene in the lipid subtype was significantly

increased compared to that in the immunoactive phenotype.

KEAP1 is an essential regulator of cell homeostasis and

antioxidant stimulation (39). Studies have reported that this

mutation is common in NSCLC with close correlation to higher

tumor growth and invasiveness (40). Additionally, tumors

bearing KEAP pathway mutations have been reported in

preclinical and clinical studies, which have stronger resistance

to traditional treatment methods, such as chemotherapy,

radiotherapy, and targeted therapy (41–43). In addition, we

found that the amplification and deletion levels of

immunoactive subtypes were significantly higher at the

chromosome arm level, and the deletion levels of lipid

metabolism subtypes were higher in general. The contradictory

results may suggest that CNV does not seem to be playing a

pivotal role in regulating the differences between subtypes. In

general, the genomic changes of these two subtypes are mainly

mediated by gene mutations, especially KEAP1, which may

contribute to the heterogeneous response of subtypes to tumor
B

C

D

E

F

A

FIGURE 9

LIS in predicting immunotherapy. (A) TIDE algorithm predicted the response rate of immunotherapy with high LIS and low LIS. (B) ROC curve
shows the prediction accuracy of LIS and different immune markers. (C) Survival curve of high LIS and low LIS subgroups in GSE135222 cohort.
(D) Survival curve of high LIS and low LIS subgroups in Imvigor210 cohort. (E) Correlation between LIS and neoantigens in Imvigor210 queue. (F)
Correlation between LIS and TMB in Imvigor210 queue. *p < 0.05; ns p > 0.05.
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treatment, leading to different clinical outcomes. In addition,

KEAP1 may also be a new target for drug development and

clinical treatment of LUAD.

Finally, a prognostic feature called LIS was developed and

validated in the TCGA cohort, GEO meta cohort, and two

external immunotherapy cohorts. High LIS is an independent

negative prognostic factor for OS, and subgroup analysis showed

that LIS showed stronger performance in predicting early LUAD

patients. Considering the heterogeneity of subtypes in

immunotherapy, we also evaluated the effectiveness of LIS in

predicting immunotherapy. The results showed that LIS also

showed high accuracy in the immunotherapy cohort. In

addition, LIS also showed better accuracy than commonly

used biomarkers (MDSC, MSI score, IFNG, CD8 and CD274).

Finally, we found that patients with low LIS may have more

neoantigens, which may lead to stronger immunotherapy

sensitivity in patients with low LIS. In conclusion, our results

suggest that LIS is not only a robust prognostic marker, but also

a promising predictive marker of immunotherapy.

We admit that our research also has some defects. First, we

only use Bulk-seq data without considering the heterogeneity

between cells. Secondly, the sequenced samples came from

tumor tissue, which may lead to the fact that LIS is not

suitable for peripheral blood samples, and the clinical

application is limited. Finally, although we used algorithms

and mature immunotherapy cohorts to evaluate the sensitivity

of the two subtypes to immunotherapy, prospective clinical

research cohorts are still needed for validation. In conclusion,

our work identified and validated heterogeneous lipid

metabolism subtypes and immune activity subtypes in LUAD,

which showed heterogeneity in clinical outcomes, biological

functions, immune infiltration, and genome driven events. In

addition, we have developed a feature called LIS, which can be

used as a reliable prognostic biomarker for predicting OS and

immunotherapy response. These results promote the

understanding of the interaction between lipid metabolism and

TME and offer a new direction for clinical management and

precision therapy of LUAD patients.
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SUPPLEMENTARY FIGURE 1

The workflow of this study. In this study, we aimed to survey the crosstalk

between lipid metabolism and tumor immune response in LUAD patients
and identified two heterogeneous subtypes (lipid metabolism subtype and

immune activity subtype). These two subtypes show specific differences

in clinical outcomes, biological functions, immune infiltration and
genomic variation. In addition, a lipid-immune score (LIS) was

developed and validated, which shows significant advantages in
predicting prognosis and immunotherapy response. In conclusion, our

work strengthens the understanding of the complex role between lipid
metabolism and immune system in LUAD and provides a new perspective

and reference for the accurate prediction and immunotherapy of

LUAD patients.
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SUPPLEMENTARY FIGURE 2

Validation of immune and lipid subtypes. (A) CDF curve of consensus
matrix of different K in GEO queue. (B) Consensus matrix when k = 2 in

GEO queue. (C) Expression heat maps of LMGs and IRGs in two subtypes
in the GEO cohort. (D) Survival curve of two subtypes in GEO cohort.

SUPPLEMENTARY FIGURE 3

Verification of immune infiltration in subtypes. (A) Differences in Estimate

scores between the two subtypes in the GEO cohort. (B) Differences in
the expression of six typical immune checkpoints (PD-L1, CD8A, CTLA-4,

LAG-3, PD-1) between the two subtypes in the GEO cohort. (C)
Differences in immune related pathway activity between the two
subtypes in the GEO cohort. (D) Differences in immune cell infiltration

between the two subtypes in the GEO cohort.
Frontiers in Immunology 14
SUPPLEMENTARY FIGURE 4

External verification of LIS. (A) Survival curves of high and low LIS
subgroups in the GEO cohort. (B) ROC analysis of LIS in GEO queue.

(C) The scatter plot shows the survival status of different LIS patients in
the GEO cohort. (D) TROC curve of LIS in GEO queue. (E) Subgroup
analysis of LIS in patients with different clinical characteristics in
GEO cohort.
SUPPLEMENTARY FIGURE 5

External verification of LIS. (A) The TIDE algorithm in GEO queue
predicted the response rate of immunotherapy with high LIS and low

LIS. (B) ROC curves in the GEO cohort showed the predictive accuracy of
LIS and different immune markers.
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