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The incidence of cerebral ischemia has increased in the past decades, and the

high fatality and disability rates seriously affect human health. Apelin is a

bioactive peptide and the ligand of the G protein-coupled receptor

APJ. Both are ubiquitously expressed in the peripheral and central nervous

systems, and regulate various physiological and pathological process in the

cardiovascular, nervous and endocrine systems. Apelin-13 is one of the

subtypes of apelin, and the apelin-13/APJ signaling pathway protects against

cerebral ischemia by promoting angiogenesis, inhibiting excitotoxicity and

stabilizing atherosclerotic plaques. In this review, we have discussed the role

of apelin-13 in the regulation of cerebral ischemia and the underlying

mechanisms, along with the therapeutic potential of the apelin-13/APJ

signaling pathway in cerebral ischemia.
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1 Introduction

Cerebral ischemia is a serious threat to human health, and is associated with high

morbidity, disability and mortality. The rapidly aging population, as well as significant

changes in lifestyle and diet brought about by the socio-economic development in China

in recent years, has significantly increased the risk of stroke. It is currently the primary

cause of death and disability among adults in China (Wang et al., 2015;Wang et al., 2017a;

Guan et al., 2017). Therefore, it is crucial to devise suitable intervention methods in order

to improve the prognosis of patients with cerebral ischemia and reduce the burden of

disease.

Studies increasingly show that the apelin/apelin receptor (APJ) signaling pathway is

involved in the occurrence and development of cerebral ischemia (Tables 1, 2). APJ is an

orphan G protein-coupled receptor that was discovered by O’Dowd et al. (1993), and

apelin is its endogenous ligand. The apelin/APJ system is ubiquitous in the peripheral and
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central nervous systems, and regulates blood pressure,

myocardial contraction, immune response, angiogenesis,

cancer development and other biological processes (Hosoya

et al., 2000; Kawamata et al., 2001; Li et al., 2008; Barnes

et al., 2010; Yang et al., 2016a). The currently known subtypes

of apelin include apelin-12, apelin-13, apelin-17, apelin-28, and

apelin-36, of which apelin-13 is the predominant subtype found

in the heart, brain and hypothalamus. Previous studies have

shown that apelin-13 plays an important role in cerebral

ischemia (Duan et al., 2019; Wang et al., 2020) and ischemic

stroke, and changes in the expression level of endogenous apelin-

13 following ischemia has diagnostic and therapeutic relevance.

Exogenous apelin-13 supplementation in ischemic stroke

patients can play a neuroprotective role by regulating multiple

signaling pathways. In this review, we have summarized the role

and mechanism of apelin-13 in cerebral ischemia, in order to

offer new insights into its diagnosis and treatment.

2 Apelin-13

2.1 Biological characteristics of apelin-13

The gene encoding the arginine and lysin-rich apelin

precursor peptide is located on chromosome Xg 25–26.1, and

consists of three exons and two introns. The precursor peptide

contains multiple potential sites of post-translational enzymatic

processing, and can therefore generate multiple active apelin

peptide fragments. For instance, cleavage of the apelin precursor

peptide by angiotensin converting enzyme 2 (ACE2) generates

isoforms of varying lengths such as aplein-12, apelin-13, apelin-

17, and apelin-36. These isoforms differ in terms of tissue

distribution, physiological and pharmacological effects, and

binding strength with APJ (Lee et al., 2000; Reaux et al., 2001;

De Mota et al., 2004). Furthermore, the biological activity of

apelin, especially involving receptor binding and intracellular

receptor transport, is greatly influenced by the size of the

molecular fragment. Smaller apelin isoforms typically display

stronger binding to APJ (Kleinz and Davenport, 2005; Carpéné

et al., 2007).

Apelin-13 is a short peptide consisting of 13 amino acids. The

N-terminal of apelin-13 binds to the APJ receptor, while the

C-terminal is mainly involved in regulating its biological activity

(Kawamata et al., 2001; Medhurst et al., 2003). It is degraded into

an inactive form in the presence of ACE2 (Vickers et al., 2002),

and is also modified into the more stable and active pyroglutamyl

apelin-13. Studies show that pyroglutamyl apelin-13 is the most

biological relevant subtype of apelin present in healthy human

plasma (Mesmin et al., 2010; Zhen et al., 2013). Nevertheless,

apelin-13 is ubiquitously expressed in the digestive system,

cardiovascular system, central nervous system (CNS), kidneys,

adipose tissue and retina, whereas apelin pro-peptide is

predominantly present in the heart, lungs, kidneys and

endothelial cells of large blood vessels (O’Carroll et al., 2000).

Furthermore, apelin mRNA has been detected in the mammary

glands, heart, lungs, brain, kidneys and other tissues of rats.

Based on these findings, we can surmise that apelin has wide-

ranging functions in humans as well as rodents. In particular, the

presence of apelinergic neurons in the brain suggests that apelin

may regulate food intake and digestion, pituitary hormone

release and circadian rhythms (Reaux et al., 2002).

2.2 The APJ receptor

The apelin receptor APJ, also known as angiotensin II (Ang

II) receptor-like 1, is a G protein-coupled receptor consisting of

380 amino acids with seven transmembrane structures. It is

TABLE 1 The evidence from clinical trials demonstrating the role of apelin in stroke.

Subject Main findings Citation

68 MMD patients, 25 MCAO patients, 29 healthy controls Apelin-13 is significantly increased in MMD patients than MCAO patients independent
of NO and VEGF.

Wu et al. (2022)

60 patients with high risk of stroke (AF and non-AF group),
34 healthy controls

Apelin might be used to rule out AF in patients with high risk of stroke Bohm et al. (2021)

109 AIS patients treated with intravenous thrombolysis Apelin can help effectively forecast the occurrence of HT in AIS patients after intravenous
thrombolysis, as an independent protective factor of HT.

Zhu et al. (2021)

156 ischemic stroke patients, 79 hemorrhagic stroke patients,
235 healthy controls

Higher vaspin, apelin, and visfatin levels might be associated with increased stroke risk Yu et al. (2021)

244 AIS patients, 167 healthy controls Serum apelin-13 may be a potential prognostic biomarker for AIS. Serum apelin-13 levels
is lower in the patients than healthy controls, patients with a NIHSS score ≤3 had higher
apelin-13 levels. There is an association between apelin-13 and death or major disability
at the 3-months follow-up, the patients with high apelin-13 levels show a lower incidence
of stroke and combined events at the 1-year follow-up

Wang et al. (2020)

168 AIS patients, 58 healthy controls No difference of apelin between AIS patients and control group, and no difference of
apelin between stroke subgroups with and without significant ipsilateral carotid stenosis

Kadoglou et al.
(2014)
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TABLE 2 The evidence from experimental trials demonstrating the role and mechanism of apelin in stroke.

Subject Apelin treatment Main findings Citation

MCAO/R rats Apelin-13 is injected into the tail vein 5 min before
reperfusion

Apelin-13 attenuates injury following ischemic
stroke by targeting MMP, endothelin-B receptor,
occludin/claudin-5 and oxidative stress

Gholamzadeh
et al. (2021a)

HT22 cells (OGD/R) The cells are treated with 0.1 µM Apelin-36 Apelin-36 protects against OGD/R-induced
oxidative stress and mitochondrial dysfunction by
promoting SIRT1-mediated PINK1/Parkin-
dependent mitophagy

Shao et al. (2021a)

Spragu-Dawley rats (MCAO/R), SH-
SY5Y cells (OGD/R)

Apelin-13 (50 μg/kg) is injected into the right ventricle
of rats at the onset of reperfusion; SH-SY5Y cell is
treated with 10–7 M apelin-13 for 5 h

Apelin-13 inhibits apoptosis and excessive
autophagy by upregulating Bcl-2 and activating
mTOR signaling pathway after cerebral ischemia/
reperfusion injury

Shao et al. (2021b)

Wistar rats (MCAO/R) Intravenous injection of apelin-13 (10, 20, and 40 μg/kg)
via tail vein 5 min before reperfusion

Apelin-13 improve sensory-motor balance defects by
reducing neural death and infarct volume, and
restoration of serum NO levels after cerebral
ischemia

Gholamzadeh
et al. (2021b)

Sprague-Dawley rats (SAH) Apelin-13 (10 mg/kg) is injected into the lateral cerebral
ventricle at 0.5 h after SAH.

Apelin-13 attenuates early brain injury following
subarachnoid hemorrhage via suppressing neuronal
apoptosis through the GLP-1R/PI3K/Akt signaling

Liu et al. (2019)

Sprague-Dawley rats (SAH) Apelin-13 (25 μg/kg, 50 μg/kg, and 100 μg/kg) is
injected intracerebroventricularly immediately after
SAH induction

Apelin-13 attenuates early brain injury through
inhibiting inflammation and apoptosis in rats
after SAH.

Shen et al. (2022)

Sprague-Dawley rats (MCAO/R),
PC12 cells (I/R)

Apelin-13 (30 μg/kg, 60 μg/kg, and 120 μg/kg) is
injected intracerebroventricularly 15 min before
reperfusion in rats; PC12 cells are pretreated with
apelin-13 (0.5, 1, and 1.5 μM) for 6 h

Apelin 13 protects against I/R-induced ROS-
mediated inflammation and oxidative stress through
activating the AMPK/GSK-3β pathway via AR/Gα/
PLC/IP3/CaMKK signaling, and further upregulates
the expression of Nrf2-regulated antioxidant
enzymes

Duan et al. (2019)

CD-1 mice (MCAO/R) 15 μl Apelin-12 is intracerebroventricularly injected
15 min before reperfusion

Apelin-12 inhibits the JNK and p38MAPK signaling
pathway of the apoptosis-related MAPKs family,
thus offering protection to neurons from ischemia-
reperfusion injury

Liu et al. (2018)

118 MCAO patients and 22 controls
patients; Sprague-Dawley rats
(MCAO)

Pretreatment of apelin-17 (1 μmol/L) in rats Plasma apelin-17 levels in ischemic stroke patients
are positively associated with enhanced collateral
circulation, which may have resulted from an apelin-
17-induced cerebral artery dilation mediated
through the NO-cGMP pathway

Jiang et al. (2019)

Wistar rats (MCAO/R) Apelin-13 (10 μl) is injected intracerebroventricularly
30 min before MCAO in rats

Apelin-13 can attenuate activate neuronal apoptosis
by inhibiting eIF2-ATF4-CHOP-mediated ER stress,
involvement of Gαi/Gαq- CK2 signaling

Wu et al. (2018)

Wistar rats (MCAO/R) 10 µl apelin-13 (0.03 µg/µl) or10 µl apelin-36 (0.05 µg/
µl) is injected into the right lateral ventricle at 2 h after
MCAO.

Post-stroke administration of low-dose apelin-36
could attenuate infarct volume and apoptosis, which
is associated with the inhibition of ERS/UPR
activation. Low dose of apelin-13 had no protective
effect in rats with ischemic stroke

Qiu et al. (2017)

Chu et al. (2017)

(Continued on following page)
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TABLE 2 (Continued) The evidence from experimental trials demonstrating the role and mechanism of apelin in stroke.

Subject Apelin treatment Main findings Citation

AQP4 +/+ and AQP4 −/− mice
(MCAO/R)

Apelin-13 (50 μg/kg) is injected
intracerebroventricularly 15 min before reperfusion

Apelin-13 protects BBB from disruption after
cerebral ischemia both morphologically and
functionally, which is highly associated with the
increased levels of AQP4, possibly through the
activation of ERK and PI3K/Akt pathways

Spragu-Dawley rats (MCAO/R);
priamary neurons, astrocytes, and
endothelial cells (OGD/R)

Apelin-13 (50 μg/kg) is injected
intracerebroventricularly 15 min before or immediately
after reperfusion in rats; the cells treat with apelin-13
(100 μmol/L)

Protective effects of apelin-13 on ischemic
neurovascular unit injuries are highly associated with
the increase of VEGF binding to VEGFR-2, possibly
acting through activation of ERK and PI3K/Akt
pathways

Huang et al.
(2016)

Mice (MCAO/R) Apelin-13 (100 μg/kg) is injected
intracerebroventricularly 15 min before reperfusion

Apelin-13 protects against apoptosis by activating
AMP-activated protein kinase pathway in ischemia
stroke

Yang et al. (2016b)

C57/BL6 mice (BOCCA) Intranasal administration of apelin-13 (4 mg/kg) is
given 30 min after the onset of stroke and repeat once
daily

Apelin-13 exert neuroprotective effect after ischemic
stroke, through reducing inflammatory activities,
decreasing cell death, and increasing angiogenesis

Chen et al. (2015)

Wistar rats (MCAO/R) Apelin-13 (0.1 μg/g) diluted in 10 μl physiological saline
is injected into the lateral ventricle

Apelin-13 is neuroprotective against cerebral
ischemia/reperfusion injury through inhibition of
neuronal apoptosis

Yan et al. (2015)

Wistar rats (MCAO/R) Apelin-13 (50 ng/kg, 10 μl) is injected
intracerebroventricularly at the onset of reperfusion

Apelin-13 is neuroprotective for neurons against I/R
through inhibiting the neuroinflammation

Xin et al. (2015)

ICR mice (MCAO/R) Apelin-13 (10 μg/kg, 50 μg/kg, 100 μg/kg, 5 μl) is
injected intracerebroventricularly 15 min before
reperfusion

Apelin-13 protects the brain against ischemia/
reperfusion injury through activating PI3K/Akt and
ERK1/2 signaling pathways

Yang et al. (2014b)

ICR mice (MCAO/R, H/I) Apelin-36 (0.1 μg in 10 μl saline) is injected into the left
lateral ventricle at 30 min before MCAO; apelin-36
(1 μg in 100 μl saline) is administrated intraperitoneally
at the beginning of recovery (H/I)

Apelin-36 protects against ischemic brain injury by
reducing apoptosis via activating the PI3K/Akt
pathway

Gu et al. (2013)

Wistar rats (MCAO/R) Apelin-13 (25, 50, and 100 μg in 5 μl saline) is injected
intracerebroventriculary at the beginning of ischemia

Apelin-13 improves infarct volume, brain edema,
and apoptosis, but not change neurological
dysfunction after cerebral ischemia

Khaksari et al.
(2012)

Primary mouse cortical neurons Cortical neurons are incubated with different
concentrations of apelin-13 (10 p.m. - 5 nM)

Apelinmay block apoptosis and excitotoxic death via
regulating Akt/ERK pathway and attenuating
intracellular Ca2+ accumulation

Zeng et al. (2010)

Sprague-Dawley rats (SAH) Apelin-13 (15 μg/kg, 50 μg/kg, and 150 μg/kg in 10 μl
sterile saline) is injected intracerebroventricularly at
30 min after SAH induction

Exogenous apelin-13 binding to APJ attenuates early
brain injury after SAH by reducing ERS-mediated
oxidative stress and neuroinflammation, which is at
least partly mediated by the AMPK/TXNIP/
NLRP3 signaling pathway

Xu et al. (2019)

Sprague-Dawley rats (SAH) Apelin-13 (15 μg/kg, 50 μg/kg, and 150 μg/kg in 10 μl
sterile saline) is injected intracerebroventricularly at
30 min after SAH induction

Apelin-13 could exert its neuroprotective effects via
suppression of ATF6/CHOP arm of ERS-response
pathway in the early brain injury after SAH.

Xu et al. (2018)
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currently the only known apelin-13 receptor so far, and is highly

expressed in neurons and glial cytoplasm in caudate nucleus,

corpus callosum and hippocampus (Hosoya et al., 2000;

Medhurst et al., 2003). APJ relays the signals through Gα
subunit (Gαi or Gαq) of G protein. The structure of APJ is

similar to that of the Ang II type I (AT1) receptor, although it

cannot bind to Ang II (O’Dowd et al., 1993). In addition, G

protein-independent signaling pathways are also involved in the

activation of the apelin/APJ system. Upon binding to apelin, APJ

is activated and recruits G protein-coupled receptor kinases

(GRKs), resulting in APJ phosphorylation. The inhibitor

protein (β-arrestin) then rapidly binds to APJ, resulting in

receptor desensitization, and activation of the G protein-

independent signaling pathways (Chen et al., 2014; Chen

et al., 2020).

2.3 The tissue distribution pattern of
apelin-13 and APJ

Apelin 13 is widely distributed in the CNS, with high

expression levels in neurons and oligodendrocytes, and

relatively lower expression in the astrocytes. Apelin 13 mRNA

has been detected in the spinal cord, brain stem, cerebral cortex,

hypothalamus, cerebellum, striatum, and hippocampus

(O’Carroll et al., 2000). The differential expression pattern of

apelin 13 and APJ in the CNS is indicative of multiple

physiological or pathological functions. Both APJ and apelin

are highly expressed in the hypothalamus, the master regulator of

the neuroendocrine and humoral balance. The co-localization of

apelin and hypothalamic arginine vasopressin (AVP) neurons

suggests that apelin may regulate body fluid balance, feeding and

drinking behavior and the HPA axis by interacting with AVP (De

Mota et al., 2000; Reaux-Le Goazigo et al., 2004). In addition, the

distribution of apelin in hypothalamus and pituitary region also

indicates that apelin may be involved in the regulation of

neurological and adenohypophysial hormones (Brailoiu et al.,

2002; Yang et al., 2019).

Several studies have shown that apelin and APJ are highly

expressed in the cardiovascular system, and can enhance

myocardial contraction, reduce cardiac load, dilate blood

vessels, promote angiogenesis, and regulate cardiac electrical

conduction (Maguire et al., 2009; Aydin et al., 2014; Yu et al.,

2014). Interestingly, the apelin/APJ system is also expressed in

the cerebral blood vessels, and regulates vascular function. For

instance, some studies have demonstrated that apelin can

promote vasodilation in cerebral vessels (Nagano et al., 2019;

Mughal et al., 2020). Mughal et al. (2018) found that apelin

inhibits nitric oxide (NO)-dependent relaxation of cerebral

arteries by activating APJ and inhibiting large-conductance,

calcium-activated K channel in cerebral arterial smooth

muscle cells, partially via a PI3K-dependent mechanism

(Modgil et al., 2013). In addition, apelin promotes

development of new blood branches from preexisting cerebral

vessels following ischemic stroke (Han et al., 2015; Hiramatsu

et al., 2017; Wu et al., 2017). Jiang et al. (2019) correlated the

increased levels of plasma apelin-17 in ischemic stroke patients

with enhanced collateral circulation, which can be attributed to

cerebral artery dilation induced by apelin-17 via regulating the

NO-cGMP pathway.

2.4 The neuroprotective effects of
apelin 13

There is ample evidence demonstrating the

neuroprotective effects of apelin-13. It can protect neuronal

cells against apoptosis and excitotoxic injury by inhibiting

NMDA-induced intracellular Ca2+ accumulation, oxidative

stress, mitochondrial damage, cytochrome C release and

caspase-3 activation via the ERK1/2 signaling pathway

(Zeng et al., 2010). In addition, one study showed that

supraspinal administration of apelin-13 in mice induced

antinociception via the opioid receptor (Xu et al., 2009).

The same group reported that apelin-13 relieved acetic

acid-induced visceral pain in mice when injected into the

subarachnoid space, and this analgesic effect was blocked by

opioid receptor antagonists (Lv et al., 2012). Similarly,

Hajimashhadi et al. (2017) demonstrated that intrathecal

injection of apelin-13 increased the autonomic activity and

relieved signs of pain in rats with spinal cord injury. However,

one study showed that peripheral administration of apelin-13

reduced the latency of painful stimuli and enhanced pain

sensitivity in a dose- and time-dependent manner (Canpolat

et al., 2016), and intrathecal administration of ML221, an APJ

antagonist, transiently reduced chronic constriction injury-

induced pain hypersensitivity (Xiong et al., 2017). These

findings suggest that the spinal apelin/APJ system may

drive neuropathic pain. Thus, the regulatory effects of

apelin-13 on pain may depend on the route of

administration, as well as the type and degree of pain, and

needs further clarification.

Previous studies have shown that apelin-13 can enhance the

consolidation of passive avoidance learning and memory in mice,

and these protective effects are neutralized by antagonists of α-
adrenergic, cholinergic, dopamine, 5-hydroxytryptophan and γ
-aminobutyric acid receptors, as well as inhibitors of nitric oxide

synthesis (Telegdy et al., 2013). In a mouse model of chronic stress-

induced memory deficit, apelin-13 significantly improved the

cognition of new objects and memory deficit of Y maze, likely

through to the upregulation of BDNF (Shen et al., 2019). In

addition, exogenous apelin-13 attenuated cisplatin-induced

cognitive dysfunction by activating the BDNF/TrkB signaling

pathway and suppressing neuroinflammation. Apelin-13 is also

known to relieve the symptoms of anxiety in mice, and these

anti-anxiety effects may be related to α, ß adrenergic, dopamine
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and 5-HT receptors since they were blocked by the

administration of phenbenzamine, haloperidol,

propranolol, and dimethylergometrine (Telegdy and

Jászberényi, 2014). Apelin-13 also reversed depression-like

behavior in rats subjected to chronic social defeat stress and

chronic water immersion restraint stress by regulating

microglial polarization, and ameliorating a dysfunctional

HPA axis and hippocampal glucocorticoid receptor (Dai

et al., 2018; Tian et al., 2018; Zhou et al., 2020).

A clinical study on 126 patients with severe TBI and

126 healthy controls found that lower serum level of

apelin-13 in the patients correlated significantly with

increased severity of TBI, and was an independent

predictor of short-term mortality, indicating that serum

apelin-13 is a promising prognostic biomarker for severe

TBI (Zhuang et al., 2021). The protective effects of apelin-

13 in TBI are associated with inhibition of autophagy (Bao

et al., 2015), suppression of neuronal apoptosis through the

GLP-1R/PI3K/Akt signaling (Liu et al., 2019), and mitigation

of blood-brain barrier (BBB) destruction and brain edema

(Bao et al., 2016a). Early brain injury (EBI) is at present

considered to the key determinant of the neurological

function and clinical outcomes of subarachnoid

hemorrhage (SAH) (Sehba et al., 2012; Fujii et al., 2013).

Apelin-13 can attenuate EBI by inhibiting neuronal apoptosis

and degeneration, and reducing the release of inflammatory

cytokines such as TNF-α and IL-1β in the CSF. These

protective effects were neutralized upon administration of

the APJ inhibitor ML221 (Shen et al., 2022). The anti-

apoptosis effect of apelin-13 in SAH may be related to the

activation of the GLP-1R/PI3K/Akt signaling pathway (Liu

et al., 2019). Xu et al. (2019) found that exogenous apelin-13

can alleviate EBI by suppressing endoplasmic reticulum (ER)

stress-induced NLRP3 inflammasome activation and

oxidative stress after SAH. Furthermore, the APJ inhibitor

dorsomorphine reversed the neuroprotective effects of apelin-

13 in SAH. Another study by Xu et al. (2018) confirmed that

apelin-13 reduced neuronal apoptosis and prevented BBB

disruption after SAH, and eventually improved EBI by

alleviating ER stress partly via the ATF6/CHOP pathway.

Intracerebral hemorrhage (ICH) shares certain pathological

characteristics with SAH. Intracerebroventricular

administration of apelin-13 improved motor function and

brain edema after ICH by reducing neuronal death, which

demonstrates its therapeutic potential (Bao et al., 2016b).

3 Apelin-13 and cerebral ischemia

The apelin/APJ system is closely associated with the

pathogenesis of ischemic stroke, which is currently the most

common cerebrovascular disease. Clinical studies suggest that

apelin is related to the diagnosis and prognosis of cerebral

ischemia, while studies in animal and cellular models indicate

that exogenous apelin-13 can effectively reduce infarct volume

and cerebral edema, and improve neurological function after

cerebral ischemia.

3.1 Clinical studies

In a follow-up cohort study, Wang et al. (2017b) found

that the variant rs9943582 of APJ gene was not significantly

associated with ischemic stroke in the Chinese Han

population. Consistent with this finding, another clinical

study reported that the variant rs9943582 was not

associated with the age at onset and clinical outcomes of

ischemic stroke (Zhang et al., 2017). However, other clinical

studies have reported contradictory findings. One study

conducted in China on 244 AIS patients recruited within

24 h of stroke onset and 167 healthy controls showed that

serum apelin-13 levels were lower in the patients compared to

the healthy controls. In addition, patients with NIHSS

score ≤3 had higher apelin-13 levels than those with

NIHSS score >3. Low apelin-13 level in the patients was

associated with death or major disability within 3-months,

whereas patients with high apelin-13 levels showed a lower

incidence of stroke and combined events after 1-year. These

findings indicated that serum apelin-13 is a potential

prognostic biomarker for acute ischemic stroke (Wang

et al., 2020). Another clinical study demonstrated that

higher apelin levels were associated with increased risk of

stroke (including ischemic and hemorrhagic stroke) (Yu

et al., 2021). Intravenous thrombolytic therapy (ITT) is

commonly used to treat acute ischemic stroke, although it

can enhance the risk of hemorrhagic transformation (HT). To

analyze the predictive significance of apelin on HT in acute

ischemic stroke patients after ITT, Zhu et al. (2021) analyzed

the data of 109 acute ischemic stroke patients that received

ITT, and found that a higher HT grade was associated with

lower apelin level and increased levels of interleukin-1β (IL-

1β) and IL-6. Moreover, lower apelin was also related with a

higher risk of death of patients with both ischemic stroke and

HT, indicating that apelin is an independent protective factor

in stroke patients. Atrial fibrillation (AF) is associated with a

high risk of stroke, and should therefore be detected in a

timely manner. Bohm et al. (2021) showed that apelin levels

were significantly lower in stroke patients with AF compared

to the non-AF group in a multicenter, matched-cohort, and

only apelin was identified as an independent predictor of AF.

Thus, apelin administration should be considered in patients

with high risk of stroke to exclude the possibility of AF.

However, another clinical trial shown that apelin level did not

differ between stroke patients and healthy individuals, and

was not associated with cardiovascular mortality and

morbidity during follow-up. This discrepancy can be
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attributed to differences in sample size and patients selection,

and measurement assays for apelin. Further large-scale

multicenter clinical trials are needed, along with detailed

subgroup analysis, to clarify the therapeutic value of apelin

in stroke.

3.2 Mechanistic investigation

3.2.1 Apelin-13 protects against blood-brain
barrier disruption after cerebral ischemia

The BBB controls the exchange of substances between

blood and brain tissue, allows nutrients to pass and prevents

harmful substances from entering, thereby protecting the

CNS. Given that the secondary injuries after cerebral

ischemia is closely related to the morphological and

structural destruction of BBB, protecting the integrity of

the latter and alleviating cerebral edema are increasingly

being considered as treatment options for ischemic stroke

(Huang et al., 2020; Parvez et al., 2022). Apelin-13 can reduce

BBB permeability and brain vasogenic edema after ischemia

by mitigating oxidative stress, and inhibiting the expression

of matrix metalloproteinases (MMP) and endothelin-B

receptor (Gholamzadeh et al., 2021a). Furthermore, the

protective effect of apelin-13 on BBB post-stroke is

significantly associated with the elevated expression of

aquaporin-4 (AQP4), which is partly achieved by

activating the extracellular signal-regulated kinase (ERK)

and PI3K/Akt pathways (Chu et al., 2017). Several factors

are involved in the destruction of BBB after ischemic stroke,

such as inflammatory cytokines, microvessel and endothelial

cell injury, and the degradation of extracellular matrix. It

remains to be explored how apeline-13 affects these

pathological pathways.

3.2.2 Apelin-13 promotes angiogenesis
after cerebral ischemia

The apelin/APJ system plays an important role in

embryonic vascular development and adult angiogenesis

(Cox et al., 2006). Both APJ and apelin are expressed in

retinal vascular endothelial cells, and apelin promotes the

proliferation and chemotaxis of these cells, as well as

formation of capillary tubes. In addition, the apelin/APJ

system may also be involved in endothelial cell

proliferation and neovascularization (Tao et al., 2010;

Zhang et al., 2013). Apelin-13 can promote proliferation,

migration and tube formation in myocardial microvascular

endothelial cells, as well as angiogenesis via modulation of

AMPK and Akt signaling (Yang et al., 2014a). Knocking out

APJ in glioblastoma cells reduced tumor growth and

angiogenesis, suggesting that targeting the apelin/APJ

system is a promising strategy for preventing angiogenesis

in glioblastoma (Amoozgar et al., 2019; Frisch et al., 2020).

Apelin-13 plays an important role in the formation of

collateral circulation. A clinical trial demonstrated that

apelin-13 was significantly increased in patients with

moyamoya disease compared to those with middle cerebral

artery occlusion independent of NO and VEGF. Given that

moyamoya disease has better collateral circulation compared

to ischemic stroke, high plasma levels of apelin may be

indicative of good collateral circulation (Wu et al., 2022).

Furthermore, intranasal administration of apelin-13

increased the number of new vessels in the area

surrounding infarction, restored the local cerebral blood

flow, and promoted long-term functional recovery by

upregulating vascular endothelial growth factor (VEGF)

and MMP-9 (Chen et al., 2015). Apelin-13 can protect

neurovascular units from ischemic injury by increasing the

expression of VEGF and VEGFR2, and promoting VEGF

binding to VEGFR-2 by activating the ERK and PI3K/Akt

pathways (Huang et al., 2016). Cerebral blood flow blockade

is often accompanied by hypoxia, which activates the apelin/

APJ system, and consequently promotes endothelial cell

proliferation via the PI3K/Akt and MAPK signaling

pathways (Zhang et al., 2015; Zhang et al., 2016).

3.2.3 Apelin-13 inhibits excitotoxicity after
cerebral ischemia

Aspartic acid, glutamate and glycine are excitatory

neurotransmitters that are mainly distributed in the synaptic

terminals of neurons in the CNS. The main excitatory amino acid

released after cerebral ischemia is glutamate, which binds to the

excitatory amino acid receptors on the postsynaptic membrane,

resulting in neurotoxicity and neuronal damage. Nerve cells are

rich in NMDA, which mediates the excitotoxicity of glutamate.

Glutamate activates NMDA receptors and triggers a

massive Ca2+ influx through the specific ion channel,

resulting in intracellular calcium overload in the early

stage of ischemia, and eventually cell death (Hossmann,

1994; Lai et al., 2014). Apelin-13 can reduce NMDA

activity by directly reducing the ion flow potential of the

NMDA receptor membrane. In addition, apelin-13 also

inhibits NMDA in a dose-dependent manner by activating

the pro-survival Ca2+, IP3, PKC, MEK-1/2, Akt, and Raf/

ERK-1/2 signaling pathways, thereby antagonizing the

excitotoxicity effects of glutamate and alleviating neuron

injury (Cook et al., 2011; O’Donnell et al., 2007). Another

experimental study established that apelin protects against

NMDA-induced retinal neuronal death via APJ receptor by

activating Akt and ERK1/2, and downregulating TNF-α
(Ishimaru et al., 2017). Zeng et al. (2010) showed that

apelin-13 can prevent serum deprivation-induced changes
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in Akt and ERK1/2 phosphorylation, and attenuate NMDA-

induced intracellular Ca2+ accumulation, which in turn

inhibits apoptosis and excitotoxic death.

3.2.4 Apelin-13 promotes the stability of
atherosclerotic plaques

Apelin-13 has been implicated in atherosclerosis in

several studies on account of its immunoreactivity in

human aortas and coronary arteries. Furthermore, apelin/

APJ expression patterns are inversely correlated to human

aortic and coronary atherosclerosis (Kostopoulos et al.,

2014). In addition, serum apelin levels are negatively

correlated with the severity of arterial stenosis, and

positively correlated with the stability of atherosclerotic

plaques, indicating its value as a potential biomarker of

atherosclerotic plaque stability (Zhou et al., 2014).

Consistent with this, a clinical trial conducted on 235

(114 black, 121 white) rheumatoid arthritis patients

showed that apelin concentration in the serum was

associated with altered levels of plaque stability mediators

(MMP-2, MMP-9) and atherosclerosis, in a manner partly

dependent on population origin and systemic inflammatory

status (Gunter et al., 2017). A recent study showed that the

apelin/APJ system is involved in the development of

atherosclerosis by influencing vascular smooth muscle

cells (Luo et al., 2018). Moreover, apelin is up-regulated

in human atherosclerotic coronary artery and localized to the

plaque along with macrophages and smooth muscle cells

(Pitkin et al., 2010). Another study confirmed that apelin-13

significantly improves plaque stability by increasing collagen

content and decreasing MMP-9 expression, reducing

inflammatory cell infiltration (neutrophils and

macrophages) and intracellular reactive oxygen species

(ROS) content (Fraga-Silva et al., 2018). Furthermore,

PINK1/Parkin-mediated mitophagy promotes apelin-13-

induced vascular smooth muscle cell proliferation by

AMPKα and exacerbates atherosclerotic lesions (He et al.,

2019).

4 Summary and prospects

The apelin-13/APJ signaling axis is ubiquitous in the

peripheral and central nervous systems. Apelin-13 is an

endogenous neuroprotective molecule that regulates

various physiological and pathological processes in the

brain. Following cerebral ischemia, apelin-13 promotes

angiogenesis, increases the stability of atherosclerotic

plaques and reduces excitatory toxicity, thereby improving

prognosis. At present, little is known regarding the function

of the apelin-13/APJ pathway, and its mechanisms have not

been clarified. To this end, we first need to clarify the

biological functions and mechanism of apelin-13/APJ

signaling in cerebral ischemia, and the long-term effects of

activating this pathway. Secondly, novel APJ receptor

agonists or antagonists have to be developed to verify the

feasibility and efficacy of the apelin-13/APJ system as an

intervention target in ischemic stroke. In addition, the

variation loci related to the apelin/APJ system, their

relationship with brain structure and function, and their

impact on the prognosis of cerebral ischemia also need to be

elucidated. Finally, the injection route, injection time and

treatment frequency of apelin-13 in pre-clinical studies need

to be optimized before clinical studies on ischemic stroke

patients.
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