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The quantum-optical nature of high harmonic
generation
Alexey Gorlach1, Ofer Neufeld 1, Nicholas Rivera 2, Oren Cohen1 & Ido Kaminer 1✉

High harmonic generation (HHG) is an extremely nonlinear effect generating coherent

broadband radiation and pulse durations reaching attosecond timescales. Conventional

models of HHG that treat the driving and emitted fields classically are usually very successful

but inherently cannot capture the quantum-optical nature of the process. Although prior work

considered quantum HHG, it remains unknown in what conditions the spectral and statistical

properties of the radiation depart considerably from the known phenomenology of HHG. The

discovery of such conditions could lead to novel sources of attosecond light having squeezing

and entanglement. Here, we present a fully-quantum theory of extreme nonlinear optics,

predicting quantum effects that alter both the spectrum and photon statistics of HHG, thus

departing from all previous approaches. We predict the emission of shifted frequency combs

and identify spectral features arising from the breakdown of the dipole approximation for the

emission. Our results show that each frequency component of HHG can be bunched and

squeezed and that each emitted photon is a superposition of all frequencies in the spectrum,

i.e., each photon is a comb. Our general approach is applicable to a wide range of nonlinear

optical processes, paving the way towards novel quantum phenomena in extreme nonlinear

optics.
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H igh harmonic generation (HHG) is a physical effect that
occurs when an atomic, molecular, or solid system is
placed in a strong driving laser field and emits photons at

frequencies of integer multiples of the driving field frequency1–3.
HHG provides a coherent source of extreme ultraviolet (EUV)
emission and has also paved the way to the field of attoscience4,5.
This intriguing process has been under investigation for several
decades, and it is well-described by a so-called three-step
model2,6,7. According to this model, the electron (i) tunnels out
from the atomic potential suppressed by the intense driving field,
(ii) is consequently accelerated in the continuum by the driving
field, and (iii) under certain conditions can return to the ion and
recombine, emitting a high energy photon. This process repeats
itself periodically in time, resulting in a comb emission in the
frequency domain. A better quantitative understanding of the
phenomena of HHG was provided by the highly successful semi-
analytical quantum theory of Lewenstein8, where the electron is
described quantum mechanically and the driving and emitted
fields are still described classically. Many advances in the theory
have since followed, particularly concerning accurate ab initio
treatment of the HHG process from atoms and molecules9–12, as
well as the description of various HHG mechanisms from
solids13–16.

All such theories use quantum mechanics to describe the
dynamics of the electrons in the driving field, however, the
radiation emission and the driving field are treated classically.
The emitted field is modeled as dipole radiation, with the dipole
source calculated as the expectation value of the dipole moment
of each driven atom7,17. Such an approach is semi-classical, which
is not completely satisfactory and provides a consistent result
with full quantum-electrodynamical calculations only in limited
cases as was shown in18. The first theoretical approaches to
quantize the fields that interact with the electron were built for a
free electron in a monochromatic electromagnetic field19–21.
Early pioneering theoretical studies developed a quantum elec-
trodynamical formalism to describe HHG by quantizing the
emitted field yet keeping the driving field classical22,23. More
recent studies24–26 developed a quantum formalism for HHG in
which the electron states are dressed by the driving classical field,
and the radiation is seen as spontaneous emission from these
time-dependent dressed states. The driving field was also quan-
tized in recent experimental and theoretical studies27–32.

Nevertheless, to date, the conditions under which the spectral
and statistical properties of the radiation differ significantly from
the known effects of HHG seen in experiments remain unknown.
It remains an open question whether quantum optics can produce
new effects of intrinsically quantum nature, such as non-classical
photon statistics or entanglement of the emission and emitting
media. In particular, it is still undetermined whether the emitted
HHG should be considered as an ensemble of photons, each with
a single frequency (in a mixed state), or whether each photon is a
quantum superposition of all frequencies in the comb. Answers to
these questions would reveal new aspects of HHG with implica-
tions for attoscience, quantum optics, quantum electrodynamics
(QED), and quantum information.

Here, we analytically develop a fully quantum theory of
extreme nonlinear optics and use it to explore the quantum-
optical nature of HHG. Our formalism does not assume a specific
electronic system: it applies to atoms, molecules, or solids. We use
the term “atom” in the sense of a general system. We present
predictions for HHG in both the single-atom and the many-atom
(i.e., an ensemble of atoms) regime, and we highlight in each case
the deviation from the conventional treatments. In particular, in
the single-atom case, we show that the spectrum would contain
multiple shifted combs of HHG, which arise because of transi-
tions between the initial and different final states of the driven

atom. We describe the transition between the single-atom and the
many-atom regime and under which conditions it happens. We
calculate the photon statistics of HHG and show that each
spectral component can deviate from Poissonian statistics,
showing squeezing and bunching, even when the emission is
produced by many atoms, in contrast with anti-bunching in the
single-atom regime. For both a single-atom and many-atom
regimes, we find new features in the HHG spectrum arising from
the breakdown of the dipole approximation to the emitted pho-
tons, which manifests in an emission of even harmonics (even
from a monochromatic driving field). Most importantly, we show
that each HHG photon is a comb with attosecond timescales and
carries the entire spectrum’s spectral content, which can be
measured by a field autocorrelation experiment. Consequently,
even a single photon carries information about the HHG process,
including the energy distribution and the cut-off frequency, up
until its observation.

Results
Quantum theory of extreme nonlinear optics and high har-
monic generation. In this section, we develop a general fully
quantum framework for predicting the emission from an elec-
tronic system in a strong time-dependent external electro-
magnetic field. The formalism constructed here is based on the
idea of using quantum electrodynamical perturbation theory for
bound electrons that are dressed by an external field (SFQED),
similar to the approach described in24,26. We go beyond the
previous literature by considering fully quantized electromagnetic
fields (for both the driving and emitted fields) and also taking into
account beyond-dipole corrections. The quantization of electro-
magnetic fields enables analyzing the quantum statistics of the
emitted field and the driving field.

We consider an electronic system driven by a strong laser field,
which is described by a multimode coherent state: ψlaser

�� � ¼Q
kσ

jαkσie�iωkt, where αkσ represents the coherent states’ para-

meters that can be shown to be equal to the complex amplitudes
of the Fourier components of the classical description of the
incident driving field; k refers to the wavevector of a plane wave
in free space, σ to its polarization, and ωk= ck= c|k| to its
frequency, with c the speed of light in vacuum. The combined
wavefunction of the electronic system and the electromagnetic
field, |ψðtÞi is determined by the Schrodinger equation

i�h
∂

∂t
Ψ tð Þj i ¼ H Ψ tð Þj i; ð1Þ

where the (QED) Hamiltonian in the case of one electron is
H ¼ 1

2m p� qAð Þ2þU þ HF, with q being the electron charge, m
the electron mass, U the atomic potential, and HF the
Hamiltonian of the free electromagnetic field. The quantized
vector potential A contains both the driving field and the emitted
field. This Hamiltonian is cited as a particular example, and the
entire formalism below can be applied to any Hamiltonian. The
solution of Eq. (1) for the combined wavefunction |ψ(t)〉 relies on
three important steps. In the first step, we perform a unitary
transformation on the Hamiltonian, which decomposes the vector
potential A into a sum of a classical time-dependent part Ac tð Þ ¼
hψlaser tð ÞjAjψlaser tð Þi and a small quantum correction Aq ¼P

kσ

ffiffiffiffiffiffiffiffiffiffi
�h

2ε0Vck

q
eσakσe

ik�rþ�
e*σa

y
kσe

�ik�r�, as shown in the Supple-

mentary Note 1. Here, V is a normalization volume, Σkσ is a
summation over all photonic modes with polarization σ and
wavevector k, the operators akσ and aykσ are annihilation and
creation operators respectively, eσ is a unit vector of polarization,
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and ε0 is the vacuum permittivity. Aq and Ac describe the
quantum emitted field and the classical driving field, respectively.

In the second step, we take advantage of existing analytical and
numerical techniques that have been widely developed to solve
the time-dependent Schrodinger equation (TDSE)17,33,34

i�h
∂ ϕi tð Þi
��
∂t

¼ HTDSE ϕi tð Þ
�� �

; ð2Þ

where |ϕi(t)〉 is the wavefunction of the electronic system, which
initially (at t=−∞) typically occupies the ground state or
another eigenstate of the electronic system, but can also be in a
superposition of eigenstates. The TDSE Hamiltonian, HTDSE,
depends on the electronic system and for a single electron takes
the form HTDSE ¼ 1

2m p� qAc tð Þð Þ2þU þ HF.
In the third step, we calculate the quantized radiation emission,

described by the interaction of Aq with the strongly driven
electronic state |ϕi(t)〉 found in the second step. The coupling
between an electronic system and the emitted field in typical
nonlinear optics effects, such as HHG, is weak (Supplementary
Note 5) and therefore can be accounted for by perturbation
theory. The combined wavefunction |ψ(t)〉 of the electronic
system and the photons is constructed from two parts: (1) the
time-dependent electronic wavefunction |ϕi(t)〉 is calculated using
the classical driving field Ac(t), and (2) the photonic emission is
calculated to first order in the quantized field Aq. Altogether, the
above recipe enables calculating general first-order processes in
SFQED. This situation is shown in the left column of Fig. 1.

In the framework of SFQED, frequency conversion in
nonlinear optical effects, such as HHG, is equivalent to a process
of spontaneous emission with transitions between the electronic
states |ϕi(t)〉 that are dressed by the laser field. In the most general
sense, spontaneous emission is the process of creating a photon in
a mode with zero photons |0〉. Therefore, many nonlinear optical
effects, including HHG and second harmonic generation, can all

be described in terms of (coherent) spontaneous emission in
SFQED. The time-dependent state |ϕi(t)〉|0〉, with |0〉 being a state
with no emitted photons makes a quantum mechanical transition
into states of the form |ϕi(t)〉|1kσ〉. The entire set of the time-
dependent states, {|ϕj(t)〉}, evolves in time according to Eq. (2)
and forms a basis for the electronic system. The photonic state
|1kσ〉 represents one photon with wavevector k and polarization σ.

In the rest of this section, we demonstrate the results of our
formalism for a general nonlinear optical process; the resulting
formulas can also be straightforwardly applied to HHG. We use
the dipole approximation to show explicit analytical expressions
for the combined wavefunction |ψ(t)〉 and for the emission
spectrum. We describe corrections beyond the dipole approxima-
tion in the next sections; however, in this section and the next
section we use the dipole approximation, and in this case |ψ(t)〉 is
given by (see Supplementary Notes 2 and 3):

Ψ tð Þj i ¼ ϕi tð Þi
�� 0ij

þ 1
�h

X
j

X
kσ
e�iωkt

ffiffiffiffiffiffiffiffiffiffi
�hωk

2ε0V

s Z t

�1
dji τð Þ � e*σ

� �
eiωkτdτ

� 	
ϕj tð Þ
��� E

kσj i;

ð3Þ
where dji τð Þ ¼ hϕjðτÞjqrjϕi τð Þi are dipole matrix elements that
can be complex. The summation Σj is performed over all possible
final electronic states |ϕj(t)〉, labeled by different quantum
numbers j. Each final (time-dependent) electronic state corre-
sponds to a photonic state that is a superposition of various
single-photon states with wavevector k and polarization σ. The
result for |ψ(t)〉 is independent of the choice of the basis |ϕj(t)〉.

Importantly, the superposition state in Eq. (3) suggests that any
emission process in nonlinear optics, in which the electronic
system varies in time, does not emit photons with different fixed
frequencies, but rather each photon can be a superposition of
multiple frequencies. This conclusion applies directly to HHG,
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Fig. 1 Diagrams in strong-field quantum electrodynamics (SFQED) versus ordinary quantum electrodynamics (QED). In SFQED (a–d), we have
perturbation theory in the weak emitted field: c, d correspond to different numbers of emitted photons. Each perturbation order in SFQED is equivalent to
infinite diagrams of emission and absorption processes in the standard formulation of QED (e–h); a, b corresponds to zero-order SFQED, containing all the
QED diagrams e, f necessary to describe the evolution of the wavefunction according to the time-dependent Schrodinger equation (Eq. 2); c corresponds to
first-order SFQED (equivalent to g in QED), which we use to capture the effect of high harmonic generation; d corresponds to second-order SFQED
(equivalent to h in QED), which can capture new processes in extreme nonlinear optics, such as laser-driven two-photon spontaneous emission.
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showing that each photon carries the entire HHG spectrum,
containing all the spectral information of the HHG pulse, e.g., a
single photon comb. This is a key conclusion that is illuminated
by our formalism (or a single photon that represents a broad
continuous spectrum if HHG is driven by few-cycle pulses).

The most remarkable feature of the combined wavefunction in
Eq. (3) is the entanglement of the photonic state and the
electronic state, in the sense that we cannot decompose the
wavefunction to a tensor product of photonic and electronic
states. The entanglement implies that there remains a connection
between the photon and the emitting atom after emission even in
very strong fields. This result is significant from a fundamental
point of view because entanglement between an atom and a field,
or between multiple photons, is usually only found in a weak
perturbative regime (e.g., spontaneous parametric down-
conversion by the perturbative χ(2)). However, here we show
that entanglement can exist even in strong non-perturbative
fields, which further motivates the study of HHG with the full-
quantum description. Thus, from Eq. (3) we conclude that the
wavefunction |ψ(t)〉 not only shows that each photonic state is a
superposition of multiple frequencies but also shows that it has
quantum features such as entanglement and carries the informa-
tion about all transition matrix elements dji. Our SFQED
formalism also yields the emitted photon energy per unit
frequency dε

dω (i.e., the spectrum), which follows immediately
from modulo-squaring the final-state amplitudes of Eq. (3) and
integrating over all photon emission angles and polarizations (see
Supplementary Notes 2, 3). The spectrum is given by

dε
dω

¼
X

j

ω4

6π2ε0c3

Z þ1

�1
dji tð Þeiωtdt

����
����
2

: ð4Þ

We can find dji(t) by solving the TDSE for each j, which can be
done using any of the previously developed approaches17,33,34.
We note that several of the qualitative conclusions we draw do
not depend on the precise method used to obtain dji(t). This way,
all the previous techniques developed for HHG (e.g., fully
numerical approaches, strong-field approximation, etc.) can be
facilitated for studying quantum effects. When solving the TDSE
for a single electron in a single atom, Eq. (4) yields the general
result for the spectrum of HHG from a single atom. Numerical
results using Eq. (4) are presented in the next section.

Conceptual differences between single-atom and many-atom
high harmonic generation. In this section, we show the
numerical calculation of the HHG spectrum from a single atom
in the 1D model of a helium atom. To emphasize the differences
between single-atom and many-atom HHG, we compare our
general result in Eq. (4) with the conventional formula of
HHG7,17,35, which can be derived from the general Eq. (4)
(Supplementary Note 10) by neglecting contributions that arise
due to transitions to different electron states j different than i

dε
dω

¼ ω4

6π2ε0c3

Z þ1

�1
d tð Þeiωtdt

����
����
2

; ð5Þ

where d tð Þ ¼ dii tð Þ ¼ hϕi tð Þjqrjϕi tð Þi. Unlike Eq. (5) that con-
tains only the expectation value of the dipole moment, our Eq. (4)
contains all transition matrix elements dji. We can always choose
the basis of time-dependent states |ϕj(t)〉 such that it includes |
ϕi(t)〉 and then the sum in Eq. (4) separates between one term
dii(t) for the conventional result, and all the rest of the terms for
the quantum corrections.

To observe the conceptual differences between Eqs. 4, 5, we
performed a numerical calculation for a model of a helium atom,
as depicted in Fig. 2. We studied the dynamics of a helium atom

(within the single active electron approximation) interacting with
an external electric field with frequency ω: Ac tð Þ ¼ 1

ωE0 cosωt.
The initial state of the atom was chosen as its ground state |ϕ1〉,
mimicking a 1s state (depicted in Fig. 2a). We calculated
numerically the emission spectrum using Eqs. 4, 5. As shown in
Fig. 2b, Eq. (4) yields much larger emission rates than Eq. (5). The
differences in the spectrums of Eqs. 4, 5 are because transition
matrix elements dji can be comparable to the element dii and even
much larger, as depicted in Fig. 2c–f. Moreover, in Fig. 2b we can
see that Eq. (5) yields a standard HHG spectrum with odd-only
harmonics, while Eq. (4) yields no distinguishable discrete
harmonic peaks. The lack of discrete peaks is a consequence of
the low ionization potential of the excited dressed states, which
ionize quickly and break the time-translation symmetry of the
particular transition amplitudes17,36.

Part of the features we presented in Fig. 2 can be corroborated by
comparing with earlier work. Specifically, quantum corrections
arising from transition elements dji were studied for a single xenon-
like atom in26,37. There is an increase of background radiation
(emission not at the integer harmonics) especially around low
harmonics, which was predicted in37 as well as in our study. This
effect was shown to significantly change the spectrum for strong
fields for which the cut-off is approximately at the 20th harmonic37.
Our work shows that the quantum corrections can completely
dominate the spectrum of emission for stronger fields for which the
cut-off is approximately at the 60th harmonic. Beyond this
comparison, each work emphasizes additional features, and uses a
different formalism. We compare the two approaches quantitatively
and prove mathematical connections in Supplementary Note 11.

We now discuss the emission from many (N) atoms. The
emission of an ensemble of atoms can always be separated into a
coherent and incoherent part. Particularly, the incoherent part of
the emitted intensity is proportional to N, while the coherent part
is proportional to N2. The photon statistics in each case strongly
depends on how much the atomic ground state changes during
the HHG process. In cases for which the ground state only weakly
changes8 (related to the nondepleted ground state approxima-
tion), the coherent parts of the emission only arise from the dii
elements and the emission is effectively classical, being governed
by Poissonian statistics (Supplementary Note 5) and a factorizable
(nonentangled) atom-field wavefunction. At the same time, the
incoherent parts of the emission that arise from the dji elements
contain features of entanglement and non-Poissonian statistics of
light. In cases for which transitions between different time-
dependent states |ϕj(t)〉 are not negligible (i.e., breaking the
nondepleted ground state approximation), we find nontrivial
photon statistics for both the coherent and the incoherent parts of
the emission, as we discuss in the next section.

The effects of incoherent contributions appear in many areas
of physics and have been investigated for several decades (see
e.g., 38–41). For a large enough ensemble, the incoherent part of the
emission becomes negligible compared with the coherent part. We
provide a qualitative argument to expose the coherent and
incoherent parts of the radiation. Let us consider N noninteracting
atoms in a small volume, which interact with an external driving
laser field, neglecting other interactions for the duration of the
driving field (Supplementary Note 10). In the conventional case, if
all the atoms were initially in the ground state, the contributions of
the dii element of Eq. (4) from different atoms add up coherently,
and the summed intensity is proportional to N2. In contrast,
contributions of all the other elements (involving states distinct
from the initial state) from different atoms add up incoherently and
the sum is proportional to N. For large values of N, we can
eventually neglect the incoherent parts, and then, the many-atom
HHG is adequately captured by Eq. (5) multiplied by N2, in exact
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agreement with the conventional classical theory2,6,7,42. We derive
quantitatively this in the Supplementary Note 10.

Nevertheless, there exist conditions under which the incoherent
part of HHG emission becomes significant even for a large
ensemble. Notably, in our numerical example in Fig. 2 the
magnitude of |d21|2 (the largest matrix element) is 104 times
greater than the magnitude of |d11|2 (Fig. 2). Hence, when the
number of active atoms is N < 104, we expect significant observable
deviations from the spectrum of the conventional HHG theory Eq.
(5), i.e., “quantum corrections”. This scenario contains features that
cannot be explained by the semi-classical approach, and it thus
underscores the importance of the SFQED approach and shows
perspectives for the creation of macroscopic (at least mesoscopic)
quantum states of entangled light and matter.

Photon statistics of high harmonic generation. In this section,
we investigate the photon statistics of each harmonic in HHG.
Specifically, we numerically calculate the Mandel parameter
Q and the squeezing η of the emitted light at each frequency.

The Mandel parameter is defined as Q ¼ hn2i�hni2
hni � 1, where n is

the photon number operator43. In addition to the Mandel
parameter Q, which is a convenient way to summarize the
quantum statistics of the photons, we also consider the
squeezing factor η= 10|log(4ΔX2)| of the emitted light, where
ΔX2 is the variance of the “position” quadrature operator,
related to the vector potential43. For the single-atom regime, the
squeezing is negligible; however, for the many-atom regime
squeezing becomes significant. Interestingly, the photon sta-
tistics in the single-atom regime and many-atom regimes differ
significantly. We present these two different regimes separately
in Figs. 3, 4. Additional information about the formalism,
approximations, and numerical calculations for both cases is
provided in Supplementary Note 6.

The emission in the single-atom regime is very weak and thus
the squeezing η of the emitted light is negligible and the Mandel
parameter Q is very small. Nevertheless, the emission has
nontrivial quantum properties, showing super-Poissonian and
sub-Poissonian statistics simultaneously for different spectral
components (red and blue colors in Fig. 3a, respectively). We find
that the super-Poissonian statistics for the lower harmonics (first
ten in Fig. 3a) is connected with transitions inside the atom that
end up in the ground state (e.g., jϕii ! jϕj≠ii ! jϕii). Mean-
while, we find that the transitions jϕii ! jϕj≠ii lead to sub-
Poissonian statistics at the higher harmonics (beyond ten in
Fig. 3a). These transitions have a negligible contribution for lower
harmonics.

Figure 3b elaborates on this trend, showing that the Mandel
parameter Q has a sharp negative-valued peak (strongly sub-
Poissonian) at exactly the energy of the transition between the
ground and the first excited state (Fig. 3c). For higher harmonics,
the transitions involve ionization (transition in the continuum),
which causes the Mandel parameter Q to decay (elaborated in
Supplementary Note 6). Altogether, although the number of
photons emitted from HHG in the single-atom regime is
generally small, the emission has nontrivial statistics that strongly
depends on the spectrum of the atom (note that when n is small,
Q can be very small and still represent light with strongly
nonPoissonian statistics).

The emission in the many-atom regime, surprisingly, also has
quantum features: super-Poissonian photon statistics for all the
frequencies. The reason is similar to the low harmonic emission
in the single-atom regime. In the many-atom regime, for all
harmonics, the dynamics are dominated by transitions inside the
atom for which the final state is the ground state (e.g.,
jϕii ! jϕj≠ii ! jϕii), leading to super-Poissonian statistics.
Moreover, in the many-atom regime, there can be significant
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Fig. 2 Single-atom and many-atom high harmonic generation (HHG). a 1D model of a helium atom and its electronic states (|ϕ1〉, |ϕ2〉, |ϕ3〉, etc.) without
an external driving field. This model of a helium atom is used for all the simulations in our work. b Emission spectrum calculated using Eq. (5) (yellow
curve), which presents the HHG emission by many (N ≫ 104) atoms normalized by N2 vs. summing the first four elements in Eq. (4) (blue curve), which
presents the emission by a single atom. c–f Contributions to the single-atom HHG spectrum, corresponding to different transition matrix elements, all
having the same normalization. The wavelength of the driving field is λ0= 800 nm; the intensity of the driving field is I= 2 1014 W cm−2. The form of the
pulse is shown in b—trapezoidal pulse with 15 cycles rising on each side of trapeze and 10 cycles of the plateau of the trapeze. In many-atom emission, only
c gives a coherent contribution (~N2) to the emission, while d–f give an incoherent contribution (~N).
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squeezing. Both the value of the Mandel parameter Q and the
squeezing η increase with the number of phase-matched atoms
Np (Fig. 4). Note that the number of phase-matched atoms can be
many times smaller than the total number of atoms, i.e., Np ≪ N.
To get more squeezing of light, we need to have a larger density of
atoms, e.g., the larger density of the gas, in the case of atomic
HHG. Figure 4 shows how the Mandel parameter Q and the
squeezing η depend on the number of phase-matched atoms Np

and give quantitative estimates of these parameters in the many-
atom regime.

To conclude this section, we investigated the photon statistics
of HHG for both the single-atom and many-atom regimes and
found that both can deviate from Poissonian statistics in different
ways. The predictions of super-Poissonian statistics of HHG in
the many-atom regime can be readily observed using conven-
tional parameters in current HHG experiments. It is a question of
fundamental interest to also find avenues to observe features of
the single-atom regime, where SFQED could enhance the
normally-incoherent parts of HHG, and reach new effects of
many-body systems with nontrivial photon statistics. A full
investigation of quantum many-body effects of SFQED is left for
future work.

Effects in high harmonic generation beyond the dipole approxi-
mation. In all previous work on HHG, the dipole approximation
was used for calculating the emission. A few papers and books,
e.g.,17,44–46, considered beyond-dipole effects for the driving field
but not for the emitted field. In Eqs. 2–5 and the numerical
simulations of Fig. 2, we applied the dipole approximation to both
the driving field and the emitted field. In this section, we explore the
effects of breaking the dipole approximation for the emitted field. In
other words, we demonstrate the corrections to the HHG spectrum
that result from the extremely short wavelength of the emitted
photons themselves (on the same order of or smaller than the size
of the electron wavefunction in the driven system).

First, we give an analytical estimate of the conditions in which
the dipole approximation can be broken. We estimate that the
effective size of the electron wavefunction during the interaction
with the strong driving laser is on the order of magnitude of the

quiver radius a ¼ qλ20
4π2mc2

ffiffiffiffi
2I
cε0

q
, where λ0 is the wavelength of the

driving field. Since a is much smaller than λ0, the dipole
approximation is accurate for the driving field. A typical ratio is
2π
λ0
a � 10�2 for λ0= 800 nm and a= 1 nm. The use of a

plasmonic environment for confining the field can in principle
break the dipole approximation for the driving field, as was
previously proposed for HHG44,45,47 and other effects (see e.g.,
ref. 48), and yet, plasmonic enhancements of HHG do not
currently show evidence of such corrections49,50.

We find that the emitted field can break the dipole
approximation in realistic conditions, which can have subtle
implications. The dipole approximation for the emitted field
becomes gradually less accurate as the harmonic number
increases, since the emission wavelength λ can reach the single
nanometer scale for harmonics n of several hundred (even more
was observed51). We want to clarify the difference between the
two different types of beyond-dipole corrections, which are
fundamentally different and are related only by name. Beyond-
dipole corrections due to the driving field change the TDSE and
the resulting wavefunction |ϕ(t)〉, but do not change the form of
Eq. (5). Such corrections to the evolution of the wavefunction
include relativistic corrections to the Schrodinger equation (see
e.g., ref. 42,52). In contrast, the beyond-dipole corrections to the
emitted field described in this work do not change the
wavefunction in the matrix element but modify the form of Eq.
(5), as we see below.

The HHG emission power scales with the dimensionless
parameter x ¼ 2π

λ a, or equivalently x ¼ n � 2πλ0 a, and thus, when x
approaches unity we predict that multipolar corrections can
become significant. Scenarios in which the emitted field breaks
the dipole approximation have been neither previously observed
nor proposed in the context of HHG. Related effects were
previously predicted for emission into modes of confined light
(e.g., in polaritons in 2D materials53) and shown when the
emitting electron wavefunction is significantly enlarged (e.g.,
using Rydberg states54). Here, we predict that HHG can break the
dipole approximation even in the case of regular atoms emitting
into free-space radiation, provided sufficiently high harmonics:
e.g., a few hundred55,56 cause x to approach unity. Considerably
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higher harmonics have been observed51, and thus, by fulfilling the
conditions described below, we expect our predictions to be
readily observable in existing HHG setups.

To quantify the implications of breaking the dipole approxima-
tion, we start from the Schrodinger equation (Eq. (1)) and
Hamiltonian without the dipole approximation for the emitted field

H ¼ 1
2m p� q

cA

 �2þU þ HF. In the many-atom regime, first-order

perturbation theory in the weak emitted field leads to the spectrum
of emitted energy per unit solid angle dΩ per unit frequency dω:

dε
dωdΩ

¼ ω2q2

16π3ε0m2c3
X
σ

Z þ1

�1
Pii tð Þ � e*σ

� �
eiωtdt

����
����
2

; ð6Þ
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where Pii tð Þ ¼ ϕi tð Þ
� ��e�ik�r p� q

cAc tð Þ
 �
ϕi tð Þ
�� �

(Supplementary
Note 2). We expand Eq. (6) in multipoles to third-order
(Supplementary Note 9). After the integration over dΩ we get the
spectrum:

dε
dω

¼ ω4

6π2ε0c3
d ωð Þh ij j2

þ ω4

6π2ε0c3
ω2

5q2c2
1
4

d2 ωð Þ� ��� ��2� 1
3
Re d ωð Þh i � d3 ωð Þ� �*h i
 �

;

ð7Þ
where d ωð Þh i ¼ Rþ1

�1 ϕi τð Þjqrjϕi τð Þ� �
eiωτdτ; d2 ωð Þ� � ¼ Rþ1

�1
ϕi τð Þj qrð Þ2jϕi τð Þ� �

eiωτdτ and hd3ðωÞi* ¼ Rþ1
�1hϕiðτÞjðqrÞ3j

ϕiðτÞie�iωτdτ. The first term in Eq. (7) gives the regular dipolar
emission (the same as Eq. 5) and the second term gives the
quadrupolar emission.

In Fig. 5, we calculate the relative contributions of dipolar
(blue) and quadrupolar (yellow) emission to the HHG spectrum
for different driver intensities. While the dipolar emission gives a
larger contribution to odd harmonics, the quadrupolar emission
gives a large contribution to even harmonics. Therefore, even

harmonics can be used to observe quadrupole corrections to
HHG. The quadrupolar emission increases with the driving field
intensity faster than the dipolar emission. Moreover, for high
harmonics (e.g., soft x-ray photons), quadrupolar contributions
become comparable to dipolar contributions. Of course, addi-
tional higher-order multipolar corrections can become important
too, and at even higher harmonics and higher driver intensities,
the multipolar expansion fails and require calculating Eq. (6)
without approximations.

Dipolar and quadrupolar emissions also have a very different
directionality, as can be seen in the Fig. 5d, e. Whereas dipolar
emission is in the direction of the propagation of the driving laser,
quadrupolar emission has zero intensity in the propagation
direction. When the emission is from many atoms in a large area
of interaction relative to the wavelength of the driving laser, the
angular distribution of HHG also strongly depends on phase-
matching7,35 (akin to many other nonlinear processes). Phase-
matching in HHG from a single driving laser pulse, in general,
leads to a strongly directional emission in the direction of the
driving field propagation. This condition will enhance the dipolar
emission and inhibit the quadrupolar emission, which may
explain why the breakdown of the dipole approximation has not
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been observed previously. However, in general, the emission
direction can be manipulated in various ways. For example, the
gas can be confined in a small volume or a thin layer comparable
with the wavelength of the driving field (especially relevant for
solid HHG13–16,29). Alternatively, the driving field can be a
superposition of excitations from a few directions with different
wave vectors, as described in57,58. In such cases, when the HHG
emission is not unidirectional, effects beyond the dipole
approximation could play a more important role and change
significantly the physics of HHG.

Each high harmonic generation photon is a comb: discussion
of an experimental scheme. The classical picture of HHG
describes coherent multifrequency emission that can create an
attosecond comb, and yet, the precise quantum optical nature of
the emission is not clear from such a picture. The extremely
nonlinear nature of the process raises many possible descriptions
of the quantum nature of the emission, especially since it is
constructed from many QED diagrams (Fig. 1, right column) in a
highly nonperturbative manner. Without the guidance of a
complete quantum picture, the emission was, for instance, con-
sidered to be made up of different photons of different fre-
quencies or photons all having the same frequency in an
entangled state with the driving laser. Below we discuss the
consequences of our SFQED formalism on the level of each single
photon in HHG.

Our formalism reveals the nature of the HHG emission: each
emitted photon carries all the frequencies of the HHG process. To
test this interpretation, we propose the following experiment.
Beginning with a typical HHG source (e.g., a gas of atoms), we
can attenuate the output emission to leave on average (less than)
one photon per driving laser pulse (Fig. 6). We can then measure
the autocorrelation function for the field passing through the
attenuator. The autocorrelation result as a function of the
attenuator strength could show the quantum optical nature of
HHG when the intensity of the transmitted field is reduced from
that of a classical field toward the single-photon limit (Fig. 6).
Our formalism shows that normalized autocorrelation and other
measurable quantities will remain the same for any number of
photons (only up to the challenge of a lower signal-to-noise ratio)
(see Supplementary Note 7). Such an experiment would lead to a
different result for other photonic states and thus could
distinguish between them. For example, if the emission is
described by classical statistics, a normalized autocorrelation

function would depend on the number of output photons, and in
the single-photon limit, it would have the form of a cosine
function. This experimental setup is very close to that described
in ref. 59. Future work could explore other experimental
proposals, such as higher-order autocorrelation functions, e.g.,
intensity autocorrelations, and optimize the conditions for such
experiments to accommodate the inevitably low signal.

Discussion
We developed a fully quantum formalism that captures general
processes of extreme nonlinear optics, and we demonstrated it for
the HHG process. We found new effects that arise from the
quantum theory and cannot be described by the conventional
theory—effects on the level of both the single HHG photon and
the macroscopic photonic state. Our predictions include the
emission of multiple spectral combs, the photon statistics of each
spectral component, beyond-dipole effects in angle and fre-
quency, and the exact structure of each single photon in HHG.
Squeezing and nonPoissonian statistics have numerous applica-
tions in the field of sensing, high resolution imaging, weak
measurements and quantum communications.

Our formalism can be straightforwardly generalized in many
different directions. We can generalize our theory for systems of
many electrons and for solids, which are of major interest for the
research community13–16,29. It is also possible to find the next
relativistic corrections to our nonrelativistic theory and take into
account magnetic dipole effects60. Most generally, the theory we
advance in this manuscript can be applied to all extreme non-
linear optical processes, and thus, we expect that our theory will
guide the discovery of new quantum effects in other areas of
nonlinear optics. For instance, the formalism is also capable of
reproducing well-known perturbative light-matter interaction
effects, such as spontaneous emission (see Supplementary
Note 3). Special cases of our formalism describe the nonlinear
Compton Effect61,62 and multiphoton Thompson scattering63.

Looking forward, one of the most important new aspects our
formalism reveals is the entanglement between the photons and the
emitting atoms, which remains after the emission even in very
strong fields. This entanglement may have important consequences
in the field of quantum optics and pump-probe experiments. For
example, it could guide the development of entangled attosecond
pulses in the EUV or soft-X-ray regime, which may have direct
applications for metrology and precision imaging. The entangle-
ment can also help in the development of novel heralded single-
photon sources, such as single-photon frequency-combs.
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From a fundamental standpoint, finding truly quantum effects
in ensembles of atoms will open new perspectives for HHG and
many other nonlinear optical effects. While a complete for-
mulation of many-body HHG is still elusive, it may reveal pro-
mising opportunities to enable truly many-body quantum
electrodynamical effects with a large number of photons, which
will have important consequences from a fundamental point
of view.

Methods
Numerical simulation of high harmonic generation. The time-dependent
Schrodinger equation for 1D helium atom (Eq. 2) was solved numerically using
3rd order split-step approach with absorbing boundary conditions.

Data availability
The data supporting the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code supporting the plots within this paper is available from the corresponding
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