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Taxonomy of anaerobic digestion 
microbiome reveals biases 
associated with the applied high 
throughput sequencing strategies
Stefano Campanaro   1, Laura Treu   2, Panagiotis G. Kougias   2, Xinyu Zhu2 &  
Irini Angelidaki2

In the past few years, many studies investigated the anaerobic digestion microbiome by means of 
16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other 
without taking into consideration the followed procedure for amplicons preparation and data analysis. 
This negligence was mainly due to the lack of knowledge regarding the biases influencing specific 
steps of the microbiome investigation process. In the present study, the main technical aspects of the 
16S rRNA analysis were checked giving special attention to the approach used for high throughput 
sequencing. More specifically, the microbial compositions of three laboratory scale biogas reactors were 
analyzed before and after addition of sodium oleate by sequencing the microbiome with three different 
approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis 
revealed that, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was 
biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results 
obtained was also influenced by the number of hypervariable regions under investigation. Finally, 
amplicon sequencing and shotgun DNA underestimated the Methanoculleus genus, probably due to the 
low 16S rRNA gene copy number encoded in this taxon.

A fundamental step to uncover microbial community structure and dynamics is the taxonomic and phylogenetic 
classification of DNA sequences. More than 30 years ago these studies were revolutionized by the introduction of 
molecular techniques to investigate the small-subunit rRNA sequence (16S rRNA)1. Subsequently, the combina-
tion of PCR and high-throughput sequencing made these studies extremely popular among the scientific com-
munity2–4. Four fundamental factors contributed to the success of these approaches: (1) PCR amplification which 
allows the generation of amplicons from small amount of starting material5, (2) high throughput sequencing and 
molecular barcoding supports parallel analysis of numerous samples, (3) availability of simple bioinformatics 
tools which simplify the analyses6,7 and (4) the growing size of 16S rRNA gene databases8,9. Due to these technical 
advances, in the last few years the number of scientific publications based on 16S rRNA amplicon sequencing 
underwent an impressive increase.

Despite this success, accuracy of PCR-based approaches is limited by different factors, such as biases in the 
range of species targeted by universal primers and the generation of chimeras during amplification10–12. Another 
important factor that should be considered is the length of the sequences used for taxonomical investigation; in 
fact, short reads generated by high-throughput platforms may represent a limitation for taxonomic assignment. 
Despite this, it was reported that 16S rRNA reads as short as 100 bp allow an accurate characterization of a micro-
bial community13. Finally, utilization of different sets of universal primers to measure abundance of Bacteria and 
Archaea can prevent a thorough comparison of the Operational Taxonomic Units (OTUs) belonging to these two 
kingdoms.

In the past few years some studies compared the results obtained using 16S rRNA amplicon sequencing with 
other approaches in order to reveal biases and limitations. The vast majority of these projects analyzed “real” 
microbial communities isolated from diverse environments such as soil12, water lake14, marine samples15, gut 
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samples16, spleen17 and anammox bioreactors18. Only a few of these studies focused the investigation on mock 
(controlled synthetic) communities12,19. To our knowledge, there are not investigations focusing on the anaerobic 
digestion (AD) microbiome. Additionally, the projects mentioned above were focused on two approaches such as 
amplicons and shotgun DNA sequencing (metagenomics)12,14,15 or, alternatively, amplicons and RNA sequencing 
(metatranscriptomics)16–18, but a comprehensive comparative evaluation is still lacking.

Complex microbial interactions are occurring in the AD process and a balanced microbial community com-
position is crucial for a well performing process. Therefore, the relevant ecological role of the AD microbiome 
has led the scientific community to deserve particular attention to this system20,21. Additionally, operational 
parameters have a significant impact on the microbial compositions and therefore taxonomic investigation is 
required to elucidate these correlations. In the past few years, a plethora of studies investigated this microbiome 
using different molecular approaches such as DGGE22,23, 16S rRNA amplicon sequencing24–27, metagenomics28,29, 
metatranscriptomics30–32 and genome-centric metagenomics33–35. Most of these studies compared taxonomic 
results obtained using different methods, however, it should be noticed that limitations and biases associated 
with different approaches, can lead to misleading interpretations. In the present study we performed a taxonomic 
investigation of the AD microbiome present in laboratory-scale manure-based reactors characterized by different 
concentrations of unsaturated long chain fatty acids. In order to identify strengths and limitations associated with 
different approaches, sequences were generated using as template 16S rRNA amplicons, genomic DNA and total 
RNA collected from the same samples. Numerous analyses were performed to specifically identify the origin of 
biases, including for example a comparison between databases used for reference-based taxonomic assignment. 
Additionally, this study led to the identification of biases associated with the use of universal primers in the PCR 
amplification step.

Results and Discussion
Experimental setup.  The microbial communities under investigation were grown in three laboratory scale 
Continuous Stirred Tank Reactors (CSTR) operated at thermophilic conditions (54 ± 1 °C) and fed with cattle 
manure. Samples were collected twice from each reactor, the first sampling was performed when the influent feed-
stock was composed only by cattle manure, the second sampling when the feedstock was added with Na-oleate 
at a concentration of 12 g/L. Despite addition of long chain fatty acids has a relevant effect on microbial com-
position36–39, the present study does not focused on the interpretation of biological data, but on investigation of 
potential biases determined by different high-throughput sequencing approaches on taxonomic results obtained. 
For this reason, biological results are not thoroughly discussed in the paper. To identify these biases it is important 
to reduce as much as possible the sources of variability that could rise during samples collection, such as lysis of 
bacterial cells and extraction of nucleic acids. To achieve this goal, both DNA and RNA were extracted using 
the same kit and protocols used for Illumina sequencing were very similar for all the samples (see Materials and 
Methods for details).

Regarding bioinformatics analysis, the procedure is depicted in Fig. 1 and a detailed description is reported in 
Materials and Methods section. Four main bioinformatics investigations were performed (Fig. 1). (1) Evaluation 
of the influence determined by the database used for training the Bayesian classifier (RDP, Greengenes and SILVA) 
(Fig. 1, C1)8,9. (2) Calculation of the minimum number of sequences needed in order to obtain a “solid and relia-
ble taxonomic” result (Fig. 1, C2). (3) Influence on taxonomic assignment of the “Forward” and “Reverse” reads 
merging step (Fig. 1, C3). (4) Influence of the sequencing method used (amplicon sequencing, shotgun RNA 
sequencing and shotgun DNA sequencing) (Fig. 1, C4 and C5). The latter bioinformatics check was performed 

Figure 1.  Outline of data analysis process. Gray boxes and black arrows represent the analysis workflow, gray 
dotted lines represent comparisons between different approaches used for data analysis. (C1) Influence of the 
database used to train the Bayesian classifier; (C2) influence of the number of reads on taxonomic results; 
(C3) influence of paired-end reads merging on the taxonomy; (C4) comparison between different 16S rRNA 
sequencing approaches (with independent taxonomic analysis of forward and reverse paired-ends); (C5) 
comparison between different 16S rRNA sequencing approaches (using merged paired-ends).
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both without preliminary merging forward and reverse read pairs (C4) and also after the paired-end merging step 
(C5). The loss of reads due to the merging step led to a marked reduction of the data available for the comparison; 
for this reason the step “C5” was performed only on the sequencing methods which provided the highest number 
of sequences mapped on 16S rRNA gene: amplicon sequencing and shotgun RNA sequencing.

Influence of the training set on taxonomic results.  It was previously reported that different training 
sets can have a remarkable influence on the number of reads that the Bayesian RDP Classifier can assign to the 
taxonomy and on the abundance calculated for different taxa40. In the same study it was also reported that number 
of unassigned reads is lower for well-characterized microbial communities (e.g. the human gut microbiome), while 
it is more problematic when many unknown species are dominant. To test the influence of the training set on the 
taxonomic investigation of the AD microbiome, RDP classifier was trained using three different databases, RDP, 
Greengenes and SILVA. After training, a taxonomic assignment was performed and results obtained at phylum 
level for sample CSTR01a were reported in Fig. 2 (Supplementary Table S1). These results evidenced that at phylum 
level the highest number of taxonomic assignments were obtained using SILVA and the lowest were obtained using 
RDP (Fig. 2). The limitations associated with the use of RDP database in the taxonomic investigation of the AD 
microbiome was also reported in previous studies40. Unfortunately, a more detailed analysis performed at taxonomic 
level lower than phylum revealed that ∼160,000 sequences were not assigned in a reliable way, but were allocated to 
“uncultured taxa”. Due to the difficulty in filtering out these “fake” assignments and in calculating abundance at low 
taxonomic levels, results obtained using Greengenes was selected for all the subsequent analyses.

Biological results obtained are in agreement with previous data, with a vast majority of sequences assigned to 
Firmicutes, Bacteroidetes and Proteobacteria, the three main phyla characterizing the AD microbiome (Fig. 2)29,41–44.  
Interestingly, using RDP release 11, the fraction of sequences assigned to Bacteroidetes and Tenericutes is 
extremely low, evidencing that results are strongly biased by the training set (Fig. 2). Analysis of the shotgun 
RNA reads gave strongly different results in comparison to the other two methods (Fig. 2C) and this can be due 
to differences in transcriptional activity of some microbes or to the 16S rRNA gene copy number, as described 
more in detail in section “Comparison between results obtained using different sequencingmethods”. By con-
sidering the reads aligned to the 16S rRNA gene, it is evident that for amplicon sequencing the fraction of those 
assigned to specific phyla can be higher than 90% (Fig. 2A). For shotgun DNA and shotgun RNA this value is 
lower than 50% (Fig. 2B and C). This marked difference is due to the random distribution of the shotgun reads 
and, more specifically, to those aligned to the conserved regions of the 16S rRNA gene. These specific regions are 
highly conserved among different taxa and useless in taxonomic analysis. Obviously, in the 16S rRNA amplicon 
sequencing all the reads are localized on hypervariable regions and this represents an advantage because all of 
them are taxonomically informative.

Figure 2.  Relative abundance of the ten major phyla identified in CSTR01 sample. Results were obtained from 
(A) ~712,000 16S rRNA amplicons, (B) ~34,000 shotgun DNA and (C) ~976,000 shotgun RNA sequences 
aligned to the 16S rRNA gene. Numbers refer to the reads obtained after paired-end merging. Results were 
obtained after training the naive Bayesian classifier on different databases (RDP release 11, Greengenes 13 08 
and SILVA release 128).
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Minimum number of sequences required for a reliable taxonomic investigation.  The 16S rRNA 
gene(s) represent less than 1% of the entire genome and for this reason the fraction of shotgun DNA reads 
assigned to this gene is low15 (see also Methods). This problem can prevent the investigation of the rare taxa, thus, 
a rarefaction approach was used in order to verify the minimum number of reads needed for a reliable taxonomic 
analysis in samples obtained from biogas reactors. The random sampling was performed on 16S rRNA amplicons 
starting from 1000 reads, increasing stepwise the number up to 700,000 and repeating five times the taxonomic 
analysis for each step (Fig. 3). Despite results reported in Fig. 3 indicates that more than 200,000 reads were 
needed to reach a plateau in the number of taxonomic groups, the most abundant ones were already identified 
with a lower number of sequences. In particular, 29% of genera, 49% of families, 56% of orders, 60% of classes, 
and 59% of phyla were identified with 10,000 sequences. These values increased up to 62%, 81%, 81%, 79% and 
76% using 100,000 sequences. It should be noticed that all the taxonomic groups with abundance higher than 

Figure 3.  Number of taxa identified with an increasing number of reads. Reads from amplicons (merged 
paired-end) were random resampled starting from a minimum number of 1000 sequences up to 700,000 
sequences. After taxonomic analysis the number of phyla, orders, families, classes and genera was calculated 
and reported in y axes.
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0.1% can be identified (with 10 or more sequences) using as low as 10,000 reads. This finding indicates that, using 
the shotgun DNA approach and a number of sequences around 60–70 thousand (as in the present study), the 
analysis can be deep enough to cover most of the taxonomic groups. This result can be considered as a reference 
to determine the number of 16S rRNA reads needed to analyze the AD microbiome.

Comparison between results obtained using different sequencing methods.  The main topic 
of the present study is the investigation of biases in taxonomic results associated with the three sequencing 
approaches used. It was possible to identify both differences determined by PCR amplification biases (16S rRNA 
amplicons), and those determined by the expression level of rRNA genes (shotgun RNA sequences).

Since the number of sequences mapped on the 16S rRNA gene is strongly variable among the three approaches 
used, we performed an initial investigation by subsampling, selecting randomly 60,000 reads for each sample. 
This number was chosen considering the less numerous sample of the random DNA sequencing (Supplementary 
Table S2). From this analysis it was found that two main phyla were strongly under-represented in the amplicon anal-
ysis in comparison to random shotgun DNA sequencing (Fig. 4A, red bars): Spirochaetes and Candidate Division 
TM7 (Candidatus Saccharibacteria). On contrary, Euryarchaeota phylum was highly-represented only in random 
RNA sequencing, suggesting a very high transcriptional activity (Fig. 4A). The Methanoculleus genus was the main 
responsible for this result (Fig. 4C). This peculiar characteristic of methanogenic Archaea was previously reported 
and associated to the remarkable transcriptional activity of the genes involved in methanogenesis30,31. A possible 
alternative explanation for the results obtained for Euryarchaeota (Methanoculleus) could be the presence of a low 
number of 16S rRNA genes encoded in the genome. This is a peculiar characteristic of some taxa which can result 
in an underestimation of the abundance determined with amplicons and shotgun DNA45. Differently from this, the 
gene copy number has a low impact on shotgun RNA which is influenced only by the expression level. In order to 
investigate the influence of gene copy number, it was calculated the average number of 16S rRNA genes on each tax-
onomic group46. Results indicated that, among taxa reported in Fig. 4, those with the lower rRNA gene copy number 
were Chloroflexi, Tenericutes, Spirochaetes, Verrucomicrobia, Thermotogae and Euryarchaeota. Among these, only 
Euryarchaeota have a markedly higher abundance value estimated with the shotgun RNA method, suggesting that 
gene copy number can influence the results obtained with shotgun DNA and amplicons, but it is not the only deter-
minant. An independent analysis was performed determining abundance levels for all the taxa with MetaPhlAn 2 
software47, which can align the shotgun DNA sequences on unique clade-specific marker genes other than the 16S 
rRNA. Interestingly, results obtained with MetaPhlAn 2 correlated well with those obtained with shotgun RNA, con-
firming that there is a substantial underestimation of Euryarchaeota determined by the utilization of the 16S rRNA 
marker gene both in amplicon and shotgun DNA sequencing (Supplementary Table S3). Since this bias is absent in 
the “shotgun RNA” based approach, it is probably due to the 16S rRNA gene copy number, but it remains unclear 
why it does not influence other phyla characterized by a low 16S rRNA copy number.

In amplicon sequencing a substantially lower abundance of genera, such as Methanosarcina, Sphaerochaeta, 
Acetivibrio and Peptostreptococcus,was found (Fig. 4C). This result was confirmed both by shotgun RNA and DNA 
sequencing.

A second analysis was performed only on the two sequencing approaches providing the highest number of 
16S rRNA reads (16S amplicon sequencing and shotgun RNA sequencing). In this comparison 700,000 sequences 
were collected per each sample (Fig. 4B and D) (Supplementary Table S4). This investigation was performed using 
the sequences obtained after paired-end merging. It should be noted that in the present study, independent anal-
ysis of forward and reverse reads provided very similar results in comparison to the use of merged paired-ends, 
as reported in Supplementary Dataset S1. Moreover, the threshold of the Bayesian classifier was decreased to 0.5 
to verify also the presence of sequences belonging to taxa more difficult to identify. Despite the modifications 
introduced in the parameters, results obtained substantially confirmed the previous ones indicating that analysis 
is solid. An interesting difference was found regarding Armatimonadetes phylum, which was identified at higher 
abundance in the shotgun RNA sequencing.

Comparison of results obtained investigating different hypervariable regions.  As reported in 
section 2.4, different sequencing approaches revealed discrepancies in abundance of specific taxa. This can be 
determined by two main effects: (1) different distribution of the reads on the 16S rRNA gene, and (2) biases in 
amplification of universal primers used for PCR. Regarding the first effect, it should be evidenced that amplicon 
sequencing targets specifically the V4 region, while shotgun sequencing allows investigation of multiple hyper-
variable regions. It was previously reported that different hypervariable regions can provide different results in 
the taxonomic assignment48. To determine the contribution of specific hypervariable regions to the taxonomic 
assignment, sequences derived from shotgun RNA were classified in six main classes according to their position 
on the 16S rRNA gene sequence (Fig. 5) (Supplementary Table S5). Some regions (V1-V2, V5-V6 and V7-V8) 
were not considered singularly, but were investigated as couples because they were shorter than the average length 
of the shotgun sequences. Analysis was performed only on shotgun RNA because the number of reads was very 
high and this allowed a reliable analysis even after subsampling the reads on hypervariable regions. On contrary, 
the low number of sequences obtained for shotgun DNA made this analysis unreliable.

An evaluation of the number of sequences assigned to the taxonomy revealed that the best result was obtained 
using those aligned to regions V1 and V2 (Fig. 5A). This was more evident at low taxonomic levels (e.g. genus 
and family). Similar evidences were found by previous analyses performed on activated sludge48 suggesting that 
V1-V2 are good target regions for taxonomic analysis. At genus level the percentage of reads taxonomic assigned 
varied from 33% on V5-V6 regions to 76% on V1-V2 regions. As expected results obtained considering only 
sequences positioned on the V4 region was similar to those obtained using amplicons (Fig. 5A). These findings 
indicate that the hypervariable region used for classification is one of the main determinants for the discrepancies 
identified using different sequencing methods.
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Interestingly, abundances calculated for the same taxa and determined considering different hypervaria-
ble regions were quite different (Fig. 5B); this result was confirmed at different taxonomic levels. To make rep-
resentation simpler, only results obtained for sample CSTR01a are reported in Fig. 5B and C, but other samples 

Figure 4.  Comparison between abundance of different taxa determined using three sequencing approaches. 
Results are reported as average of the results determined in the six samples examined (CSTR01a-03a; CSTR01b-
03b). The log2 ratios of the abundances calculated comparing two different approaches are reported in y axes. 
Grey bars represent comparison between amplicon sequencing and shotgun RNA, red bars represent the 
comparison between amplicon sequencing and shotgun DNA. Taxa having higher abundance in amplicons 
in comparison to shotgun RNA sequencing are reported as gray bars with positive values, those having 
higher values in amplicons in comparison to shotgun DNA are reported as red bars with positive values. (A) 
Comparison at phylum level between amplicons, shotgun RNA and shotgun DNA (for and rev sequences 
analyzed separately); (B) comparison at phylum level between amplicons and shotgun RNA; (C) the same 
comparison reported in (A) at genus level; (D) the same as reported in (B) at genus level. In (B) and (D) analysis 
was performed on 700,000 sequences obtained after merging for and rev paired-ends.
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gave similar outcomes (Supplementary Table S5). This finding also evidences that analysis restricted to one spe-
cific region cannot provide an accurate estimate regarding abundance of taxonomic groups in the microbiome. 
Correlation between the abundance of phyla calculated using amplicons (V4 region) and those obtained with 
shotgun RNA, revealed that the higher correlations were observed with sequences assigned to regions V3 (R2 
0.83), V4 (R2 0.7) and V5-V6 (R2 0.89). Correlation values at lower taxonomic levels were variable; for example, 
at genus level the correlation calculated between “amplicons” and shotgun RNA sequences assigned to the V4 
region was very low (R2 0.43), while higher values were evidenced considering the V3 region (R2 0.72) and the 
V5-V6 regions (R2 0.99).

The discrepancies in abundance identified at phylum level (Euryarchaeota) and at genus level (Sphaerochaeta, 
Acetivibrio, Peptostreptococcus and Methanoculleus) were investigated in more detail considering also the 
sequencing method used (previous section and Fig. 4). As evidenced in Fig. 5B, “efficiency level” in taxonomic 
assignment of the V4 region was not identified as the main determinant for the lower abundance of Euryarchaeota 
(Methanoculleus) and Spirochaetes (Sphaerochaeta); in fact abundance estimated using the V4 region was close 
to the average value obtained with sequences mapped to other hypervariable regions. Efficiency of the V4 region 
was found to be more relevant for Peptostreptococcus, Tepidimicrobium and Acetivibrio. Again this was revealed by 
the lower abundance value obtained using V4region in comparison to the average value obtained using the other 
hypervariable regions. In particular for Peptostreptococcus and Acetivibrio, results were biased by an extremely 
high number of reads aligned on regions V9 or V5-V6 (Fig. 5).

Another finding is that for Euryarchaeota all the hypervariable regions (except than V3) confirmed a higher 
number of reads in shotgun RNA in comparison to amplicons (Fig. 5A).No clear evidences were obtained for 
TM7 phylum and for Sphaerochaeta genus.

Identification of possible amplification biases determined by the universal primers 515 F/806 R.  
The presence of possible biases during PCR amplification of the 16S rRNA gene was evaluated testing limitations 
of universal primers 515 F/806 R to efficiently hybridize on the 16S rRNA sequences. This was performed with 
a two-step process based on an initial assembly of full-length 16S sequences, followed by a “virtual PCR” useful 
to investigate potential amplification drawbacks. Despite this approach is probably less precise than a real PCR 
verification, it allowed the verification of a high number of different templates in a short time. The full-length 
16S rRNA sequences used for virtual PCR were obtained assembling shotgun DNA and RNA sequences with 
dedicated software and subsequently clustering the resulting sequences at 97% and 99% similarity level. Since 

Figure 5.  Abundance of different taxa calculated considering shotgun rRNA sequences assigned to different 
hypervariable regions. (A) Fraction of sequences assigned to different taxonomic levels and normalized 
considering the total number of sequences assigned to each hypervariable region. Number of reads assigned 
to different phyla (B) and genera (C) calculated considering reads assigned to different hypervariable regions. 
Notice the logarithmic scale on y axes (number of sequences) in (B) and (C). In (A) all the six samples are 
reported and variability is represented as standard deviation on each bar, in (C) results are reported for sample 
CSTR01a.
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universal primers used in the present study matched the V4 region, 16S rRNA obtained from the assembly were 
tested to verify whether their sequence included the V4 region. This procedure led to the selection of 1397 16S 
rRNA sequences clustered at 97% similarity and 1876 sequences clustered at 99% similarity.

Sixty-six out of 1397 bacterial sequences clustered at 97% similarity (4.7%), and 81 out of 1876 (4.3%) of 
those clustered at 99% similarity did not pass the “virtual amplification” (Supplementary Table S6). The per-
centage of failures for Archaea was higher (19%) as evidenced by the identification of 6 (out of 32) 16S rRNA 
sequences which failed the “virtual amplification” check. The taxonomic assignment of the sequences that failed 
the “virtual PCR” was investigated to verify potential drawbacks on specific taxonomic lineages. Phyla having the 
highest fraction of amplification failures were Spirochaetes (∼71%) (Sphaerochaeta genus), Bacteroidetes (∼17%) 
(Thermonema genus), Actinobacteria (∼16%) (Arthrobacter genus) and Euryarchaeota (∼23%) (Methanoculleus 
genus) (sequences clustered at 97% similarity). Results obtained for sequences clustered at 99% similarity were 
very similar. These findings suggest that the predicted fraction of 16S genes failing the amplification is limited and 
that, among taxa with low estimate abundance in amplicons, only Sphaerochaeta and possibly Methanoculleus 
were biased by failures at the PCR amplification step. Previous studies reported the presence of biases in 16S 
rRNA amplification for Spirochaeta, particularly in association with primers “63 F”, “1389 R” and “S-D-Bact-
0347-a-S-19”, “S-D-Bact-0785-a-A-19”49,50. These findings suggest that species belonging to this phylum are par-
ticularly refractory to 16S rRNA amplicon sequencing.

The main results obtained in the present study and some suggestions to improve the taxonomic analysis of the 
AD microbiome were resumed in Table 1.

Impact of different sequencing methods on the identification of taxa influenced by oleate addition.  
The microbial community under investigation was sampled in two different conditions, before and after the addi-
tion of supplemental amounts (12 g/L-feed) of unsaturated fatty acids (in the form of Na-oleate) in cattle manure 
feedstock. In the previous sections it was demonstrated that the sequencing method had a relevant influence on 
the abundance of the taxa identified; for this reason, it is expected that the sequencing approach can also influence 
the identification of taxonomic groups changing in abundance in response to Na-oleate.

By checking changes in abundance at genus level, results obtained from amplicon sequencing were more sim-
ilar to those obtained from shotgun DNA (R2 0.65) (red in Fig. 6), while they diverged from those obtained with 
shotgun RNA (R2 0.34) (blue in Fig. 6). This is expected because in amplicon sequencing and in shotgun DNA 
sequencing the number of reads per OTU are mainly determined by species abundance, while in RNA sequencing 
abundance is influenced both by species abundance and by expression level of the 16S rRNA gene. Shotgun DNA 
sequencing does not depend on gene-targeted primers or PCR amplification, thus it is not affected by primer bias 
or chimeras and for this reason it provides a better representation of the taxonomic abundance in comparison 
to shotgun RNA sequencing. Despite this, analysis at the transcript level is probably more representative of the 
activity of microbial species18.

By checking results at phylum level, most of the changes in abundance determined by Na-oleate were con-
cordant for all the three sequencing approaches (Supplementary Tables S7 and S8). Only one discrepancy was 
evidenced for Spirochaetes. In this phylum, both amplicons and shotgun DNA evidenced a decreased abundance 
after Na-oleate addition, 5.97 fold for amplicons (p-value 0.00127) and 4.89 fold for shotgun DNA (p-value 
0.0007). Differently, results obtained from shotgun RNA revealed only a 1.97 fold decrease (p-value 0.56).

As evidenced in Fig. 6, most of the genera which underwent a modification in abundance after Na-oleate 
addition were confirmed by the three methods used; for example, both Syntrophomonas and Alcaligenes resulted 
in a markedly increased abundance, while Sedimentibacter was dramatically decreased. Results evidenced also 
some interesting inconsistences, as for example in the Anaerofustis genus. This taxon was not detected using 
shotgun RNA sequencing, while both amplicon and shotgun DNA sequencing evidenced a strong decrease after 
Na-oleate addition. This intriguing result suggests a very low transcriptional activity for this genus, which can be 
determined only using RNA-seq.

Conclusions
This is the first study that performed an in-depth comparative evaluation of three widely used sequencing meth-
ods to investigate the taxonomic composition specifically focused on the anaerobic digestion microbiome. It 
was demonstrated that the classical 16S rRNA amplicon sequencing is biased by two main effects, which are the 
limited number of hypervariable regions investigated (V4 in the present study) and, at a less extent, the failure 
of universal primers to match all the 16S rRNA targets. These two biases influenced different taxonomic groups 
and, more specifically, amplification drawbacks were more problematic for Euryarchaeota and Spirochaetes. 
Interestingly, analysis of shotgun DNA reads performed using a group of clade-specific marker genes other that 
16S rRNA confirms that use of this marker gene can lead to underestimation in abundance of Euryarchaeota in 
the AD system. This finding indicates also that use of multiple marker genes, or analysis at transcriptional level, 
could improve the evaluation of abundance for crucial taxonomic groups. Moreover, it is concluded that the 
absolute abundance level of different taxa is markedly influenced by the selected hypervariable region and also 
by the set of sequences used to train the Bayesian classifier. These two limitations suggest caution in considering 
absolute abundance levels of taxa determined using amplicon sequencing results. It was also evidenced that inves-
tigation of more than one hypervariable region (including for example V1 and/or V2) can improve the quality of 
the results. From a general point of view, the abundance estimation obtained using 16S rRNA amplicons is well 
correlated with the corresponding one obtained using shotgun DNA sequencing, while more diverse results were 
found in the comparison with the shotgun RNA data.
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Methods
Configuration of the biogas reactors, management and samples collection.  Shotgun DNA and 
shotgun RNA sequences analyzed in this study were obtained from previous studies32,33, while 16S amplicons 
were specifically generated and sequenced for this comparative analysis. A detailed description of the reactors 
used and operational conditions was previously reported32. Experiments were carried out in triplicate continuous 
stirred tank reactors (CSTR), denoted as CSTR01, CSTR02, and CSTR03 having a 1.5 L working volume. All reac-
tors were equipped with magnetic stirrers and thermal jackets were used to maintain the operating temperature 
at 54 ± 1 °C. Initially, the reactors were inoculated with thermophilic inoculum obtained from Snertinge biogas 
plant, Denmark. During the first period the reactors were fed exclusively with cattle manure and then the influent 
feedstock was supplemented with sodium oleate (12 g/L-feed). The hydraulic retention time (HRT) of all reactors 
was kept constant at 15 days. Samples for genomic and RNA extraction (∼15 mL each) were collected from each 
reactor during the steady state condition of each period (i.e., period with stable biogas production with a daily 
variation lower than 10% for at least 5 days). The three samples (biological replicates) obtained from the first 
period were indicated as CSTR01a, CSTR02a, and CSTR03a, while the samples obtained from the second period 
were indicated as CSTR01b, CSTR02b, and CSTR03b.

DNA/RNA extraction, shotgun DNA, shotgun RNA and amplicon sequencing.  Barley residues 
present in the manure were removed using a 100 μm nylon cell strainer filter as previously described29. The filtered 
samples were centrifuged at 5000 rpm for 10 min and the supernatant was discarded leaving ∼2 g of material. To 
avoid RNA degradation, 3.5 mL of phenol/chloroform (pH 6.7/8.0) were mixed with isoamyl alcohol (25:24:1) 
(Amresco, Incorporated) and were added to the pellet after centrifugation. The samples were immediately pro-
cessed for extraction of nucleic acids. Total RNA was extracted from 2 g of pellet using the RNA PowerSoil Kit 
(MO BIO laboratories, Carlsbad, CA). Genomic DNA was extracted from the same samples after separation 
from RNA, using the RNA PowerSoil® DNA Elution Accessory Kit (MO BIO laboratories, Carlsbad, CA). The 
quality and the quantity of the nucleic acids were determined both using NanoDrop (ThermoFisher Scientific, 
Waltham, MA) and Qubit fluorometer (Life Technologies, Carlsbad, CA). RNA integrity was determined with 
Agilent Bioanalyzer, genomic DNA integrity was determined using agarose gel electrophoresis and results were 
previously reported32,33. RNA libraries were prepared using the TruSeq RNA Library Preparation Kit (Illumina, 
San Diego, CA), while genomic libraries were prepared with Nextera DNA Library Preparation Kit (Illumina, San 
Diego, CA, USA). The V4 region of the 16S rRNA gene was amplified using universal primers 515F-806R from 
the same genomic samples used for shotgun sequencing4. The libraries obtained from RNA samples and from 
amplicons were paired-end sequenced (2 × 150 bp) using MiSeq system (Illumina, San Diego, CA). Shotgun RNA 
sequencing generated in the six samples 2206946, 2317236, 2440269, 2724922, 2688495 and 2307647 paired-end 
sequences mapped on the 16S rRNA gene; amplicons generated 928909, 1453725, 2123513, 1718869, 1533612 
and 1814367 paired-end sequences. Genomic DNA libraries prepared with the Nextera kit were paired-end 
sequenced (2 × 150 bp) using one lane of the Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) (~250 million 
filtered reads) and resulted in 82580, 96738, 82278, 121755, 107002 and 99861 paired-end sequences mapped on 
16S rRNA sequences (from 0.35% to 0.51% of the total reads depending on sample).

Method 16S rRNA amplicon seq. Shotgun DNA Shotgun RNA

Number of reads needed for 
accurate taxonomic analysis.

Low (>10,000). All the sequences target the 16S 
rRNA gene and this allows reliable investigation of 
the main taxa with few reads.

Very high (>1,000,000). Number of reads 
assigned to the 16S rRNA gene is low.

Intermediate (>100,000). Loss of reads 
determined by the presence of transcripts 
other than 16S rRNA gene is quite limited.

Possible suggestions.
Increase the number of clade-specific marker 
genes other than 16S rRNA using dedicated 
software (e.g. MetaPhlAn)

Hypervariable regions.
Analysis targets one or two selected regions. This 
can reduce accuracy in calculating abundance 
of specific taxa (e.g. Peptostreptococcus, 
Tepidimicrobium and Acetivibrio).

Analysis targets all the hypervariable regions. 
This can increase both the efficiency of 
taxonomic analysis and the evaluation of 
abundance for most taxonomic groups.

Same as shotgun DNA.

Possible suggestions.

Increase the number of hypervariable regions 
under investigation with longer reads (e.g. using 
PacBio SMRT technology) or analyzing more than 
one amplicon. V1-V2 regions seem particularly 
promising to improve taxonomic results.

Universal primers.
Universal primers introduce biases (e.g. 
Sphaerochaeta and Methanoculleus) due to inability 
of hybridizing on all the 16S rRNA molecules.

No amplification step needed, this reduces 
biases in taxonomic investigation. Same as shotgun DNA.

Possible suggestions.
Perform accurate check for potential biases in 
16S rRNA gene amplification. Use more than one 
couple of universal primers.

Transcriptional activity.
This approach targets genomic DNA, 
transcriptional activity cannot be monitored and 
expression level of the 16S rRNA gene does not 
influence analysis.

Same as 16S rRNA amplicon seq.

This approach targets RNA molecules and 
provides insights in activity of specific taxa. 
Analysis can be inaccurate in determining 
abundance of taxa characterized by high or 
low activity.

Possible suggestions.
Combine different sequencing approaches to gain 
insights both on microbial abundance and on their 
activity.

Same as 16S rRNA amplicon seq. Same as 16S rRNA amplicon seq.

Table 1.  Important remarks for analyzing the microbiome of anaerobic reactors for biogas production.
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Bioinformatics analysis.  Reads in FASTQ format were quality-filtered (leading:20, trailing:20, slidingwin-
dow:4:20, minlen:100) and adaptors were removed using Trimmomatic software (v0.33)51. Shotgun reads match-
ing the 16S rRNA gene were selected using riboPicker (standalone-0.4.3)52 after reads alignment on SILVA and 
Ribosomal Database Project (RDP) databases. Paired-end reads were merged using FLASH (v1.2.11)53 using options 
(−M 80) for amplicons and (−M 100 − x 0.01) for shotgun reads. Conversion of reads from fastq to fasta for-
mat was performed with QIIME (1.9.0 + dfsg-0biolinux5) “convert_fastaqual_fastq.py”6. Chimera sequences were 
removed using usearch (7.0.1090_i86linux32) (-uchime option) and Greengenes as reference database. Taxonomic 
assignment was performed using Bayesian RDP classifier7 trained with RDP (v11)9, Greengenes (13 08), or SILVA 
(v128)8. Output of RDP classifier was further analyzed using self-written perl scripts to accelerate the examination 
of results at different taxonomic levels. Sequences were taxonomic assigned using Bayesian classifier without a pre-
liminary clustering-based step. This choice was determined by the random distribution of the shotgun DNA and 
RNA sequences on the 16S rRNA gene, a characteristic which made the OTU-based approach impractical12. To 
overcome this limitation, Illumina reads were directly assigned to the taxonomy after removal of the large number 
of “non-16S sequences” present in the shotgun DNA and RNA samples. This “pre-filtering step”, performed with 
riboPicker software52, selected only sequences aligned on the 16S rRNA gene and made more robust evaluation of 
the taxonomic results. In the comparison between taxonomic results independently obtained for PE (For and Rev) 
sequences, taxonomic assignment has been performed using RDP classifier (trained of Greengenes) and results were 
compared using self-written perl scripts. Briefly, RDP results obtained for the two paired-ends were compared and 
the “lowest” concordant taxonomic assignment was selected. The script calculated percentage of concordant results 
for each taxonomic level and reported as output a file with the same format than RDP classifier software.

Analysis of the minimum number of reads providing a reliable taxonomic result was performed starting from 
RDP classifier output (trained on Greengenes DB) and using self-written perl scripts to calculate the taxonomic 
results on a subset of randomly chosen sequences (perl “rand” function). The script allows the selection of param-
eters such as “repeat random resampling N times” (selected N = 5 resampling) and “increase of K the number 
of reads at each step” (selected K = 1000 between 0 and 10000, selected K = 10000 between 10000 and 100000, 
selected K = 100,000 between 100,000 and 700,000).

Assembly of shotgun reads assigned to the 16S rRNA gene was performed using EMIRGE54. Sequences were clus-
tered at 97% and 99% similarity using QIIME (1.9.0 + dfsg-0biolinux5) “pick_otus.py” software6 and taxonomy of the 
16S rRNA sequences obtained were assigned using RDP classifier trained on Greengenes database. Presence on the 16S 
rRNA sequences of the V4 region was verified by aligning the 16S rRNA sequence with nhmmer (v3.1b1) (parameter 
-E 0.0001) on two hidden markov models (bac.ssu.rnammer.hmm, bac.ssu.rnammer.hmm) obtained from RNAmmer 
(v1.2) software55. Sequences including the V4 region were recovered by considering the start/end positions of the align-
ment on hidden markov models. A “virtual PCR” was performed using MFEprimer-2.056 in order to verify the ability 
of universal primers to match each sequence. MFEprimer-2.0 software was launched on each 16S rRNA sequence 
using an automated pipeline which also parsed and verified the output files obtained from the analysis by selecting 
the sequences which passed the virtual amplification test. For each taxon, the number of sequences failing the virtual 
amplification test was compared with the total number of sequences identified for the same taxon.

Figure 6.  Abundance ratio (log2) determined for the 100 most abundant genera before and after Na-oleate 
addition. x and y axes report the log2 ratios obtained by dividing abundance level of genera “after” and “before 
Na-oleate” addition. “Blue dots” represent the comparison between log2 ratio determined for amplicon 
sequencing (x-axes) and log2 ratio determined for shotgun RNA sequencing (y-axes) (60,000 subsampled 
sequences). “Red dots” represent the comparison between the log2 ratio determined for amplicon sequencing 
(x-axes) and log2 ratio determined for shotgun DNA sequencing (y-axes).
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Analysis of the shotgun DNA sequences based on ∼1 million marker specific genes was performed aligning 
the reads with Bowtie2 (v2.2.4)57 and analyzing results obtained with MetaPhlAn 2 software (2.2.0)47.

Data availability statement.  Shotgun DNA data were submitted to SRA database under project 
PRJNA283298, SRP058179) and using the following accession numbers: CSTR01b (SRX1023882), CSTR02b 
(SRX1023884), CSTR03b (SRX1023885), CSTR01a (SRX1022794), CSTR02a (SRX1023859), CSTR03a 
(SRX1023867). Shotgun RNA data were associated to the same project and with the following accession numbers: 
CSTR01a (SRX1535498), CSTR02a (SRX1535533), CSTR03a (SRX1535534), CSTR01b (SRX1535507), CSTR02b 
(SRX1535535), CSTR03b (SRX1535536). Amplicons were associated to the same project using the following 
accession numbers: CSTR01a (SRX3011210), CSTR02a (SRX3013414), CSTR03a (SRX3013415), CSTR01b 
(SRX3013420), CSTR02b (SRX3013427), CSTR03b (SRX3013442).
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