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Abstract Our study focused on quantifying functional simi-
larities between complex traits recorded in dairy cattle: milk
yield, fat yield, protein yield, somatic cell score and stature.
Similarities were calculated based on gene sets forming gene
networks and on gene ontology term sets underlying genes
estimated as significant for the analysed traits. Gene networks
were obtained by the Bisogenet and Gene Set Linkage Anal-
ysis (GSLA) software. The highest similarity was observed
between milk yield and fat yield. A very low degree of simi-
larity was attributed to protein yield and stature when using
gene sets as a similarity criterion, as well as to protein yield
and fat yield when using sets of gene ontology terms. Pearson
correlation coefficients between gene effect estimates,
representing additive polygenic similarities, were highest for
protein yield and milk yield, and the lowest in case of protein
yield and somatic cell score. Using the 50 K Illumina SNP
chip from the national genomic selection data set only the
most significant gene-trait associations can be retrieved, while
enhancing it by the functional information contained in inter-
action data stored in public data bases and by metabolic path-
ways information facilitates a better characterization of the
functional background of the traits and furthermore — trait
comparison. The most interesting result of our study was that

the functional similarity observed between protein yield and
milk-/fat yields contradicted moderate genetic correlations es-
timated earlier for the same population based on a multivariate
mixed model. The discrepancy indicates that an infinitesimal
model assumed in that study reflects an averaged correlation
due to polygenes, but fails to reveal the functional background
underlying the traits, which is due to the cumulative compo-
sition of many genes involved in metabolic pathways, which
appears to differ between protein-fat yield and protein-milk
yield pairs.
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Introduction

Recently in genetic analysis of complex traits the focus has
been shifted from single genes identified via genome-wide
association studies (GWAS) to genes identified via a function-
al analysis (Evangelou et al. 2014; Visscher et al. 2012).While
genes selected by GWAS represent a selection of variants with
(very) high effects on disease risk or on trait genetic variation,
sets of genes selected by the functional approach are likely to
also contain variants with moderate to small effects manifest-
ed through participation in important functional processes
(Eleftherohorinou et al. 2009; Wang et al. 2010).

In our study we were interested in the incorporation of
functional information from gene network analysis into the
assessment of similarity between selected quantitative traits.
This idea was first introduced by McGary et al. (2010), but
later Woods et al. (2013) developed this concept to derive
phenologs, i.e. phenotypes orthologous between species, e.g.
by showing that mouse phenotypes — clonic seizures and
abnormal brain wave pattern — are genomically similar to
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human epilepsy. Our study focussed on a within-species phe-
notype comparison by quantifying functional similarities be-
tween traits routinely recorded in dairy cattle. Recently,
Pszczola et al. (2013) used the so-called predictor traits with
widely available records in cattle populations, e.g. fat–protein-
corrected milk, to enhance the accuracy of genomic prediction
for other traits with less phenotypic information available such
as, e.g. dry matter intake. Conceptually this can be considered
as a within-species phenolog approach on an additive poly-
genic basis, i.e. with the underlying assumption of an infini-
tesimal mode of inheritance of phenotypes, with identification
of neither particular genes nor the pathways. Our goal was to
compare similarities between traits based on the functional
information gathered through gene networks and thus assum-
ing an underlying complex mode of inheritance.

Materials and methods

Material

Deregressed estimated breeding values predicted in the
national routine evaluation of 2601 bulls from the Pol-
ish Holstein-Friesian dairy cattle breed were used in this
analysis. Breeding values comprised production traits:
milk-, fat- and protein yields (MKG, FKG, and PKG),
somatic cell score (SCS), two type traits: stature (STA)
and body size score (SIZ), as well as two fertility traits:
non-return rate for heifers (NRH) and non-return rate
for cows (NRC). All those traits undergo a complex
mode of inheritance determined by major genes, as well
as a large number of genes with moderate and low
effects with heritabilities in the Polish population esti-
mated at 0.33 for MKG, 0.29 for FKG and 0.29 for
PKG, 0.32 for SCS, 0.54 for STA, 0.50 for SIZ, as well
as 0.02 for NRH and NRC.

Genotypes compr ise SNPs f rom the I l lumina
BovineSNP50 Genotyping BeadChip, which consists of 54,
001 SNPs (version 1) and 54,609 SNPs (version 2). Genetic
samples were provided within the frame of the MASinBULL
project and comprised semen probes acquired via a routine
semen collection procedure. Genotype preprocessing com-
prised elimination of SNPs with minor allele frequency below
0.01 and call rate under 90 % and resulted in 46,267 SNPs
selected for the analysis.

GWAS

Effects of the 46,267 SNPs were estimated using a SNP-
BLUP model as described in Szyda et al. (2011). Statistically,
this is a mixed model with random effects of SNPs described
by a diagonal covariance matrix and bulls’ pseudophenotypes
as dependent variables. Based on the estimated SNP effects,

information of SNP genomic location and the pairwise linkage
disequilibrium between SNPs, underlying gene effects were
calculated and tested for significance using a normal approx-
imation of the t-test, as described in detail by Szyda et al.
(2012).

Genomic and functional information

Genes showing effects significant with a maximum 20 %
type I error rate were selected, separately for each trait, as
scaffolds for the network construction. For better result val-
idation two software packages were used to generate net-
works, i.e. the Bisogenet plugin (Martin et al. 2010) to the
Cytoscape software (Shannon et al. 2003) and the stand
alone Gene Set Linkage Analysis (GSLA) programme
(Zhou et al. 2013). Both approaches construct networks of
genes based on retrieving biological relations stored in mul-
tiple public data bases. For gene network generation
Bisogenet utilizes data on protein-protein and protein-DNA
interactions stored in publicly available data sets, as well as
information from KEGG and signalling pathways. GSLA
utilizes data on protein interactions predicted by the HIR
V1 prediction model and 69,586 experimentally reported
interactions. In both programmes the human data base was
utilized, since interaction information for cattle available to
date is very limited. The functional information was
expressed either by sets of genes in generated networks or
by the sets of gene ontology (GO) terms associated with the
genes which were significant in GWAS.

Genomic similarities

The sets of genes composing each network and the sets of GO
terms associated with significant genes were summarized in a
design matrix (Supporting information Table S1), which was
then used to calculate similarity scores between traits. Two
measures were used to quantify similarities between pairs of
traits by comparing the sets of genes underlying networks for
each trait and by comparing sets of GO terms related to genes,
which effects were estimated as significant in GWAS analysis.
The cosine similarity between traits i and j is given by:

cos ¼ Ni j

N iþN j
, where Nij represents the number of times a fea-

ture (i.e. gene or GO term) was significant for both traits,
Ni(Nj) is the number of times a feature was significant for trait
i(j). Spatially, the metric represents an angle between two vec-
tors of features. The Jaccard similarity coefficient, defined as
the quotient between the intersection and the union of the

pairwise compared variables: Jac ¼ Ni j

N iþN jþNi j
. In addition,

Pearson correlation coefficients were calculated between
SNP and gene effect estimates for each pair of traits.
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Results

Genes

For size and non-return rate for cows and heifers no gene
effect exceeded the 20 % significance threshold and thus the
traits were not used for further analysis. For milk yield seven
genes located on BTA14 were selected as significant, with
effects ranging between 2.79 kg milk and 7.52 kg milk. For
fat yield nine genes were selected, all located on BTA14, with
effects between 0.11 kg fat and 0.39 kg fat. For protein yield
six genes located on BTA03, BTA08, BTA17, BTA18,
BTA19 and BTA29 were selected, with effects of 0.08 and
0.09 kg protein. Most genes (29), all with moderate standard-
ized effects varying between 1.29 and 1.79, were selected for
somatic cell score and were located on BTA01, BTA07,
BTA09, BTA10, BTA12, BTA13, BTA17-20, BTA22-24
and BTA29. For stature two genes with standardized effects
of 1.29 and 1.66 were selected on BTA5.

Gene networks

The networks obtained by Bisogenet and GSLA for produc-
tion traits consisted of 98 and 34 genes for MKG with 17.4 %
of genes overlapping between both programmes, 97 and 64
genes for FKG (23.6 % overlap), as well as 44 and 87 genes
for PKG (24.43 % overlap). The largest network consisting of
1255 and 1437 genes with a 32.4 % overlap between
programmes was obtained for SCS and the smallest network
was observed for STAwith 26 and 59 genes (10.6 % overlap).
The list of genes selected for the analysed traits, representing
vectors used for the calculation of genomic similarities, is
given in the Supporting information Table S1.

Similarities between traits

Similarities between traits based on gene and GO term sets
underlying the gene networks, calculated using two different
measures, i.e. the cosine and the Jaccard coefficients, were
very consistent. While comparing sets of genes constituting
a gene network for each trait the highest similarity of 0.455
was observed between MKG and FKG, while no similarity,
expressed by metrics equal to 0, was observed between PKG
and STA. Considering sets of GO terms characterizing the
significant genes the highest similarity score of 0.622 was also
calculated for MKG and FKG, while the lowest score of 0.049
was attributed to PKG and FKG (Fig. 1). Pearson correlation
coefficients calculated between 4345 estimates of gene effects
were highest for PKG and MKG (0.762) and lowest (−0.011)
for PKG and SCS, whereas correlations between 46,267 SNP
estimates ranged from 0.779 for PKG-MKG to 0.025 for
PKG-STA (Fig. 2). When comparing the results it is notewor-
thy that for many trait-pair combinations polygenic based

information expressed by Pearson correlation coefficients is
not consistent with the functional similarity measures, partic-
ularly all of the trait pair comparisons involving PKG indicat-
ed high polygenic similarity, but low functional similarity.

Discussion

The approach to derive functional information on complex
phenotypes from GWAS, applied in this study, has already
been postulated by Eleftherohorinou et al. (2009). Those au-
thors stressed that using GWAS only the most significant
gene-trait associations can be retrieved, which merely
Brepresent the tip of the iceberg^ of all potential genes in-
volved in the determination of a quantitative phenotype, most
of which have small individual effects. The impact of such
genes on the determination of a complex trait is then mani-
fested through their cumulative effect within functional path-
ways. This reasoning is exactly in line with our understanding
of the genetic determination of complex traits and the corre-
spondingmethodology applied in our study attempts to extract
most of the genomic background. A potential drawback of the
experimental design of our study is connected with a relatively
low coverage of the bovine genome by the 46,267 SNPs avail-
able for the analysis. The average intermarker distance was
51,728 bp, indicating some long gaps of the genomic se-
quence without SNP information. Therefore, out of over ap-
proximately 30,000 genes identified for dairy cattle we were
able to pinpoint only 4345with direct or closely located SNPs.
Another aspect often neglected in association studies is that
not all estimated significant associations may really represent
physical linkage between a SNP and the genomic region.
Some of the associations may arise through selection and the
associated nonrandom mating in the population (Falconer and
Mackay 1996). A technical limitation of the proposed ap-
proach results from the fact that it is based on GWAS results
to select genes used as a scaffold for gene networks or GO
terms. Since GWAS is only able to pinpoint genes of moderate
to high effects on a quantitative trait variation, no scaffold can
be created for traits with a pure polygenic (i.e. without major
genes) mode of inheritance, in our case SIZ, NRH and NRC.

On the other hand, due to a very small effective population
size in dairy cattle, linkage disequilibrium is very strong with-
in 1000 bp of physical distance (Qanbari et al. 2010), assumed
as a threshold distance between a SNP and a gene in our study,
the 4345 gene effects are expected to be accurate even if most
of the polymorphisms are not located within a gene and thus
do not represent causal mutations. Moreover, a large sample
size and a very low level of residual noise thanks to the bull
pseudophenotypes used being a function of thousands of re-
cords further contribute to the accuracy of the results.

The apparently surprising result of our study is that the
functional similarity observed between protein yield and
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milk/fat yield contradicts moderate genetic correlations esti-
mated earlier for the same population based on a multivariate
mixed model (Jesiołkiewicz et al. 2011). The discrepancy in-
dicates that an infinitesimal model assumed in that study re-
flects an averaged correlation due to polygenes, but fails to
reveal the functional background underlying the traits. As
discussed by Shipley (2000) genes that are statistically the
most significant are not necessarily direct, physiological
causes of a complex phenotype. Consequently it appears that
metabolic pathways underlying PKG and FKG/MKG appear
to be different to a large extent. Such an outcome could have
been expected when considering experimental results — e.g.
Bauman and Griinari (2010) reported that the diet-induced
low-fat milk syndrome in dairy cows does not affect protein

yield, while food supplementation with biotin increased milk
yield, but showed only a limited effect on milk composition
(Girard and Matte 1988). On the other hand, similarities be-
tween PKG and FKG/MKGwere reported in studies where an
averaged genetic effect was considered, e.g. in a selection
experiment reported by Kay et al. (2005) where selection on
increased milk yield also resulted in an increased protein
yield, or in studies focused on major genes with pleiotropic
effects, e.g. DGAT1 reported to jointly influence MKG, PKG
and FKG (Grisart et al. 2002). Polygenic based correlations
between milk production traits (MKG, FKG, PKG) and SCS
reported in the literature are very low, practically equal to zero
(Miglior et al. 2007), which is in agreement with results esti-
mated based on gene set similarity.
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The two similarity measures provided very concordant re-
sults. However, the Jaccard metric based on gene sets was
consistently lower than values based on GO term set based
similarity. It should be noted here that GO terms were related
to genes, which were significant in GWAS and thus represent
only the most significant associations, whereas gene sets in-
clude information on interactions and thus provide a broader
insight into the functional background of traits.

The major idea behind our study was to show that one does
not need to rely only on Braw^ information from gene effects
estimated in GWAS or polygenic effects estimated in conven-
tional mixed models, since they do not take into account other
sources of biological information other than phenotype-
genotype correlations. The mixture of the two sources of in-
formation, i.e. results of GWAS and functional information
contained in public interaction data bases and metabolic path-
ways better characterizes the functional background of quan-
titative traits and furthermore facilitates their comparison.
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