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Abstract: Volatile fatty acids (VFA) are industrially versatile chemicals and have a major market.
Although currently produced from petrochemicals, chemical industries are moving towards more bio-
based VFA produced from abundant, cheap and renewable sources such as lignocellulosic biomass.
In this study, we examined the effect of bioaugmentation with homoacetogenic bacteria for increasing
VFA production in lignocellulose fermentation process. The central hypothesis of this study was
that inhibition of methanogenesis in an in vitro rumen bioreactor fed with lignocellulosic biomass
hydrolysate increases the hydrogen partial pressure, which can be redirected towards increased VFA
production, particularly acetic acid, through targeted bioaugmentation with known homoacetogenic
bacteria. In this study, methanogenesis during ruminal fermentation of wet exploded corn stover
was initially inhibited with 10 mM of 2-bromoethanesulfonate (BES), followed by bioaugmentation
with either Acetitomaculum ruminis and Acetobacterium woodii in two separate bioreactors. During
the inhibition phase, we found that addition of BES decreased the acetic acid yield by 24%, while
increasing headspace hydrogen from 1% to 60%. After bioaugmentation, the headspace hydrogen
was consumed in both bioreactors and the concentration of acetic acids increased 45% when A. ruminis
was added and 70% with A. woodii added. This paper demonstrates that mixed microbial fermentation
can be manipulated to increase VFA production through bioaugmentation.

Keywords: acetic acid; Acetobacterium woodii; bioaugmentation; homoacetogens; rumen

1. Introduction

The chemical industry is slowly transitioning from using fossil fuels to using renew-
ables biomass feedstocks to lower greenhouse gas emissions and their carbon footprint [1].
Although this seems like an obvious development, various obstacles must be overcome to
achieve an efficient process for converting biomass to a high-value product [2]. One such
obstacle is making the biomass susceptible to enzymatic hydrolysis. Lignocelluloses are
naturally recalcitrant to enzymatic hydrolysis in lieu of the lignin sheath encompassing
the cellulose and hemicellulose matrix [3]. Hence, pretreatment of biomass is the key to
breaking down the lignin sheath efficiently. Although various pretreatment strategies in-
cluding chemical pretreatment and hydrothermal pretreatment including steam explosion
have been researched over the years, our laboratory has demonstrated the benefits of using
the wet explosion (WEx) pretreatment [4,5]. WEx is done at an elevated temperature and
pressure using only oxygen and water [6]. WEx was found to efficiently release cellulose
and hemicellulose from lignocellulosic materials including straw and wood. Unlike conven-
tional pretreatment methods, this method uses no harsh chemicals that can be detrimental
to microbes during fermentation. Only low concentrations of inhibitory degradation prod-
ucts like furfural and hydroxymethylfurfural are produced during WEx, and the pretreated
material is ready for further processing by enzymes and/or microbes [7].
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Volatile fatty acids (VFA) are intermediates of anaerobic digestion produced during
acidogenesis [8]. VFA are also the key fermentation product during ruminal fermentation,
formed by conversion of organic feed materials by a mixed microbial consortia inhabiting
the rumen. In contrast to the traditional sugar platform, where the pretreated material
needs to be hydrolyzed by cellulolytic enzymes before fermentation to the desired product,
the VFA platform can use pretreated biomass directly as raw material [9]. Besides, the VFA
platform offers substrate flexibility, non-aseptic operations and mixed culture stability [10].
Microbes from the rumen can be used for biomass fermentation to VFA after methanogene-
sis has been inhibited or eliminated, a stage which has been defined as arrested anaerobic
digestion [11]. The advantages of using a mixed microbial consortium such as a rumen
culture during production of VFA compared to pure cultures is that there is no need for
sterile conditions and no requirement for expensive enzymatic cocktails to produce sug-
ars from pretreated biomass. However, low yields and high production costs hinder the
commercial production of bio-based chemicals and fuels. Acetic acid, propionic acid, and
butyric acid, in the molar ratio ~6:2:1 [10], are the main products of rumen fermentation
of cellulosic substrates. Studies have found that fermentation of alkali-treated corn stover
under mesophilic conditions by a rumen culture, produced a VFA yield of 0.59–0.71 g/gVS
converted. The study also found that in addition to acetic, propionic, and butyric acids,
small amounts of isobutyric and valeric acids were further produced [12].

The rumen primarily contains hydrogenotrophic methanogens, which use hydrogen
as the electron donor to reduce carbon dioxide to methane [13]. Rumen bacteria are broadly
classified into fermentative bacteria like Fibrobacter and Ruminococcus, acidogenic bacteria
like Prevotella and Clostridium, acetogenic bacteria like Acetitomaculum and methanogenic
Archaea like Methanobrevibacter and Methanosarcina [14,15]. Methanogens in the rumen
work synergistically with other groups of microbes to keep the overall fermentation in
balance, resulting in the production of methane and carbon dioxide besides VFA, which
is adsorbed by the animal into the blood stream. It has been estimated that ruminal
methanogenesis accounts for 10% energy loss in cattle [16]. Inhibition of methanogenesis
in an artificial rumen bioreactor has been studied extensively, mainly to avoid energy loss
in the animal [17]. These studies have indicated that an increase in H2 partial pressure is
also, to a certain extent, inhibitory for the overall conversion in the rumen [18]. Mitigation
strategies for methane has been studied using chemical inhibitors, methane analogs or
ionophores. 2-Bromoethanesulfonic acid (BES), a coenzyme-M analog, will selectively
inhibit methanogenesis and stimulate reductive acetogenesis [19]. In the same study, the
addition of 0.03 M BES and addition of Peptostreptococcus products yielded 2.14 mM of acetic
acid after 24 h of incubation with a mixture of hydrogen (80%) and -carbon dioxide (20%)
in the headspace [19]. These studies showed no specifical inhibition of acetogenesis after
BES addition to the mixed culture. However, inhibitors such as chloroform not only inhibit
methanogenesis but also have an adverse effect on the H2-dependent acetogenesis [20].

It has been well established that reductive homoacetogenesis could be a beneficial
substitution for methanogenesis, to reduce the significant energy loss to the ruminant [21].
Homoacetogens, including Moorella thermoacetica, a thermophilic bacteria utilizing hydro-
gen and carbon dioxide to autotrophically produce acetic acid, use the Wood Ljungdahl
Pathway (WLP) to selectively produce acetic acid [22]. Herrero and Stuckey [23] defined
bioaugmentation as “the process of adding selected strains/mixed cultures” to existing
bioreactors for the improvement of fermentation efficiency. Although bioaugmentation has
been studied for years in wastewater treatment and soil remediation [24], it has not been
implemented successfully as it is considered less predictable than conventional bioremedi-
ation methods [23]. By the definition provided above, bioaugmentation depends on the
ability of the added strain or mixed culture to work synergistically with the existing culture
to perform the desired process change. Bioaugmentation of rumen fermentation with
homoacetogens has been shown to be unsuccessful in the presence of living methanogens
since they have a much higher affinity (10–100 times higher) for H2/CO2 when compared
to the homoacetogens [25]. Bioaugmentation with homoacetogens for primarily increasing
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VFA production has not been previously studied. Most studies done in anaerobic digesters
(AD) [26] have focused on adding specific cellulose-degradation bacteria to increase the
biomethane yield [27,28]. Studies have shown that bioaugmentation of AD with ther-
mophilic bacterial strains increased methane yield by 22–24% [29]. Other studies have
shown similar trends, whereby bioaugmenting the first step of a two-step AD with the
thermophilic Caldicellulosiruptor dictyoglomus led to a 93% increase in methane yield after
18 days of AD [28].

We hypothesized that VFA production (especially acetic acid) can be increased if
methanogenesis is selectively inhibited in a rumen bioreactor, and the bioreactor is bioaug-
mented with H2-dependant homoacetogens. In the present study, we used pretreated
(wet-exploded) corn stover as feedstock and a stable rumen culture grown on this substrate
for three retention times. After inhibition of the methanogens by addition of BES, we
further added homoacetogenic bacteria such as Acetobacterium woodii ATCC 29683 and
Acetitomaculum ruminis ATCC 4738 to test the synergistic effect of the mixed microbial
culture in the anaerobic digestion of lignocellulosic biomass on increasing VFA production.

2. Materials and Methods
2.1. Inoculum

Rumen fluid was collected and stored as described by Murali et al. [30]. The fresh
rumen fluid was degassed under 80% N2: 20% CO2 (Oxarc® Inc., Pasco, WA, USA) for
30 min, sealed and stored at –20 ◦C and 10% rumen fluid was added as inoculum to each
of the bioreactors.

2.2. Substrate

Raw corn stover was obtained from Iowa State University and was processed as
mentioned in our earlier study [30]. The milled corn stover was pretreated (wet exploded)
as previously described by Biswas et al. [5]. The composition of the feed is shown in
Table 1.

Table 1. Compositional data for pretreated (wet exploded) corn stover [30].

Cellulose
(wt%)

Hemicellulose
(wt%) Lignin (wt%) Ash (wt%) Total Solids

(wt%)
Volatile Solids

(wt%)

Pretreated Corn Stover 36.8 16.3 43.4 3.4 2.5 2.35

2.3. Bacterial Strains

Two bacterial strains, Acetobacterium woodii ATCC 29683 and Acetitomaculum ruminis
ATCC 47386 were purchased from American Type Culture Collection (ATCC; Manassas,
VA, USA). Both mixed bacterial and pure culture inoculum were added to the fermenters
at a concentration of 1 × 108 cells/mL.

2.4. Fermentation
2.4.1. Control Fermenter

One sterilized fermenter (3 L Applikon® ezControl autoclavable bioreactor (Applikon
Biotechnology B.V, Schiedam, The Netherlands) was set up with pretreated corn stover
at 2.5% TS. The fermenter was filled with 810 mL of substrate containing pretreated corn
stover (2.5% TS), corn steep liquor (2%) (Sigma Aldrich, St. Louis, MO, USA) and 90 mL
of inoculum. After stable performance for two retention times, 10 mM of BES was added
to the reactor to specifically inhibit the methanogenic population [31]. The fermenter
was vigorously degassed under N2-CO2 (80:20 w/w) for 45 min to remove any oxygen.
Sodium hydroxide (5 N) (Sigma Aldrich, MO, USA) was used initially to adjust the pH of
the fermentation broth and to maintain the pH at 6.5 throughout the fermentation. The
fermentation was done at 37 ◦C with a stirrer speed of 200 rpm and a hydraulic retention
time (HRT) of 6 days. After addition of 2-bromoethanesulfonate (BES) (Sigma Aldrich,
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MO, USA), the fermentation was run for 5 HRTs (total 30 days) and operated in a semi-
continuous mode, with an organic loading rate of 3.75 gTS/L/day. Liquid samples were
collected every day for analysis.

2.4.2. Bioaugmented Fermenters

Two fermenters, one with A. woodii and another with A. ruminis were set up, similar
to the control fermenter with feed added (as discussed in Section 2.4.1), and 45 mL of fresh
rumen fluid and 45 mL of the respective bioaugmented strains were added. It should be
noted that the BES addition in control and the bioaugmented fermenters were done at
the same time of the microbial cycle, based on stabilized maximum methane production
during ruminal fermentation of pretreated corn stover (data not shown). These fermenters
were also operated semi-continuously, with an organic loading rate of 3.75 gTS/L/day and
a hydraulic retention time of 6 days, for 5 HRTs (total of 30 days). Fermentation effluent
samples were collected every day for analysis.

2.5. Analyses
2.5.1. Measurement of VFA Using High Performance Liquid Chromatography

The fermentation effluent (2 mL), from each of the fermenters, was centrifuged at
10,000 rpm for 10 min and the supernatant was analyzed using High Performance Liquid
Chromatography (HPLC). The supernatant, from all fermenters, was diluted 6 times using
4 mM sulfuric acid and filtered through a 0.2 micron PFTE filter for analysis. Analysis were
done as described by Murali et al., [30] using an Aminex® 87H Column 250 × 4.6 mm (Bio–
Rad, Hercules, CA, USA), and a Shodex RI–101 refractive index detector on the UltiMate®

3000 HPLC system (Dionex, Sunnyvale, CA, USA). Sulfuric acid (4 mM) in water was used
as the eluent, flowing through the 87H column at a constant flow rate of 0.6 mL/min in
a constant temperature oven at 60 ◦C. The total analysis time of the fermentation sample
was 68 min.

2.5.2. Gas Analyses Using Gas Analyzer

Head space gas measurements were done daily using the Universal Mass Spectrometry
Gas Analyzer, UGA-200 (Stanford Research Systems, Sunnyvale, CA, USA).

2.5.3. Calculations

Acetic, propionic, butyric and valeric acids were found to be the major acids pro-
duced during fermentation and were converted to acetic acid equivalents. The total VFA
concentration is calculated in acetic acid equivalents using Equation (1) as follows:

Total VFA in acetic acid equivalents = (Acetic acid ) +
(

Propionic Acid ∗ ( TOPA
TOAA

) ∗ (MWAA
MWPA

)
)

+
(

Butyric Acid ∗ ( TOBA
TOAA

) ∗ (MWAA
MWBA

)
)

+
(

Valeric Acid ∗ ( TOVA
TOAA

) ∗ (MWAA
MWVA

)
) (1)

where MW refers to the molecular weight of acetic acid (AA), propionic acid (PA), bu-
tyric/isobutyric acid (BA) and valeric/isovaleric acid (VA), which are the prominent VFA
produced during fermentation and TO refers to the theoretical amount of oxygen required
to completely breakdown each of these acids to carbon dioxide.

2.6. Feedstock Characterization

Feedstock characterization was done by analyzing the Total Solids (TS) and Volatile
Solids (VS) and the biomass composition analysis of the feed and the effluent of each
reactor. TS, VS and biomass composition analysis of the feed and effluent was done as
described by Murali et al., [30].

3. Results and Discussion
3.1. Effect of BES on Rumen Fermentation and VFA Production

As indicated in Section 2.5, all the bioreactors showed stable performance for two
retention times before any microbial manipulations were made and such stable performance
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has been previously shown [30]. Hence, in this study, day 0 is indicative of the bioreactor
sample immediately after adding BES to the system and based on this assumption, the
second addition of BES to the bioreactors was on day 15. This was consistently followed for
both the control and the bioaugmented bioreactor. The VFA profile in the control bioreactor
after BES addition is shown in Figure 1. As expected, it was found that after BES was
added there was a drop in methane production to less than 5 wt% (not shown), and the
hydrogen concentration in the headspace started to increase, reaching a maximum value
of 60 wt% after 5 days (Figure 1a). Similar trends were observed in other studies, where
inhibition of methanogens resulted in an increased hydrogen partial pressure PH2 PH2 in
the headspace [18]. Studies have shown that with complete inhibition of methanogenesis,
PH2 increased from 0.087 mM/day to 1.83 mM/day in continuous cultures [32]. It can
be seen from Figure 1b that acetic acid is the most prominent VFA produced, along with
propionic and a low amount of butyric acid (very minute concentrations of valeric acid
were produced and it was not consistent; hence, it is not shown in the graphs).
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Figure 1. (a) Hydrogen concentration in headspace (wt%) versus acetic acid concentration (g/L); and
(b) volatile fatty acids (VFA) profile; in control bioreactor after 2-bromoethanesulfonate (BES) addition
and methanogenesis inhibition. (— Hydrogen concentration (wt%); • Acetic acid concentration (g/L);
� Propionic acid concentration (g/L); N Butyric acid concentration (g/L)).

While BES was not shown to have an adverse effect on specific homoacetogens,
some studies have indicated that BES can inhibit certain non-methanogenic microbial
populations too [18,33]. As seen from Table 2, BES addition decreased the overall VFA
yield from ruminal fermentation of pretreated corn stover from 31.09 g/L (1.25 g/gVS)
to 21.41 g/L(0.95 g/gVS). The acetic acid and total VFA productivity in the bioreactor
without methanogens were 1.5 g/L/day and 3.2 g/L/day, respectively, and in the bioreac-
tor with methanogenesis [30], the acetic acid and total VFA productivity was 2 g/L/day
and 5.4 g/L/day, respectively. Individual VFAs also showed a similar trend (Table 2),
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where acetic, propionic, and butyric acids were reduced by 24%, 44%, 49%, respectively,
in reactors with BES addition compared to reactors without BES. Similar adverse effect of
BES on VFA production during rumen fermentation was seen when using a pure cellulosic
substrate such as Avicel [18]. Studies on rumen fermentation have shown that increased
hydrogen production caused by methanogen inhibition using BES, would thermodynami-
cally disfavor acetogenesis and instead flow [H] into other [H] sinks such as propionate,
lactate, formate, succinate, etc. [34]. It can be seen from Table 2 that propionate production
also dropped after BES addition and a similar effect was also found in other literature [35].
Another demonstrated effect is the adverse impact of high PH2 on the cellulose degradation,
which eventually affected VFA production [18,36].

Table 2. Volatile fatty acids concentrations (g/L) in bioreactors with and without bioaugmentation and with 10 mM BES
added. The bioreactors with and without methanogenesis were regarded as controls.

Bioreactor Acetic Acid
(g/L)

Propionic Acid
(g/L)

Butyric Acid
(g/L)

Total VFA in Acetic
Acid Equivalents (g/L)

Control; With Methanogenesis [30] 12.26 10.08 2.42 31.09 (1.25 g/gVS)
Control; (BES-added) Without Methanogensis 9.29 5.63 1.23 21.41 (0.95 g/gVS)

Bioaugmentation with A. ruminis after BES addition 16.99 6.88 2.98 32.33 (1.34 g/gVS)
Bioaugmentation with A. woodii after BES addition 30.8 7.91 3.89 49.31 (2.19 g/gVS)

3.2. Effect of Bioaugmentation on Overall VFA Yield

Based on the results discussed in Section 3.1, it was postulated that bioaugmentation
of homoacetogens (A. woodii and A. ruminis) in fermenters that had a high hydrogen
partial pressure

(
PH2

)(
PH2

)
in the headspace would serve as an efficient alternate [H]

sink, resulting in an increased acetic acid production. Previous studies have shown that
such homoacetogens have shown significant growth and acetate production at such high
hydrogen partial pressures with CO2 as the primary carbon substrate [19]. It can be seen
from Figure 2 (and Table 2) that bioaugmentation with homoacetogens increased total
VFA production (32.33 g/L (1.34 g/gVS) in the A. ruminis-augmented bioreactor and
49.31 (2.19 g/gVS) g/L in the A. woodii-augmented fermenter) when compared to the
non-augmented control bioreactor without methanogenesis (21.41 g/L or 0.95 g/gVS). The
most significant trend observed in Table 2 is that bioaugmentation with A. ruminis (which
was primarily isolated from rumen sources) resulted in an almost similar total VFA yield
as that of original rumen, further proving our hypothesis that a homoacetogen capable of
growing under high PH2 can serve as an efficient [H] sink, resulting in effective cellulosic
degradation to VFA.
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Previous studies have indicated that any changes to bioreactor performance after
bioaugmentation are usually only operational for short periods of time [37]. This is primar-
ily because of competition between the different microbial strains, and the fact that a system
such as the rumen has developed over long periods of time and the resulting micro-flora
is based on survival of the fittest. However, when methanogenesis is inhibited there is
an opportunity for other strains to take up the space inhabited by these microbes, and as
shown, this will lead to the increased production of more VFA, especially acetic acid. This
effect is successfully shown in Figure 3, where the VFA productivity after bioaugmentation
with A. ruminis or A. woodii was 6.2 g/L/day and 10.4 g/L/day, respectively, almost 2- to
3-fold higher than in the control reactor without bioaugmentation.
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3.3. Effect of Bioaugmentation on Individual VFA Yield

The increase in VFA production, in particular, was in acetic (45%), propionic (18%) and
butyric acids (59%) in the A. ruminis-augmented bioreactor, when compared to the control
bioreactor (after BES addition). However, in the bioreactor augmented with A. woodii, the
percentage increase, when compared to control, was even higher—70%, 29% and 68% of
acetic, propionic and butyric acids, respectively.

The variations in the VFA concentrations as a function of time in the augmented
bioreactors is shown in Figure 4. With A. ruminis (Figure 4a), the acetic acid concentration
continually increased from day 1 to day 19, after which the acetic acid production stabilized
at 16.9 g/L (0.69 g/gVS) and similar trends were seen with propionic and butyric acid
production. However, when bioaugmented with A. woodii, the acetic acid production was
even higher, and the bioreactor reached stability on day 21 with 29.9 g/L (1.29 g/gVS) of
acetic acid (Figure 4b). It can also be seen from Figure 5 that the acetic acid productivity
in A. ruminis and A. woodii augmented bioreactors was 3.9 g/L/day and 6.3 g/L/day,
respectively. It can also be seen from Figure 5 that the acetate productivity trends mirrored
that of the total VFA productivity, indicating that the production of other organic acids such
as propionic and butyric acid did not significantly affect the total VFA production. This
further confirms that increased acetate yield from bioaugmentation with homoacetogens
specifically increased acetate production by serving as an efficient [H] sink (i.e., effectively
replacing the methanogens).
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Other studies have found similar results, where bioaugmentation with A. woodii in-
duced a homoacetogenic fermentation with heat activated sludge [38]. They found that
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from 1 mole of glucose, almost 1.19 mole of acetic acid was produced with A. woodii augmen-
tation. Previous studies have reported similar results, that inhibition of methanogenesis
possibly shifts ruminal fermentation towards homoacetogenesis, especially in the presence
of A. ruminis [21]. Lopez et al. [39] also showed that inhibition of methanogenesis increases
the hydrogen scavenging ability of hydrogenotrophic homoacetogenic bacteria like Eubac-
terium, Acetitomaculum and Acetobacterium, thereby increasing acetic acid yields by almost
51%. The results from this study confirmed the hypothesis that reductive acetogenesis
is indeed an alternative hydrogen sink to methanogenesis. However, while the bioaug-
mentation showed an increase in VFA production (especially acetic acid), the difference
between the yields and productivities in A. ruminis and A. woodii augmented fermenters
showed significant differences (Figures 3 and 5). As seen from Figure 1b, both H2 and
acetic acid concentrations in the control bioreactor increased after BES addition. This trend
was similar to previous studies that reported that, at high partial pressure of hydrogen,
homoacetogenesis can be favored [40]. These studies also indicated that methanogenesis is
favored at lower H2 partial pressures and hence, such a significant effect of bioaugmenta-
tion on VFA production using rumen may not have been achieved without first inhibiting
the methanogenic population within the rumen. It can be seen from Figure 6a,b that the H2
partial pressure in the fermenter headspace decreased upon bioaugmentation with both
tested strains, A. ruminis and A. woodii. However, while the H2 concentration decreased
to around 20 wt% and stayed constant as a function of time in the A. ruminis-augmented
bioreactor, hydrogen was almost non-detectable in the A. woodii-augmented bioreactor
after 9 days, indicating comparatively superior performance.
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These differences indicate that A. woodii has a greater capability to completely con-
sume the headspace hydrogen with CO2 to produce acetic acid through the Wood-Ljundahl
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pathway compared to A. ruminis. Some previous studies using A. woodii grown on H2/CO2
gaseous substrates have shown ascetic acid production of 20.37 g/L/day, with the highest
concentration found amongst hydrogenotrophic acetogens [41,42]. Another reason for the
comparatively ineffective performance of A. ruminis-augmented reactor at H2 concentra-
tions below 20% could be that the H2 concentration was below the threshold value that is
usually required by A. ruminis for acetic acid production. This might explain the steady
state concentration of hydrogen seen in the headspace of the fermenter bioaugmented with
this strain (Figure 6a).

3.4. Mass Balance Analysis and Feedstock/Effluent Characterization

As discussed in Section 3.3, bioaugmentation resulted in higher VFA production
(especially acetic acid) indicating that reductive homoacetogenesis will be active and
utilize excess H2 in the bioreactor headspace after inhibition of methanogenesis. While the
effective utilization of H2 in the headspace of the ruminal fermentation directly relates to
an increase in VFA production, there is an added benefit of increased cellulolytic activity
in the rumen. As previously discussed, studies using BES for inhibiting methanogenic
activity have also shown a decrease in the cellulolytic activity of the ruminal bacteria
with an increase in the H2 pressure [43]. This could also be attributed to the decreased
VFA production in the control bioreactor. Table 3 shows the compositional analysis done
at stable bioreactor conditions (day 30) to assess the carbohydrate degradation rate in
the control fermenter in comparison to the bioaugmented bioreactors. It can be seen
that the cellulose and hemicellulose concentrations in the bioaugmented bioreactors were
significantly lower than that in the control bioreactor. The difference in cellulose and
hemicellulose (total carbohydrate) consumption in the A. ruminis and A. woodii augmented
reactors were found to be 18.3 wt% and 22.7 wt%, respectively. We found no evidence of
any lignin degradation, either with or without bioaugmentation. As previously found,
there were no expectations on ligninolytic activity in the rumen at these conditions [30].
Assuming 1 g of carbohydrate could theoretically produce ca. 1 g of acetic acid, the
carbohydrate consumption alone does not relate to the significant increase in acetic acid
concentration in the effluent from A. woodii augmented fermenter. This difference in acetic
acid concentrations between the two bioaugmented fermenters, however, could only be
explained by the difference in carbohydrate consumption and increased consumption of
the H2 in the A. woodii augmented fermenter (Table 3).

Table 3. Compositional analysis of wet exploded corn stover feed and effluent before and after
bioaugmentation on day 30 of fermentation.

Feed 1 Effluent A 2 Effluent B 3 Effluent C 4

Solid Fraction *

Total Carbohydrates (%g/g biomass) 53.1 44.4 34.8 30.4
Cellulose (%g/g biomass) 36.8 31.9 25.9 23.6

Hemicellulose (%g/g biomass) 16.3 12.5 8.9 6.8
Soluble Lignin (%g/g biomass) 2.64 3.7 3.6 4.2

Insoluble Lignin (%g/g biomass) 40.8 40.9 50.9 54.6
Carbohydrate:Lignin Ratio 1.22 0.99 0.64 0.52

Liquid Fraction

Acetic acid (g/L) 0.34 9.29 16.99 30.8
Propionic acid (g/L) 0.17 5.63 6.88 7.91

Butyric acid (g/L) 0.11 1.23 2.98 3.89
Hydrogen concentration (wt%) N/A 65% 4% 0

* Solid fraction was obtained after filtration and washing with water. 1 Feed: Wet exploded corn stover 2.5%
TS [30]. 2 Effluent A: Effluent on Day 30 of fermentation without methanogens (Control) [30]. 3 Effluent B:
Effluent on Day 30 of fermentation bioaugmented with Acetitomaculum ruminis. 4 Effluent C: Effluent on Day 30
of fermentation bioaugmented with Acetobacterium woodii.
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4. Conclusions

Inhibition of methanogenesis during ruminal fermentation has been well-studied, pri-
marily, aimed at reducing methane emission from the cattle population. These studies have,
however, shown that disruption of methanogenesis has a negative effect on the overall ru-
men fermentations and that the H2-scavenging function of the methanogens are important
for a stable rumen function. In our study, we examined if homoacetogenes can substitute
the role of methanogens during rumen fermentation and result in an increased production
of VFA during fermentation of corn stover. The study is focused on two acetogenic strains,
A. ruminis and A. woodii, which were both found to be capable of working in synergy with
the ruminal consortia after BES addition, resulting in an increased VFA (particularly, acetic
acid) production. The efficient utilization of the excess H2 accumulated after inhibition
of methanogenesis was shown to increase the total VFA production to between 32.33 g/L
(1.34 g/gVS) and 49.31 g/L (2.19 g/gVS) (acetic acid equivalents) compared to the control
(i.e., non-augmented) bioreactor without methanogenesis (21.41 g/L or 0.95 g/gVS, acetic
acid equivalents).

While bioaugmentation has been used previously, there has been no previous research
studying the effect of bioaugmentation on improving VFA production. In another study
conducted at our lab, we found that the efficient utilization of H2 in the bioaugmented
reactors resulted in an increase in the cellulolytic activity during ruminal fermentation [18].
It was also found that an efficient H2-degrading acetogen, A. woodii, performed significantly
better than A. ruminis, which seemed to be limited by a high H2 threshold concentration.
The results from this current study not only increases our fundamental understanding of
the effect of bioaugmentation in ruminal fermentation aimed at reducing methane activity,
but also serves as an optimal alternative bioengineering tool capable of increasing the
future biochemical production of organic acids.
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