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Lake Karla, Greece, was dried up in 1962 and its refilling started in 2009. We examined the Cyanobacteria and unicellular eukaryotes
found during two fish kill incidents, in March and April 2010, in order to detect possible causative agents. Both microscopic and
molecular (16S/18S rRNA gene diversity) identification were applied. Potentially toxic Cyanobacteria included representatives of
the Planktothrix and Anabaena groups. Known toxic eukaryotes or parasites related to fish kill events were Prymnesium parvum and
Pfiesteria cf. piscicida, the latter being reported in an inland lake for the second time. Other potentially harmful microorganisms, for
fish and other aquatic life, included representatives of Fungi, Mesomycetozoa, Alveolata, and Heterokontophyta (stramenopiles).
In addition, Euglenophyta, Chlorophyta, and diatoms were represented by species indicative of hypertrophic conditions. The
pioneers of L. Karla’s plankton during the first months of its water refilling process included species that could cause the two
observed fish kill events.

1. Introduction

Planktonic Cyanobacteria and unicellular eukaryotes belong-
ing to different functional groups constitute key components
of aquatic ecosystems [1]. Among the unicellular plankton
there are species that negatively influence the ecosystem
[2, 3]. Several of these microorganisms lack distinct morpho-
logical features. Even if taxonomically useful morphological
features are present, they may get lost throughout sam-
pling, preservation, and examination procedures [4] making
identification by traditional microscopic methods difficult.
Molecular techniques have spawned new ways to access the
diversity of the microbial world. Yet, molecular techniques
have limitations [5]. Therefore, a combination of molecular
techniques and microscopy methods is required in order to
uncover the diversity of the microbial world [6].

Mass fish kills are known to occur in eutrophic lakes.
They have been attributed mostly to hypoxic/anoxic con-
ditions or uncommonly high/low temperatures. Other fac-
tors, related or not to the eutrophication, include floods,

droughts, cyclonic storms, habitat loss, low water flow, and
abrupt water level fluctuations [7]. Due to the changes of
the grazing pressure, fish kills may lead to considerable
changes in the food web structure of the lake ecosystem, with
diminishing consequences for the possibilities of using the
lake for recreation, fishing, or as a source of drinking water.
Although such mass mortality events are well documented in
the literature, to the best of our knowledge, there is no such
data on newly reconstructed lakes.

In freshwater, the haptophyte Prymnesium parvum is
considered one of the most dangerous microorganisms
and is responsible for adverse effects on aquatic organisms
[8] and in particular for several fish kill incidents [9]. It
poses a serious threat to several ecosystems since it survives
in a wide range of salinities and blooms in coastal and
brackish inland waters worldwide [10, 11]. In Lake Koronia,
Greece, P. parvum coincided with a mass death of birds
and fish [2, 12]. The dinoflagellate Pfiesteria species can
harm fish in coastal waters [13, 14] and has caused fish kills
under certain circumstances in North Carolina, USA [13].
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No Pfiesteria-induced fish kills have ever been reported in
Mediterranean coastal waters, while the only, and most
unusual, inland ecosystem where Pfiesteria has been reported
is Ace Lake, Antarctica [15].

While acute fish kills due to toxic algae are well studied,
another less obvious impact of toxic/parasitic unicellular
eukaryotes is that exposure of aquatic animals to their toxins
or parasitism might induce serious sublethal effects, includ-
ing predisposing these populations to various infectious
diseases resulting in, for example, reduction of growth and
reproduction [8, 16]. This situation might be even more
severe if one considers that we know only a few of the toxic/
parasitic eukaryotes that can cause fish kills, while on the
other hand our concept on the existing species diversity of
the microscopic eukaryotes is still expanding [17]. This led
us to investigate the planktonic Cyanobacteria and micro-
eukaryotes of a newly reconstructed lake (Lake Karla, cen-
tral Greece) during two consecutive fish kill events which
occurred in less than six weeks. The aims of this study
were to supplement the limited knowledge on the plank-
ton Cyanobacterial and microeukaryotic diversity of newly
reconstructed lakes and to identify potentially toxin-pro-
ducing and parasitic taxa which coincided with the fish kill
events and might have deleterious effects on the ecosystem.

2. Materials and Methods

2.1. Study Area. Lake Karla (Figure 1) is located in central
Greece (39◦29′02′′ N, 22◦51′41′′ E). It formerly covered an
area of ca. 180 km2 but in the beginning of the 1960s it
was drained through a tunnel leading the lake’s drainage
to the nearby Pagasitikos Gulf. A small permanent marsh
remained at the area that once covered the lake. The structure
and function of L. Karla was correlated with River Pinios,
as the flooding events of the river supplied the lake with
water rich in nutrients [18]. Several biological and physical-
chemical criteria characterized the lake as a eutrophic but
with high stability before its drainage [19]. It was not until
the 1990s that the refilling of the lake was decided by
inflowing water from the nearby River Pinios. Its actual
filling started in September 2009, after building a peripheral
dam which covers 38 km2. We sampled in L. Karla in March
and April 2010, during two fish kill events. As reported in
local newspapers, the dead fish floated in the lake and lined
along the shores of a 3.5 to 5 km stretch.

Water samples for microscopic analysis were collected on
17 March and 20 April 2010 at ca. 0.5 m depth from the water
level pier at the southeast end of the lake (Figure 1). Three
replicates of 500 mL each were collected in polyethylene
bottles. Two of them were fixed with Lugol’s solution
and formaldehyde, while one was retained fresh for direct
microscopic analysis. Water temperature, dissolved oxygen,
salinity, and pH were measured in situ using a WTW sensor
(Weilheim, Germany).

For each sampling date, at least three replicates of live
and preserved samples were examined in sedimentation
chambers using an inverted microscope with phase contrast
(Nikon SE 2000). Cyanobacteria and microscopic eukaryotes

were identified using classical taxonomic keys and previous
works [20–23]. Phytoplankton counts (cells, colonies, and
coenobia) were performed using the Utermöhl’s sedimen-
tation method [24]. For biomass (mg L−1) estimation, the
dimensions of 30 individuals (cells, filaments, or colonies) of
each species were measured using tools of a digital micro-
scope camera (Nikon DS-L1), while mean cell or filament
volume estimates were calculated using appropriate geomet-
ric formulae, as described previously [25, 26]. Species and
taxonomical groups comprising more than 10% (w/w) of
the total phytoplankton biomass were considered to be
dominant.

Water samples for DNA extraction were transported to
the laboratory in 4-L collapsible plastic bottles (Nalgene,
Rochester NY, USA) and processed within 1 h of collection.
After screening through a 180 µm mesh net to exclude
larger eukaryotes and particles, 200–250 mL of water was
filtered through a 0.2 µm pore size Polycarbonate Isopore
filter (Sartorius, Goettingen, Germany). The filtration was
conducted under reduced pressure (≤100 mmHg) to prevent
cell damage. Filters were stored immediately at −80◦C until
further analysis.

DNA was extracted using the UltraClean Soil DNA isola-
tion kit (MoBio Laboratories, Carlsbad CA, USA) according
to the manufacturer’s protocol after slicing the filter with a
sterile scalpel. The concentration of bulk DNA was estimated
by spectrophotometry (NanoDrop ND-1000, NanoDrop
Technologies, Wilmington DE, USA) and ranged between
11.9 and 15.4 ng µL−1 for the March and April samples,
respectively. For PCR amplification, approximately 12 ng of
environmental DNA was used as template for both samples.
The 18S rRNA gene was amplified using the eukaryote spe-
cific primers EukA (5′-AACCTGGTTGATCCTGCCAGT-
3′) and EukB (5′-GATCCTTCTGCAGGTTCACCTAC-3′)
[27] for the March sample, while the primers EukA and
Euk1633rE (5′-GGGCGGTGTGTACAARGRG-3′) [28] were
used for amplification of the 18S rRNA gene for April sample.

PCR for the amplification of the March sample included
an initial denaturation step at 95◦C for 15 min, which was
followed by 40 cycles consisting of denaturation at 95◦C for
45 s, annealing at 55◦C for 1 min, and elongation at 72◦C for
2 min and 30 s; a final 7 min elongation step at 72◦C was
included. The PCR protocol for the April sample included
an initial denaturation step at 95◦C for 2 min followed by 40
cycles of denaturating at 95◦C for 40 s, annealing at 50◦C for
40 sec, and elongation at 72◦C for 2 min and 15 s, with an
additional step of final elongation at 72◦C for 1 min. Each
PCR from the two samples was repeated with different cycle
numbers (between 20 and 37). The lowest number of cycles
that gave a positive signal, that is, 26 and 28 cycles for the
March and April sample, respectively, was further used in
order to eliminate some of the major PCR innate limitations
[29, 30] and to avoid differential representation of 18S rRNA
genes with low and high copy numbers.

For PCR amplification of the Cyanobacterial 16S rDNAs,
we used the Cyanobacteria-specific primers CYA106f (5′-
CGGACGGGTGAGTAACGCGTGA-3′), CYA781r(a) (5′-
GACTACTGGGGTATCTAATCCCATT-3′), and CYA781r(b)
(5′-GACTACAGGGGTATCTAATCCCTTT-3′) [31]. PCR
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Figure 1: Map of Lake Karla, Greece, and sampling point (black dot). Black squares show points of inflowing water for reconstruction
purposes. Centre of the lake is at 39◦29′00′′ N, 22◦49′00′′ E.

included an initial denaturation step at 94◦C for 5 min,
which was followed by 40 cycles consisting of denaturation
at 94◦C for 30 s, annealing at 57◦C for 30 s, and elongation
at 72◦C for 3; a final 5 min elongation step at 72◦C was in-
cluded. Cycle optimization was performed as above which
resulted in 26 cycles for the March sample. In April 2010, no
sample was analysed for 16S rRNA gene diversity since the
vast majority of the observed morphospecies was observed
microscopically.

The PCR products from both the Eukarya- and Cyano-
bacteria-specific amplifications were visualized on a 1% aga-
rose gel under UV light, purified using the Montage puri-
fication kit (Millipore Inc, Molsheim, France). The purified
PCR products were ligated into the PCR XL TOPO Vec-
tor (Invitrogen-Life Technologies, Carlsbad CA, USA) and
transformed in electrocompetent Escherichia coli cells ac-
cording to the manufacturer’s specifications. For each clone
library a maximum of 151 clones were sequenced, each con-
taining an insert of ca. 1800/1600 or 680 bp for the Eukarya
and Cyanobacteria, respectively. These clones were grown
in liquid Luria-Bertani medium with kanamycin and their
plasmids were purified using the Nucleospin Plasmid Quick-
Pure kit (Macherey-Nagel GmbH and Co. KG, Düren, Ger-
many) for DNA sequencing. Sequence data were obtained
by capillary electrophoresis (Macrogen Inc., Seoul, Korea)
using the BigDye Terminator kit (Applied Biosystems-Life
Technologies, Carlsbad, CA, USA) with the set of primers
M13F (5′-GTAAAACGACGGCCAG-3′) and M13R (5′-CA-
GGAAACAGCTATGAC-3′). For the eukaryotic clones, inter-
mediate sequencing was performed using the primer 1179rE

(5′-CCCGTGTTGAGTCAAATT-3′) [32]. Each sequence
read was approximately 850 bp. For each individual clone,
forward, reverse, and intermediate—for the Eukarya—
reads were assembled, and then the assembled sequences
were checked for chimeras. The Pintail program (http://www
.bioinformatics-toolkit.org/Web-Pintail/, [33]) was used for
the detection of putative chimeric sequences. Chimeras were
discarded from the dataset. Using the multiple alignment
program CLUSTALW2 (http://www.ebi.ac.uk/Tools/clus-
talw2/index.html/) and based on 98% gene similarity as a
phylotype cutoff [17, 34], clones were grouped together and
considered members of the same phylotype. All sequences
were compared with the BLAST function (http://www.ncbi
.nlm.nih.gov/BLAST/) for the detection of closest relatives.
Sequence data were compiled using the MEGA4 software
[35] and aligned with sequences obtained from the GenBank
(http://www.ncbi.nlm.nih.gov/) database, using the ClustalX
aligning utility. Phylogenetic analyses were performed us-
ing the MEGA version 4 software [35] and the topology of
the tree was based on neighbour-joining according to Jukes-
Cantor. Bootstrapping under parsimony criteria was per-
formed with 1,000 replicates. Sequences of unique phylo-
types found in this study have GenBank accession numbers
JN090861-JN090912 and JN090913-JN090923 for the eukar-
yotes and Cyanobacteria, respectively.

Library clone coverage was calculated by the formula of
the Good’s C estimator [1 − (ni/N)] [36], where ni is the
number of phylotypes represented by only one clone and
N is the total number of clones examined in each library.
The number of predicted phylotypes for each clone library

http://www.bioinformatics-toolkit.org/Web-Pintail/
http://www.bioinformatics-toolkit.org/Web-Pintail/
http://www.ebi.ac.uk/Tools/clustalw2/index.html/
http://www.ebi.ac.uk/Tools/clustalw2/index.html/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/
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Figure 2: rRNA gene clone library coverage based on Good’s C estimator of the unicellular eukaryotes (Euk) and Cyanobacteria (Cya) from
Lake Karla, Greece. O/P = ratio of observed-to-predicted number of phylotypes.

was estimated after the abundance-based richness formula
SChao1 [37, 38].

3. Results and Discussion

We investigated the composition of plankton Cyanobacteria
and unicellular eukaryotes by combing molecular, 18S/16S
rRNA gene diversity, and microscopic analysis in Lake Karla
during two fish kill events which happened within the
first year of the lake’s partial reconstruction. The prevailing
abiotic factors (Table 1) indicated that dissolved oxygen
(5.6–5.8 mg L−1) was not limited, while the elevated salinity
(7.6–8.1 psu) was possibly attributed to the drainage of the
previous lake as well as the result of intensive agricultural
and livestock use for four decades. Irrigation in the absence
of leaching can increase soil salinity [39] and continued
application of livestock manure to agricultural land may
result in an accumulation of salt in soil [40].

The two eukaryotic clone libraries revealed that 45 phy-
lotypes occurred in March and only seven in April 2010.
However, in both cases, rarefaction curves (Figure 2) reached
saturation levels for both clone libraries according to the
Good’s C estimator, indicating that the majority of the
existing phylotypes were revealed. Based on the 18S rRNA
gene diversity (Figures 3 and 4), members of the Chloro-
phyta, Cercozoa, Heterokontophyta (stramenopiles), Alve-
olata, Fungi, Euglenophyta, Choanoflagellata, Haptophyta,
Mesomycetozoea, Katablepharidophyta, and Cryptophyta
(Figures 2 and 3) were found. Chlorophyta was the most
phylotype-rich group in both samplings, while the next most

Table 1: Prevailing physical and chemical parameters in L. Karla.

Temperature
(◦C)

Salinity (PSU)
Dissolved

oxygen (mg/L)
pH

17/03/2010 15.6 7.6 5.8 8.3

20/04/2010 17.2 8.1 5.6 8.0

abundant phylotypes belonged to the Cercozoa, Alveolata,
and stramenopiles.

The Cyanobacteria 16S rRNA gene clone library coverage
was satisfactory (Figure 2) and showed (Figure 5) that Cy-
anobacteria were represented by phylotypes related to the
Planktothrix group, the Chroococcales, and several algal plas-
tids. Along with these phylotypes, three Verrucomicro- bia-
like phylotypes were also retrieved, reinforcing the notion
that some Verrucomicrobia are associated with Cyanobac-
teria-dominated waters [41, 42].

Microscopic analysis (Figure 6) of phytoplankton gave a
slightly different picture of the phytoplankton dominance. In
March 2010, the diatom Cyclotella sp. dominated followed by
Prymnesium parvum (Haptophyta), Planktothrix cf. agardhii
(Cyanobacteria), Euglena sp. (Euglenophyta) and Anabaena
sp. (Cyanobacteria) and from Alveolata Pfiesteria cf. piscicida
(the latter consisted 0.4% of the high 46.5 mg L−1 total
biomass and for this it is not included in Figure 6). Most
of these microorganisms have been also found in April 2010
but in lower biomass. Nevertheless, the phylotypes of these
organisms have been found in the respective clone libraries
from both dates.
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Figure 3: (a) Phylogenetic tree of relationships of 18S rDNA (ca. 1800 bp) of the representative unique (grouped on ≥98% similarity)
eukaryotic clones (in bold) of the taxa Fungi, Choanoflagellata, Mesomycetozoea, Katablepharidophyta, and Cryptophyta, found in the
Lake Karla water column, March 2010, based on the neighbour-joining method as determined by distance Jukes-Cantor analysis. One
thousand bootstrap analyses (distance) were conducted. GenBank numbers are shown in parentheses. Numbers in parentheses indicate
the relative abundance in the clone library. Scale bar represents 2% estimated. (b) Phylogenetic tree of relationships of 18S rDNA (ca.
1800 bp) of the representative unique (grouped on ≥98% similarity) eukaryotic clones (in bold) of the taxa Chlorophyta, Haptophyta,
and Heterokontophyta (stramenopiles), found in the Lake Karla water column, March 2010, based on the neighbour-joining method as
determined by distance Jukes-Cantor analysis. One thousand bootstrap analyses (distance) were conducted. GenBank numbers are shown in
parentheses. Numbers in parentheses indicate the relative abundance in the clone library. Scale bar represents 2% estimated. (c) Phylogenetic
tree of relationships of 18S rDNA (ca. 1800 bp) of the representative unique (grouped on≥98% similarity) eukaryotic clones (in bold) of the
taxa Cercozoa, Alveolata and Euglenophyta, found in the Lake Karla water column, March 2010, based on the neighbour-joining method as
determined by distance Jukes-Cantor analysis. One thousand bootstrap analyses (distance) were conducted. GenBank numbers are shown
in parentheses. Numbers in parentheses indicate the relative abundance in the clone library. Scale bar represents 2% estimated.
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The slight discrepancy between the two approaches is
expected (e.g., [43]) as PCR-based phylotype abundance is
not quantitative but rather shows relative differences and can
also be biased towards some groups. On the other hand,
microscopic identification of unicellular phytoplankton can
be problematic for some organisms, especially for these with
complex/uncertain life cycles (e.g., [3, 25]). Thus, both ap-
proaches provide complementary rather redundant informa-
tion. The gains of using both methods have already been
depicted in limnological analysis (e.g., [42]) and especially
for the unicellular eukaryotes [4, 6, 43].

The occurrence of diverse Chlorophyta phylotypes in
both samplings (Figures 3 and 4), most of which were af-
filiated with well-characterized species, is related to the hy-
pertrophic conditions prevailing in L. Karla. Chlorophyta are
indicative of ecosystems receiving high nutrient loadings [1].
They have been found to dominate the clone library of a
hypertrophic, polluted and heavily modified lake in Greece
[3]. Some of these phylotypes, for example, Scenedesmus
species, may constitute an important fraction of the fresh-
water total phytoplankton biomass, particularly in nutrient-
rich ecosystems [44]. Scenedesmus species have capabilities
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Figure 5: Phylogenetic tree of relationships of 16S rDNA (ca. 660 bp) of the representative unique (grouped on ≥98% similarity)
Cyanobacterial clones (in bold), March 2010, based on the neighbour-joining method as determined by distance Jukes-Cantor analysis.
One thousand bootstrap analyses (distance) were conducted. GenBank numbers are shown in parentheses. Numbers in parentheses indicate
the relative abundance in the clone library. Scale bar represents 2% estimated.

of successful air dispersal and colonization of new aquatic
habitats [45]. The hypertrophic conditions of the newly
reconstructed L. Karla render its future rather erratic, since
the prediction of community and ecosystem dynamics is
decreased in eutrophic systems [46].

Apart from the Chlorophyta, other microorganisms in
this study are associated with eutrophic/hypertrophic con-
ditions. The found Euglenophyta-related phylotypes (Figure
3(c)) were affiliated with the genera Colacium, Euglena and

Strombomonas. Members of the Euglenophyta are known
to be abundant in highly eutrophic environments and on
sediments polluted with organic matter [47]. Euglenophyta
are considered biological indicators of organic pollution in
seawater [48]. Cryptophyta (Figure 3(a)) are also a group
forming blooms in eutrophic environments, yet their abun-
dance are low due to high grazing rates of their protozoan
predators [49]. Katablepharidophyta (Figure 3(a)) which
were formerly classified as a subgroup of Cryptophyta, are



10 The Scientific World Journal

Other

Anabaenopsis elenkinii

Cryptomonas spp.

Cyclotella sp.

Prymnesium parvum

Euglena sp.

Cyclotella sp.

Prymnesium parvum

Planktothrix cf. agardhii

Other

Planktothrix cf.

Euglena sp.

Anabaena sp.

March 2010

April 2010

agardhii

Figure 6: Relative biomass of the major taxa (90% dominance)
recognized with light microscopy in the Lake Karla water column.

now considered to be a sister group of Cryptophyta [50]
and could have similar environmental preferences. Choan-
oflagellata (Figure 3(a)) are epiphytic microorganisms de-
pending on the quality of available organic matter, and many
members of this group are adapted to using dissolved organic
matter and colloidal organic particles [51].

The Cercozoa-related phylotypes (Figure 3(c)) were re-
lated to uncultivated environmental clones. Some well-char-
acterized species such as Ebria tripartita, Cercomonas plas-
modialis, and species of the genus Protaspis were affiliated
with our retrieved sequences and fell in the Cercozoa taxo-
nomic group. These taxa were also identified microscopi-
cally. Phylotypes KRL01E17 and KRL01E4 formed a novel
clade in the Cercozoa, highly supported by the bootstrap
test. Cercozoa phylotypes have been recovered from many
different environments [52] but most of them are defined by
molecular data and display huge morphological and ecolog-
ical diversity [53]. They are mainly heterotrophs, including
bacterivorous and predaceous species that phagocytize the
cytoplasm of diatoms in marine ecosystems [54]. Cyst
formation is a widespread characteristic among the Cercozoa
[55], which probably allows their presence in anoxic sedi-
ments [56]. Members of the genus Protaspis, which was also
recognized microscopically, comprise common predators in
benthic marine ecosystems [55].

It is difficult to infer the trophic role of an organism by
its phylogenetic position; however, the fact that most of the
prementioned species/taxonomic groups have been detected
with light microscopy of fixed and fresh samples in high
numbers enforces the notion that these microorganisms are
metabolically active in L. Karla. Based on the basic principle
of ecology that the function of an ecosystem is defined by
its dominant taxa, it is reasonable to characterize L. Karla

on the basis of its plankton as a hypertrophic system. Such
systems tend to host various parasites as well as known
toxin producers. Increased nutrient loadings are known
to be associated with outbreaks of microparasitic species
and blooms of harmful microalgae can also be indirectly
promoted by nutrients inputs [57]. In the current study,
such harmful eukaryotes belonging to the Alveolata, Fungi,
Mesomycetozoea, and Haptophyta (Figures 3 and 4) along
with some toxin-producing Cyanobacteria (Figure 5), have
been identified by both molecular and microscopic analysis
representing a very interesting but not previously described
taxonomic and functional association [58].

Strict parasites are grouped in the Alveolata (Figures 3(c)
and 4), as suggested by [59]. Colpodella edax can parasitize on
Chlorophyta or Cryptophyta and can predate on protozoans
smaller in size sucking out their cell contents by means
of a rostrum [60]. Reference [59] associated this trophic
strategy (myzocytosis) with parasitism. The Fungi (Figures
3(a) and 4) are exclusively composed of saprotrophs, known
parasites of the phytoplankton community. Members of the
Chytridiomycota can regulate the population of diatoms
[59, 61]. Infection of certain phytoplankton species may
suppress its development, thus Fungi parasitism can be an
important factor controlling seasonal succession [61].

The taxonomic group of Mesomycetozoea (Figure 3(a))
includes facultative or obligate parasites [62]. Two orders
have been described in Mesomycetozoea whereof Dermo-
cystida consists exclusively of pathogenic microorganisms
infecting fish (Dermocystidium sp.) as well as mammals
and birds [62]. Members of this group have been found in
another degraded lake ecosystem [3].

Known toxin producers such as Prymnesium parvum
(Haptophyta) and Pfiesteria cf. piscicida (Alveolata) were also
observed both in the clone libraries and by microscopic
observations (Figures 3(b) and 6). To the best of our know-
ledge, it is the first time that these species occur simultane-
ously in the same ecosystem. P. parvum may form extensive
blooms with major biogeochemical and ecological impact
in brackish or inland waters [9, 63]. Massive kills of fish
and birds have been attributed to blooms of Prymnesium
[9, 25, 64]. Pfiesteria piscicida and P. vonstochii are parasites
with similar feeding strategy and life cycle [65]. Temperature
and salinity were suitable for the presence of Pfiesteria cf.
piscicida in the lake as the species is detected in salinity
ranging from 0.1–17.8 psu and temperature ranging from
3.2 to 25.5◦C [66]. Toxin production of the Pfiesteria species
increases in high nutrient loadings [13, 67, 68]. The genus
Peridinium belonging to Alveolata (Figures 3(b) and 4) also
includes species apparently related with toxin production
[69]. Finally, the harmful organisms community of L. Karla
hosts well-known toxin-producing Cyanobacteria [70] like
Planktothrix cf. agardhii, Anabaena sp., and Anabaenopsis
elenkinii (Figures 5 and 6).

During our samplings, salinity of L. Karla was elevated,
generating the hypothesis that in L. Karla the occurrence
of brackish or marine protists is feasible. Indeed, in both
samplings we found phylotypes that were closely related
to marine stramenopiles [71, 72]. Cyclotella meneghiniana
present in the clone library of March, which was found
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by microscopy dominant in March 2010 and was identified
as Cyclotella sp., is a common diatom species but tends to
become abundant in organic, inorganic, heavy metal, or
toxin-polluted environments [73]. C. meneghiniana has been
recorded as being predominant or in remarkable occurrences
in five polluted rivers and in four hypertrophic lakes [73].
Thalassiosira genus constitutes primarily of marine species
(about 180 described species), while at least 12 species
have been observed in freshwater ecosystems [74, 75]. The
genus Skeletonema significantly contributes to phytoplank-
ton blooms in many regions (e.g., [76–78]). In particular,
Skeletonema costatum is a species that flourishes in nutrient-
rich coastal waters throughout the world [79].

The presence of marine species within the stramenopiles
(Figure 3(b)) poses the issue of the origin of these species in
our study site. Karla is a newly reconstructed lake which is
still under constant change and new microscopic eukaryotes
colonize that ecosystem. Cyst formation is known for most
of the groups observed like Cercozoa [54], Haptophyta [80],
and Alveolata [81], so some microorganisms could have
remained in the marsh and in the soil that formerly was the
lakebed. The origin of the dominant freshwater microscopic
eukaryotes (C. meneghiniana, Scenedesmus species) can be
attributed to the inflow of River Pinios (the species were
observed in the River’s plankton, Moustaka-Gouni et al.
unpublished data). Air dispersal is another possible vector
for microorganisms. Chlorophyta have been found to be
dominant in aerobiological studies [82] and are successful
colonists in new aquatic habitats [45, 83].

In conclusion, our study showed that during two con-
secutive fish kill incidents which occurred in the recently
reconstructed Lake Karla, Greece, in a six-week interval,
the lake’s water represented a cocktail of potentially toxic,
Planktothrix cf. agardhii, Prymnesium parvum, and Pfiesteria
cf. piscicida and parasitic species including Dermocystidium
sp. Since the water temperature was far from the freezing
point and the dissolved oxygen concentration was not even
close to hypoxia, it is possible that the fish kills were caused
by some of the microorganisms we observed. Apart from this
risk, another problem for the ecosystem during the filling
process of Lake Karla is the occurrence of other plankton,
both freshwater and marine species, which are typical of
eutrophic-hypertrophic conditions.
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