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Abstract: This review outlines the methods for preparing carbon dots (CDs) from various natural
resources to select the process to produce CDs with the best biological application efficacy. The
oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm
matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis.
Recent research has found that CDs derived from organic carbon sources can treat cancer cells as
effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating
a natural carbon source inherit properties similar to the carbon source from which they are derived.
Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on
human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are
attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-
containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become
the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low
toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These
advantages make CDs attractive for large-scale clinical application, providing new technologies and
methods for disease occurrence, diagnosis, and treatment research.

Keywords: natural carbon nanodots; tumor-targeting probes; biosensing; cancer theranostic; toxic-
ity assessment

1. Introduction

The materials studied in the past were at the micrometer scale; however, in the past
few decades, nanometer-scale development has changed, which has become an essential
direction of scientific and technological development. Nano-sized materials are widely used
in various fields, such as medicine, biosensor development, energy research, and catalysis.
As fluorescent nanomaterials can emit light, they have the potential for application in
biomarking technology, such as semiconductor-based quantum dots containing cadmium
sulfide (CdS) or cadmium selenide (CdSe). However, most materials with a high quantum
yield (QY, φ) on the market include heavy metal components, which pose risks related to
their biological toxicity and cytotoxicity. Contamination may occur during the synthesis
process, and they are not adequately recycled after use; as such, the associated harm to the
environment should not be underestimated. The above shortcomings limit the application
range as semiconductor quantum dots.

In recent years, nanotechnology has been widely used in the field of biomedicine [1].
Generally, when the scale of a substance drops to the nanometer level, its physical and
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chemical properties also undergo tremendous changes, especially in terms of its optical
properties, providing an ideal development space for applications in the field of biomark-
ers and optical imaging of diseases [2]. Since their inception, carbon nanomaterials have
attracted attention from researchers in materials science and biomedicine, especially con-
sidering their excellent optical properties, facilitating their application in bioimaging,
biomarkers, and sensors [3]. Fluorescent carbon dots (CDs) are another new type of carbon
nanomaterial, with a typical particle size of about 10 nm. In addition to the advantages
related to the particle size and wavelength-dependent luminescence characterizing quan-
tum dots, fluorescent CDs also have high light stability and present no light scintillation
phenomena. Their surface is easily functionalized and modified, and the preparation
materials are widely available [4–6]. Wang et al. evaluated the toxicity of CDs and showed
that they do not cause any abnormalities or damage to tissues and organs [7]. Kang et al.
compared CDs, single-walled carbon tubes, and carbon dioxide [8]. After the cytotoxicities
of silicon and zinc oxide were determined, CDs showed the lowest toxicity compared with
the materials mentioned above. CDs’ unique optical properties and excellent biological
properties confer outstanding advantages and good development prospects in biomed-
ical optical imaging and tumor diagnosis. In addition, the ability to introduce multiple
functional groups onto the surface of CDs also provides possibilities for their modification.

Green manufacturing is a modern manufacturing model that comprehensively con-
siders the environmental impact and resource benefits. Due to the increasing awareness
of environmental protection, green manufacturing is becoming an increasingly important
process in all walks of life. The chemical synthesis of CDs can be similar to that produced
from various natural resources in the nanoscale process. For instance, Hsu et al. used coffee
grounds to synthesize CDs by calcining in 2012. The average particle size of the synthesized
CDs was about 5 nm, and they were successfully applied to biological imaging. Unlike the
previous need for complex processing procedures, a rapid and straightforward synthesis
method was developed. Later, Crista et al. used different organic compounds to synthesize
CDs, with an average particle size of about 2.6–7.9 nm, with many carboxyl and amine
groups, proving that the quantum yield varies with functional groups [9]. In 2013, Qu et al.
used citric acid and ethylenediamine to synthesize CDs, leading to a quantum yield as
high as 60.2% [10]. It can be speculated that naturally synthesized carbon nanomaterials
should have higher biocompatibility and lower toxicity. To date, many techniques for
synthesizing CDs from natural sources have been developed, including laser ablation, arc
discharge, electrochemistry, thermal decomposition, ultrasonic, and microwave methods,
among others. In particular, the thermal decomposition method is simple, safe, fast, and
effective. Research has found that carbon nanoparticles synthesized by this method have
good fluorescent performance, although the quantum yield is not high [11–13]. The optical
properties, stability, and biocompatibility are still powerful enough for use in bioapplica-
tions. This review introduces and simplifies the current carbon nanocomposite synthesis
techniques. We provide a brief introduction to fluorescent CDs, mainly reviewing their
structural characteristics, carbon source materials, preparation methods, luminescence
mechanism, and applications in the field of biomedicine. Obtaining CDs from natural re-
sources can produce nanomaterials that are more environmentally friendly. The considered
technique intends to use available (in a daily sense) materials to synthesize low-toxicity
fluorescent nanomaterials. The production process does not require the use of many pre-
cursor chemicals to build natural CDs. We hope that developing a safe and straightforward
production process can unite fluorescent materials and natural CDs and contribute to
understanding and exploring the application of nano-fluorescent materials.

2. Natural Carbon Nanodots

CDs are a new type of carbon nanomaterials with luminescence characteristics, quasi-
zero dimension, relatively simple preparation, abundant sources of raw materials, easy
surface functionalization, low toxicity, and good biocompatibility. The fluorescence wave-
length can be adjusted, and the two-photon absorption area is large. In various literature



Pharmaceutics 2021, 13, 1874 3 of 32

reports, CDs have also been referred to as carbon quantum dots (CQDs), carbon nanodots
(CNDs), Graphene quantum dots (GQDs), carbon nanocrystals, and so on. Due to their
excellent performance, CDs show promising potential application prospects in sensing,
biology, medicine, food, environment, catalysis, photoelectricity, energy, and so on. Re-
searchers have conducted extensive scientific studies and made significant progress [14].
CDs synthesis methods can be mainly divided into two categories: One uses physical or
chemical means to crack larger carbon structures (e.g., carbon nanotubes, graphite rods,
graphene, carbon powder) into tiny CDs; these top-down methods include arc discharge
methods, laser ablation methods, chemical oxidation methods, and so on. Small organic
molecule precursors, such as sugar, citric acid, and amino acids, are used as carbon sources
for these methods through functional group coupling to achieve polymerization to prepare
the CDs [15–17]. The second category comprises bottom-up methods, such as electrochemi-
cal, hydrothermal, pyrolysis, microwave-assisted, and ultrasonic methods [18].

Other methods, such as template methods, neutralization reaction exothermic meth-
ods, and micro-fluidized bed technology methods, can also be used to prepare carbon
dots [19–21]. The preparation of CDs well-embodies the concept of green chemistry, using
cheap, environmentally friendly carbon source precursors and natural renewable, cheap
raw materials as carbon sources. The resources for synthesizing CDs can be found in
the natural environment, such as eggs, grass, tea leaves, leaves, silk, silkworm pupae,
shrimp shells, grapefruit peel, peanut shells, coffee grounds, beer, and other materials.
CDs were discovered and debuted for the first time due to their fluorescent luminescence
characteristics. The luminescence mechanism of CDs has always been a critical research
direction for researchers, considering factors such as the quantum size effect, surface state,
functional group mechanisms, electron holes, and radiation. Their rearrangement theory
has been studied in various aspects. Although a complete theoretical explanation system
of the CDs fluorescence mechanism has not been formed, the absorption and fluorescence
of CDs exhibit properties such as photoluminescence, chemiluminescence, electrochemi-
luminescence, and luminescence. The conversion of photoluminescence, peroxidase-like
activity, non-toxicity, and other physical and chemical properties provides a solid and
feasible theoretical basis for further research.

The main application research directions of CDs can be divided into the following
categories (Figure 1):

1. Imaging: multicolor fluorescent images of mammalian cells, plant cells, and micro-
organisms, and imaging in mice;

2. Photocatalysis: the degradation of organic molecules, the reduction in CO2, and
water splitting;

3. Optoelectronic devices: LEDs and solar cells (sensitizer/co-sensitizer, transport layer,
electrolyte, and/or co-catalyst for counter electrode);

4. Sensors: food quality and safety, drug analysis, environmental pollution determi-
nation, immunoassay, and other fields, such as detecting heavy metal ions, anions,
pesticides, molecules, small organic molecules, and/or nucleic acids;

5. Electrocatalysis: mainly used in oxidation-reduction reactions, oxygen evolution
reactions, hydrogen evolution reactions, and reduction reactions for carbon dioxide,
and dual-function catalysts;

6. Biomedicine: photodynamic therapy, photosensitizers for cancer cell destruction, radio-
therapy, the tracing and delivery of drugs or genes, drug release, and anticancer drugs.
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Figure 1. The main application research directions of CDs. This review focuses on summarizing the
biological applications of CDs, such as cell imaging, photocatalysis, optoelectronic devices, molecules
sensors, electrocatalysis, and biomedicines, comprehensively. Finally, current challenges, research
emphasis, and prospects of this field are also discussed.

Most carbon sources derive from exhausted petroleum resources or non-environmentally
friendly manufacturing processes. Therefore, using recycled materials and bio-renewable
resources to develop high-performance CDs is a critical green environmental issue. In
recent years, the awareness of environmental protection has significantly risen, and, as
such, naturally derived CDs have gradually received more attention.

The main factor is that they are derived from renewable and sustainable biological
materials; for example, lignocellulose from dead wood, waste wood, rice straw, bagasse,
wheat straw, etc. Suppose that such a raw material can be used as a carbon resource and
converted into CDs with therapeutic and diagnostic value. In that case, we can imagine
the result will not overwhelm the demand of the food supply chain. Still, it can also
address waste disposal problems while applying the resource to produce high value-added
products such as electronics, energy, and biomedicine. Table 1 summarizes the existing
research on converting various natural resources into CDs, and the associated applications
and emission spectra are described in detail.
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Table 1. Natural CDs and their applications.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Lemon juice Solvothermal 440–600/575–650 28% In vivo bioimaging 100 µL (20 µg/mL) [22]

Taxus leaf Solvothermal 380–580/673 59% In vivo bioimaging 20 mg/kg [23]

Wedelia trilobata Solvothermal 370–470/483–520, 654 H2O: 10.52%
EtOH: 18.16%

Glutathione sensing and
cell imaging 50–400 µg/mL [24]

Leek Solvothermal 390–450; 325–385/440–500, 676; 440 DCD: 1.7%
SCD: 1.14%

Cell imaging, Cu2+ and
tetracycline sensing

0.5 mg/ mL [25]

Lemon juice Solvothermal 237, 279, 570–670/704 31% In vivo bioimaging 50 µL (30 µg/mL) [26]

Plum Solvothermal 328–418/450–550 0.54% Doxorubicin sensing 200 µL (1.0 mg/mL) [27]

F. nucleatum Hydrothermal 300–400/450–470 9.9% In vivo bioimaging and
Fe3+ sensing 10 µL/g (0.7 mg/mL) [28]

Green pepper Hydrothermal 310–380/400–460 8.7% Fe3+ sensing and
cell imaging

50 mg/mL [29]

Papaya Hydrothermal 350–490/445–530 H2O: 18.98%
EtOH: 18.39%

Fe3+ sensing and
cell imaging

100, 175 µL (0.94 mg/mL)
100, 175 µL (1.17 mg/mL) [30]

P. avium Hydrothermal 280–360/411–430 13% Fe3+ sensing and
cell imaging

0–40 µL [31]

Honey Hydrothermal 320–410/410–475 19.8% Fe3+ sensing and
cell imaging

40 µL (1 mg/mL) [32]

Sweet potato Hydrothermal 300–410/406–486 8.64% Fe3+ sensing and
cell imaging

0–100 µg/mL [33]

Black tea Hydrothermal 290–420/398–490 n/a Fe3+ sensing 990 µL (8 µg/mL) [34]

Fish-scale Hydrothermal 220–390/425–455 6.9% Fe3+ sensing 5 mg/mL [35]

Kiwi Hydrothermal 300–450/432–500 14%/19% Fe3+ sensing 0.5 mL [36]

Goose feather Hydrothermal 300–500/410–560 17.1% Fe3+ sensing 1 mL [37]

Cranberry Hydrothermal 300–500/410–540 10.85% Fe3+ sensing n/a [38]

Potato Hydrothermal 323/405 15% Fe3+ sensing n/a [39]
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Table 1. Cont.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Boswellia ovalifoliolata
bark Hydrothermal 275–440/400–535 10.2% Fe3+ sensing 20 µg/mL [40]

Rosin Hydrothermal 290–370/425–475 1.22% Fe3+ sensing and
cell imaging

1.25–160 µg/mL [41]

Coriander leaf Hydrothermal 320–480/400–510 6.48%
Fe3+ sensing,

cell imaging, and
antioxidant

0–1.0 mg/mL [42]

Mint leaf Hydrothermal 330–420/410–500 7.64% Fe3+ and ascorbic acid
sensing

n/a [43]

Leek Hydrothermal 300–460/449–534 n/a DDVP sensing and
cell imaging 0–300 mg/mL [44]

Peach gum Hydrothermal 330–450/327–505 28.46% Au3+ sensing and
cell imaging

0.5 mL (20 mg/mL) [45]

Tomato Hydrothermal 367/440 n/a
Carcinoembryonic

antigen and aptamer
sensing

1 µg/mL [46]

Bean pod and onion Hydrothermal 310–380/410–450 5.55% Ag1+ sensing and
cell imaging

200 µg/mL [47]

D. Salina Hydrothermal 310–400/400–475 8% Hg2+ and Cr4+ sensing
and cell imaging

0–75 µg/mL [48]

Chinese yam Hydrothermal 280–440/400–525 9.3% 6-mercaptopurine and
Hg2+ sensing n/a [49]

Pomelo peel Hydrothermal 365/444 6.9% Hg2+ sensing n/a [50]

Strawberry Hydrothermal 344–440/427–500 6.3% Hg2+ sensing 75 µL [51]

Cucumber Hydrothermal 418–518/514–571 3.25% Hg2+ sensing n/a [52]

Highland barley Hydrothermal 340–480/450–525 14.4% Hg2+ sensing 0.05 mg/mL [53]

Lemon peel Hydrothermal 300–540/441–605 14% Cr6+ sensing n/a [54]

Elaeagnus angustifolia Hydrothermal 310–410/290–450 16.8% Tartrazine sensing n/a [55]

Aloe Hydrothermal 370–480/443–525 10.37% Tartrazine sensing n/a [56]
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Table 1. Cont.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Coconut water Hydrothermal 340–450/430–500 2.8% Thiamine sensing and
cell imaging n/a [57]

Lentil Hydrothermal 310–390/400–460 10% Thioridazine
hydrochloride sensing 200 µL [58]

Pomegranate juice Hydrothermal 280–350/350–600 4.8% Cephalexin sensing 30 µL (1.0 mg/mL) [59]

Bamboo leaf Hydrothermal 365–525/440–540 7.1% Cu2+ sensing n/a [60]

Pipe tobacco Hydrothermal 310–430/425–515 3.2% Cu2+ sensing n/a [61]

Apple juice Hydrothermal 300–540/465–565 4.27% Cell imaging 10 µg/mL [62]

Hylocereus undatus Hydrothermal 275–380/400–450 n/a Cell imaging 0–50 µL/mL [63]

Saccharum officinarum Hydrothermal 300–540/450–550 5.76% Cell imaging 0–400 mg/mL [64]

Linseed Hydrothermal 350–450/503 61% Cell imaging 0.04 mg/mL [65]

Shiitake mushroom Hydrothermal 330–450/410–500 5.5% Cell imaging and pH
sensing 2 mg/mL [66]

Citrus Hydrothermal 360–500/460–554 1.1% Cell imaging 30 µL (1.0 mg/mL) [67]

Carrot Hydrothermal 360–520/442–565 5.16% Cell imaging 700 µg/mL [68]

Dwarf banana Hydrothermal 310–460/395–505 23% Cell imaging 0–200 µg/mL [69]

Bagasse Hydrothermal 330–510/450–550 12.3% Cell imaging and
biolabeling 100 µg/mL [70]

Cabbage Hydrothermal 276, 320/432–584 16.5% Cell imaging 100 µL (20–1000 µg/mL) [71]

Alkali lignin Hydrothermal 280–450/410–510 21% Cell imaging 0–100 µg/mL [72]

Shrimp Hydrothermal 360–530/430–550 54% Cell imaging and drug
delivery 10–500 µg/mL [73]

Wheat bran Hydrothermal 360–540/460–600 33.23% Cell imaging and drug
delivery 2 mg/mL [74]

Milk Hydrothermal 360/450 n/a Cell imaging and
anticancer drug delivery 100–600 µg/mL [75]
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Table 1. Cont.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Chlorhexidine gluconate Hydrothermal 360–560/480–600

s-CGCDs: 2.6%
m-CGCDs:

11.3%
l-CGCDs:

8.0%

Antibacterial and
cell imaging 0–150 µg/mL [76]

Turmeric leaf Hydrothermal 310–470/429–520 n/a Anti-bacterial 0–1.0 mg/mL [77]

Rosemary Hydrothermal 332–422/424–500 n/a Anti-bacterial 12 µg/mL [78]

Osmanthus leaf, tea leaf,
and milk vetch Hydrothermal 450/530 n/a Antibacterial and

cell imaging 0–1000 µg/mL [79]

Mushroom Hydrothermal 300–500/372–545 n/a
Anti-bacterial,

anti-cancer, and Pb2+

sensing
0–25 µg/mL [80]

Watermelon Hydrothermal 808/900–1200 0.4% Photothermal therapy
and cell imaging 0–20 mg/mL [81]

Hypocrella Bambusa Hydrothermal 540–590/600–650 n/a Photodynamic and
photothermal therapy 0–200 µg/mL [82]

Camellia japonica Hydrothermal 360/400–700 n/a Photodynamic and
photothermal therapy 45 µg/mL [83]

Ginger Hydrothermal 325–445/400–500 13.4% Cancer inhibition and
cell imaging 440 µg [84]

Garlic Hydrothermal 320–580/380–600 17.5% Cell imaging 0–1 mg/mL [85]

Starch Hydrothermal 340–500/452–545 21.7% Cell imaging 0.078–1.250 mg/mL [86]

Orange juice Hydrothermal 360–450/441–510 26% Cell imaging 0–200 µg/mL [87]

Bee pollen Hydrothermal 340–450/425–505

c-CDs:
8.9%

l-CDs:
6.1%

Cell imaging 0.5 mg/mL [88]

Gelatin Hydrothermal 300–500/430–580 31.6% Cell imaging 5.o mL (0.8 mg/mL) [89]

Papaya Hydrothermal 300–500/450–550 7.0% Cell imaging 16.2–500 µg/mL [90]
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Table 1. Cont.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Oatmeal Hydrothermal 280–460/410–504 37.4% Cell imaging 1 mg/mL [91]

Egg white Hydrothermal 290–450/415–540 61% Cell imaging 0.04 mg/mL [92]

Corn flour Hydrothermal 320–500/401–553 7.7% Cell imaging and Cu2+

sensing
0–640 µg/mL [93]

Humic acid Hydrothermal 320–520/440–540 5.7% Cell imaging 0.2 mg/mL [94]

Durian Hydrothermal 400–560/605 79% Cell imaging 0–500 µg/mL [95]

Gooseberry Hydrothermal 300–500/406–545 13.5% C. elegans bioimaging 50 µg/mL [96]

Rice husk Hydrothermal 310–340/360–440 8.1% Cell imaging 50 µg/mL [97]

Ayurvedic Chemical
ablation 430/518 n/a Cell imaging and

phototherapy 0.5 mg/mL [98]

Coffee bean shell Chemical
ablation 280–520/368–557 n/a In vivo bioimaging and

antioxidant 0–400 µg/mL [99]

Muskmelon Chemical
ablation 342, 415, 425/432, 515, 554 7.07%/26.9%/14.3% Hg2+ sensing and Cell

imaging
0.25–1.00 mg/mL [100]

Cow manure Chemical
ablation 320–450/400–530 0.65 Cell imaging 2.5 mg/mL [101]

Food waste Ultrasound
irradiation 330–405/400–470 2.85% Cell imaging 0–4 mg/mL [102]

Citrus limone juice Ultrasound
irradiation 230–450/325–538 12.1%/15% Cell imaging 2–100 mM [103]

Crab shell Ultrasound
irradiation 330–390/410–450 14.5% Cell imaging 0–1000 µg/mL [104]

Silkworm Microwave 300–400/350–550 46% Cell imaging 0–15 mg/mL [105]

Algal bloom Microwave 300–500/400–550 13% Cell imaging 10–1000 µg/mL [106]

Eggshell Microwave 275/450 14% Glutathione sensing n/a [107]

Flour Microwave 360–500/438–550 5.4% Hg2+ sensing 4 µg/mL [108]

Protein Microwave 300–420/380–480 14% Ag+ sensing n/a [109]
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Table 1. Cont.

Source Methods Applied Ex./Emit. (nm) QY (%) Application Applied
Concentration Ref.

Rose flower Microwave 330–410/390–435 13.45% Tetracycline sensing n/a [110]

Onion peel Microwave 300–470/520 n/a Skin wound healing 1.5 mg/mL [111]

Lychee Pyrolysis 365/440 10.6% Cell imaging 0–1000 µg/mL [112]

Coffee Pyrolysis 350–500/400–600 3.8% Cell imaging 1.2 mg/mL [113]

Urine Pyrolysis 275–625/450–650 14% Cell imaging 0.05–1.5 mg/mL [114]

Watermelon peel Pyrolysis 310–550/490–580 7.1% Cell imaging n/a [115]

Konjac flour Pyrolysis 400–700/575–760 13% Fe3+ and L-lysine
sensing and cell imaging

200 µg/mL [116]

Soybean and broccoli Pyrolysis 300–460/425–500 12.8% Cu2+ sensing and
cell imaging

0–300 µg/mL [117]

Borassus flabellifer Pyrolysis 300–400/350–403 11.73%/13.97%/10.83% Fe3+ sensing n/a [118]

Peanut shell Pyrolysis 262–402/413–500 10.58% Cu2+sensing n/a [119]

Assam tea Pyrolysis 340/446 n/a Dopamine and ascorbic
acid sensing n/a [120]

Peanut shell Pyrolysis 320–480/441–524 9.91% Cell imaging 0–1.2 mg/mL [121]

Roast duck Pyrolysis 300–400/400 10.53%/38.05% C. elegans bioimaging 15 mg/mL [122]

Artemisia argyi leaf Pyrolysis 360–440/450–480 n/a Antibacterial and
cell imaging 0–150 µg/mL [123]

Sugarcane bagasse Pyrolysis 405/550 n/a Drug delivery n/a [124]

Silkworm cocoon Pyrolysis 378/459 6.32% Anti-inflammatory 1.4 mg/mL; [125]

Lychee exocarp Pyrolysis 365/423 n/a Drug delivery and
cell imaging 0–15 µg/mL [126]

Bamboo leaf Pyrolysis 300–400/425–475 n/a Cell imaging and
anticancer drug delivery 0–400 µg/mL [127]

Walnut shell Pyrolysis 360–540/500–560 n/a Cell imaging 100 µg/mL [128]
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3. Toxicity Evaluation of Natural Carbon Nanodots

CDs can be derived from a wide range of synthetic raw materials, low-cost, stable
chemical properties, and non-toxic materials. The application of CDs in medicine and
pharmacy was recently extensively studied. One of the most promising nanomaterials is
carbon quantum dots (CQDs). For this purpose, the toxicity of CQDs was investigated
in cells and living systems (Table 2). In 2019, L. Janus used human dermal fibroblasts to
conduct a cytotoxicity study of N-doped chitosan-based CDs [129]. As shown in Figure 2,
after 48 h, the cell viability was recorded as 94%. CDs were synthesized by utilizing
non-toxic raw materials and removing unreactive residues during purification.
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First, we start with the selection of carbon source and the adjustment of dopants
that synthesize carbon dots, and at the same time list the test models of carbon dots.
Secondly, according to the selective response of the carbon dot to the biological models, the
corresponding toxicity was constructed, and the actual application was investigated. As
mentioned in Table 2, CQDs are usually doped with nitrogen to enhance their fluorescence
quantum yield and optical performance [130,131]. CDs doped with nitrogen (such as
carbon nanotubes, graphene, hollow spheres, etc.) have unique properties. They can inject
electrons into the carbon substrate to change the electron and transport characteristics such
as sensors, nanogenerators, etc., and are widely used and have become a research trend.
Moreover, green methods that utilize natural biomass/biowaste and micro-organisms
without introducing toxic chemicals as CDs precursors have been widely used to synthesize
CQDs [132].

Table 2. Toxicity evaluation methods for CDs.

Material Sources Concentration QY (%) Cells or Animal
Models Toxicity Ref.

Carbon
quantum dots

Medicinal
mulberry leaves 500 ug/mL 9.7

Human normal hepatic
stellate cell line LX-2

cells and human HCC
cell line HepG2 cells

Almost non-cytotoxic [133]

Carbon dots Mango peel 500 ug/L 8.5 A549 cells Remained above 90%
Low toxicity [134]

Nitrogen-
doped carbon
quantum dots

Watermelon
juice 300 ug/mL 10.6 HepG2 cells Remained 90%

Low cytotoxicity [135]
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Table 2. Cont.

Material Sources Concentration QY (%) Cells or Animal
Models Toxicity Ref.

N-doped
carbon

quantum dots

Bio-waste
lignin 100 mg/mL 8.1 Mouse macrophage

cells
Remained 96.8%

Low toxicity [136]

Carbon dots Roast duck 1 mg/mL 38.05 PC12 cells and C.
elegans

Remained 91.19%
Low toxicity [122]

Nitrogen-
doped carbon

dots

P. acidus fruit
juice 200 ug/mL 12.5 Cells and C. elegans Remained 93%

Low cytotoxicity [137]

Carbon
quantum dots

Salvia
hispanica L.

seeds
250 ug/mL 17.8 HEK293 cell line Remained 91.7%

Low toxicity [138]

Carbon dots Wheat straw 0.8 mg/mL 7.5 HeLa cells Negligible
cytotoxicity [139]

Carbon dots Malus floribunda
fruit 200 ug/mL 19 Cells and C. elegans Remained 93% and low

toxicity [140]

Carbon
quantum dots

Banana peel
waste 200 ug/mL 20 C. elegans Low toxicity [141]

Nitrogen and
sulfur

dual-doped
carbon

quantum dots

Fungus fibers 400 ug/mL 28.11 HepG2 cells Remained over 95%
Low cytotoxicity [142]

Carbon dots Sweet lemon
peel 500 ug/mL n/a MDA-MB231 cells

Remained above 75%
Low cytotoxicity [143]

Carbon dots Lychee waste 1.2 mg/mL 23.5 Skin melanoma cells Remained above 89%
Low cytotoxicity [144]

Nitrogen-
doped carbon
quantum dots

Citrus lemon 2 mg/mL 31 Human breast
adenocarcinoma cells

Remained above 88%
low cytotoxicity, [145]

Carbon dots
Daucus carota
subsp. sativus

roots
1 mg/mL 7.6 MCF-7 cells Remained above 95%

Low toxicity [146]

Carbon
nanodots

Custard apple
peel waste

biomass
100 ug/mL n/a HeLa and L929 cells Remained above 85%

Low toxicity [147]

Carbon
quantum dots Pineapple peel 1 mg/mL 42 HeLa and MCF-7 cells Remained 84%

Low toxicity [148]

N-carbon dots Jackfruit seeds 2 mg/mL 17.91 A549 cells Remained 96% and less
toxic [149]

S. Cong et al. [122] used PC12 cells for a cytotoxicity study of CQDs obtained from a
roast duck. After 36 h, the cell viability of PC12 was recorded as 91.19% at the concentration
of 1 mg/mL. In addition, using CDs at a concentration of 15 mg/mL for treating nematodes
did not lead to any death for 24 h. These results indicate the low toxicity of CDs, even after
a long period of exposure at high concentrations. In 2021, R. Atchudan et al. [141] used C.
elegans as an animal model for their toxicity evaluation of CQDs. As displayed in Figure 3,
the CQDs synthesized from banana peel were shown to have low nematode toxicity, even
at a high concentration of 200 ug/mL. These results can be explained by their utilizing
non-toxic raw materials without adding any passivates or additives.
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4. Theranostic Application of Natural Carbon Nanodots

Therefore, fluorescent materials are expected to be critical in biological applications.
CDs have become the focus of attention as new nanomaterials due to their excellent light
stability, fluorescence, good biocompatibility, and low toxicity. Surgery, radiotherapy, and
chemotherapy are inevitable treatments for most cancer patients, but these processes have
considerable side effects on the human body. However, fluorescent nanomaterials have the
advantages of high fluorescence stability, low biotoxicity, and good biocompatibility. The
most important thing is that they can be used to perform non-invasive targeted therapy on
human lesions, exploiting their characteristics to avoid harm to the human body caused by
the abovementioned treatments.

This paragraph covers the luminescence mechanism of CDs and their applications
in biology, focusing on applying natural CDs in biological diagnosis and treatment. We
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discuss the combination of CDs with specific targeting molecules to form CD-based probes
for detecting fluorescent signals. With the help of advanced optical imaging technology,
real-time dynamic monitoring of molecules in cells and organisms can be carried out, and
rapid immunofluorescence analysis of primary infectious disease sources can be carried
out. They can provide new technologies and methods for disease occurrence, diagnosis,
and treatment research [150].

4.1. Bioimaging

The discrete and diverse microstates of CDs lead to broad excitation and emission
ranges [151,152]. CDs have many unique properties, and their excellent photostability can
provide fluorescent information in a biological environment. The surface modification of
functional groups can make CDs more helpful in applying biomarkers (Table 3). In this
section, we compare bioimaging from cells to living animals, emphasizing the biological
diversity to prove the generalized safety of CDs. In cell imaging applications, CDs are
usually applied to HepG2 cells, HeLa cells, T24 cells, and so on [27,102,120,124]. In ad-
dition, normal cell lines have been used in trials, showing good cell compatibility [24,71].
Alam et al. treated HaCaT cells with cabbage-derived CDs and showed that, at 500 µg/mL
of CDs, the cell viability was 100%. Furthermore, CDs’ tunable excitation and emission
show promise for normal cell imaging under the irradiation of confocal fluorescence mi-
croscopy [71]. In a cell imaging experiment, Mehta et al. considered CDs originating from
apple juice and three fungal (M. tuberculosis, P. aeruginosa, and M. oryzae) sources. Cell
compatibility was shown by feeding more than 100 mg/mL of CDs. The germination of M.
oryzae spores also strongly indicated how CDs are good biocompatible nanocomposites at
high concentrations (i.e., 400 mg/mL). The fungi appeared red, green, and blue in confocal
laser microscopic images [62].

Kasibabu et al. provided pictures of Bacillus subtilis and Aspergillus aculeatus after
incubating with CDs derived from papaya juice for 1–6 h. The uptake ability was shown by
observing well-dispersed CDs in the cytoplasm of the fungi [90]. In vivo tests are critical
standards for investigating the potential and toxicity of CDs in animals. Atchudan et al.
explored colorful nitrogen-doped CDs (NCDs) derived from gooseberry by hydrothermal
methods in C. elegans imaging. C. elegans presented blue, green, and red in the whole body
when excited under 400 nm, 470 nm, and 550 nm. The cell viability was over 97% after
incubating C. elegans in NCDs for 24 h from 0 to 200 µg/mL (Figure 4a–f) [96]. Cong et al.
using roast duck as the source and pyrolyzing at 200 ◦C, 250 ◦C, and 300 ◦C, synthesized
single-fluorescence CDs. C. elegans were treated with 15 mg/mL of the CDs pyrolyzed at
300 ◦C (300-CDs) for 24 h. Compared with the wild-type group, the accumulation and up-
take of 300-CDs made the intestine appear blue under UV light exposure (Figure 4g–j) [122].
The murine model has also been widely used for determining the efficiency of CDs.

Ding et al. subcutaneously injected 100 µL of red-emitting CDs (R-CDs) into nude mice.
Strong fluorescence at 700 nm was detected under an excitation wavelength of 535 nm,
indicating the excellent penetration ability from tissues to skin. Furthermore, the mice were
still alive after 10 days (Figure 5a) [22]. Liu et al. investigated how the accumulation of
carbonized polymer dots (CPDs) varied with time. Most CPDs remained in the lung and
liver in the early period, with negligible dispersion to the brain and heart. The metabolism
of CPDs was confirmed after 4 h, as their fluorescence decreased sharply (Figure 5b) [23].
Ding et al. compared subcutaneous and intravenous injections of near-infrared emissive
CDs (NIR-CDs). Through the use of subcutaneous methods, NIR-CDs were distributed
into mouse skin and tissues. As for intravenously injected nude mice, fluorescence was
seen in the bladder, indicating NIR-CDs elimination via urine (Figure 5c) [26]. Liu et al.
tracked CDs (Fn-CDs) in Kunming mice for different periods.
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from [122], Elsevier, 2019.

They concluded that, with the assistance of PL, Fn-CDs show strong fluorescence
in the bladder and are eliminated after 7 h (Figure 5d) [28]. Therefore, CDs can perform
well as imaging nanoparticles and be adapted to different cell lines and living animals.
In addition, their multiple emission ranges, low toxicity, and small size confer their high
potential in future clinical applications.
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4.2. Sensors

Inorganic ions are critical for creatures, not only for enhancing the efficiency of catalytic
reactions in bio-systems but also for maintaining our fundamental life functions. However,
it is harmful to have too many metal cations, which are highly toxic to human beings.
Therefore, developing sensors for inorganic ions is a simple beneficial method to collate the
concentration and standard. Owing to the multiple PL of CDs, we can observe the intensity
variation and chelation quenching effect at other peaks in the PL image. For natural CDs
sensors, Fe3+, Hg2+, and Cu2+ are the most examined targets. Shen et al. assessed HepG2
and HeLa cell images after incubating with CDs and Fe3+.

According to the decreased blue fluorescence under 405 nm irradiated light, Fe3+ had a
practical quenching effect on the CDs (Figure 6a–d) [33]. Hu et al. prepared double–emitted
biomass nitrogen co-doped CDs (B-NCdots) for Cu2+ probing in T24 cells. Similarly, the
quenching effect was still available for Cu2+, causing a decreased intensity of blue and
green, as shown in Figure 6e,f [117]. Furthermore, bio-related molecules, including peptides
and drug-containing cells, are even more crucial. Some researchers designed chemically
sensitive CDs to assist in directly resolving the effects of molecules by monitoring the
decrease or increase in fluorescence. Liang et al. added 0.5 mM and 1 mM of glutathione
and 150 µg/mL rose-red fluorescence CDs (wCDs) in L929 cells, HeLa cells, and HepG2
cells. An intense quenching effect of glutathione was observed in L929 cells and HeLa cells.
However, no apparent variation occurred in HepG2 cells, which implies a distinct response
of wCDs to glutathione (GSH) in various cells (Figure 7) [24].
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Figure 6. Confocal images collected at 405 nm of (a) HeLa cell; (c) HepG2 cell incubated with CDs; adding Fe3+ and CDs to
(b) HeLa cell; and (d) HepG2 cell, adapted with permission from [33], Elsevier, 2017. Confocal laser images of T24 cells
excited at 405 nm and 488 nm, (e) treated with B-NCdots and (f) treated with Cu2+ and B-NCdots, adapted with permission
from [117], Springer Nature, 2019.

Wang et al. constructed a glutathione assay composed of eggshell-derived CDs and
Cu2+. The authors quantify without other indicators by plotting the fluorescence ratio
versus the glutathione concentration (Figure 8a) [107]. Wang et al. examined how the
fluorescence intensity of Shiitake mushroom-derived CDs (MCDs) varied with pH in
dexamethasone-induced HeLa cell apoptosis. At higher concentrations of dexamethasone,
the fluorescence under excitation at 405 nm and 488 nm was stronger, indicating a positive
relationship on MCDs with increasing intracellular acidification (Figure 8c–e) [66]. As for
drug probing, Zhu et al. analyzed doxorubicin (DOX), an anthracycline-based anticancer
medicine, by taking advantage of the PL of plum-based carbon quantum dots (PCQDs).
The dual-emitted property at the wavelengths of 491 nm and 591 nm provided a ratiometric
calibration curve as a function of the DOX concentration. They also confirmed the accuracy
by analyzing urine and serum samples (Figure 8b) [27]. CDs are suitable for detecting
different kinds of molecules and ions. The intensity changed at a single emission peak,
but the amplitude ratio of two emission peaks is valid for sensing experiments. Due to
their intrinsic properties, CDs show promise in the bio-sensing field and are applied to
cancer therapy.

4.3. Antibacterial Activity

Bacteria are well-known as the origins of various diseases. Recently, super bacteria
have appeared globally, which cause incurable illnesses due to the abuse of antibiotics.
In addition, people have come to pay more attention to the side effects of antibiotics and
wish to avoid unexpected risks. Nanomedicines, especially CDs, have been taken into
consideration as substitute methods. E. coli and S. aureus are the most common types of
bacteria for investigating how nanomedicines or antibiotics work to induce apoptosis in
bacteria. Wang et al. used CDs (ACDs) derived from Artemisia argyi leaves to treat E. coli
and S. aureus cultures. According to the SEM images (Figure 9a–h), it can be seen that
the cell walls of E. coli were destroyed; however, there was no distinct difference between
treated and untreated S. aureus. This means that ACDs are selective to Gram-negative
bacteria due to the structural properties of their cell walls [123]. Sun et al. synthesized
chlorhexidine gluconate CDs from large to small (l-CGCDs, m-CGCD, and s-CGCDs) to
determine the relationship between size and antibacterial activity. From the SEM imagery
(Figure 9i), it can be seen that the rigidity of cell walls was the strongest in the control
group and decreased from l- to s-CGCDs groups. These results revealed that CGCDs lead
to frustration in the walls and membranes of E. coli and S. aureus. Bacterial death can
be controlled by tuning the size of the CGCDs [76]. Ma et al. tested three kinds of CDs,
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including osmanthus leaves-derived CDs (OCDs), milk vetch-derived CDs (MCDs), and tea
leaves-derived CDs (TCDs). In Figure 10, 80% of E. coli and S. aureus were killed by OCDs at
a 1 mg/mL concentration, while 70% of bacteria survived in the MCDs group. In addition,
E. coli had stronger resistivity than S. aureus among these CDs. CDs are internalized into
bacteria. The outer surface of bacteria is attached to CDs leading to indirect proliferating
inhibition [153–155]. These results prove the natural sources are essential for the synthesis
of CDs [79]. As mentioned above, the tunability of raw material and diameters primarily
affect the antibacterial efficiency and selectivity of the resultant CDs. Treating the patient’s
wounds after surgery with CDs with editable properties can tremendously decrease the
associated risks.
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from [24], Royal Society of Chemistry, 2021.
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Figure 8. (a) Linear calibration of GSH probing, adapted with permission from [107], Royal Society of Chemistry, 2012.
(b) The fluorescence spectra of PCQDs with varying DOX concentrations, adapted with permission from [27], Elsevier, 2021.
(c) Confocal images of HeLa cells treated with MCDs, (d) adding 10 µM dexamethasone or (e) 100 µM dexamethasone,
at excitation wavelengths of (c1,d1,e1) 405 nm, (c2,d2,e2) 488 nm, and (c3,d3,e3) bright-field, adapted with permission
from [66], Royal Society of Chemistry, 2016.
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Figure 9. SEM images without ACDs of (a) E. coli, (e) S. aureus, and ACDs-treated (c) E. coli, and (g) S. aureus. Magnified
SEM images in the red square (b) E. coli, (f) S. aureus; and ACDs-treated (d) E. coli, and (h) S. aureus, adapted with permission
from [123], Royal Society of Chemistry, 2020. SEM images of (i) E. coli and S. aureus untreated and treated with 75 µg/mL
and 50 µg/mL of s-CGCDs, m-CGCDs, and l-CGCDs in Luria–Bertani broth medium for 6 h, adapted with permission
from [76], Elsevier, 2021.

4.4. Anticancer Activity

At present, cancers are prevalent within all age ranges. Cancers may be fatal due to
unexpected syndromes as well as the disorder of living functions. Furthermore, conven-
tional cancer therapies are long-term processes. Surgeries are straightforward methods, but
recovery typically poses a challenge for patients. Even though chemotherapy seems safer,
the currently used drugs lack selectivity and affinities to specific tumors. Some targeted
therapies have been developed in recent years. However, they are expensive and only
valid for certain types of cancers. CDs can provide great theranostic nanomedicines in
cancer treatments. Scientists have attempted to eliminate cancer cells through photother-
mal therapy (PTT) [81,82] and photodynamic therapy (PDT) [83,87,129] to fulfill tumor
targeting. Li et al. tested NIR-II emitted (900–1200 nm) CDs (CDs), adapted for 808 nm
laser photothermal therapy. According to the in vivo test (Figure 11), the temperature
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increased to 50 ◦C in the intratumoral environment after intravenous injection. Tumor
inhibition and volume shrinkage were observed within 6 days, compared with the PBS
group. No detectable damage to tissues or weight loss after the treatment confirmed the
high biocompatibility of the CDs [156]. Jia et al. prepared red-light absorbing (610 nm) CDs
from Hypocrella Bambusa (HBCUs). They found that HBCDs highly generate 1O2 under 635
laser irradiation. The reactive radicals induced apoptosis of cancer cells, which is helpful
in the hypoxia tumor environment.

As shown in an in vivo experiment (Figure 12), due to the synergistic effect of PDT
and PTT, the temperature at the tumor site increased to 56.4 ◦C in 10 min. Secondly, a good
tumor inhibition effect was found after 14 days of therapy, even though the tumor could not
be depleted thoroughly. No harmful phenomena were observed in other organs, indicating
the safety of the treatment [82]. Xue et al. conducted modification with polyethylene glycol
diamine (H2N-PEG-NH2), chlorin e6 (Ce6), and transferrin (Tf) on natural biomass CDs
(NBCDs) to increase the targeting efficacy.
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The resulting products, NBCD-PEG-Ce6-Tf, were shown to remain within the tumor
environment for 120 h using a real-time NIR fluorescence image (Figure 13a). The mice
were irradiated daily under a 650 nm laser to generate 1O2. During the 21-day process,
tumor growth was stopped, and the tumors were ablated, indicating no conflict between
the NBCDs and modifications (Figure 13b,c) [126]. Li et al. synthesized reactive oxygen
species (ROS)-generating CDs from ginger. The CDs were harvested from HepG2 tumor
inoculating mice; next, the tumor regressions were observed in the C-dot (440 µg) treated
group; the tumor growth was prominently delayed, which attained only 3.7 ± 0.2 mg.
In contrast, tumors in the PBS group grew up to 104 mg [84]. Boobalan et al. added
30 µg/mL of CDs into P. aeruginosa. They observed the destruction of cell walls due to ROS
attack, in agreement with the results of ROS fluorescence detection using a fluorogenic dye,
2′,7′-dichlorofluorescein diacetate (DCFDA) (Figure 14a–c). MDA-MB-231 breast cancer
cells were treated with CDs (3.34 µg/mL). Cell apoptosis staining, acridine orange and
ethidium bromide (AO/EtBr), and nuclear staining (Hoechst 33342) were applied to the
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cells. The presence of orange colors and blue dots indicate cell fragmentation due to CDs
(Figure 14d–g) [80]. CDs have a powerful potential in the anticancer field. Their flexibility
is because the CDs are modified with various molecules, which can improve the uptake by
tumor cells and increase the tumor-killing ability of the nanohybrids.
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Table 3. Modifications of CDs.

CDs Type Modification Goal Ref.

Carbon quantum dots Ethylene diamine Nucleoli selection [101]

Nitrogen-doped carbon dots Folic acid Cancer cell targeting [104]

Carbon dots Polyethylene glycol diamine; chlorin e6;
transferrin

Photosensitizing and cancer
cell targeting

Carbon dots 4-carboxy-benzyl boronic acid Tumor cell targeting [127]
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5. Discussion and Conclusions

Carbon nanomaterials have been widely used in various scientific, engineering, and
commercial fields, due to their high catalytic activity and good stability. Among them,
the new “zero-dimensional” carbon nanomaterials, CDs, have unique optical properties,
such as stable fluorescence signals, no light scintillation, adjustable excitation and emission
wavelength, and low biological toxicity and biocompatibility. These advantages gradually
led to the popularity of researching carbon nanomaterials, widely used in bioimaging,
natural cell labeling, sensors, photocatalysis, solar cells, and light-emitting elements. This
article mainly reviewed the different synthesis methods of CDs (including top-down and
bottom-up methods) and their applications. Their luminescence properties can be adjusted
through surface modification. They have been applied in many fields and have great
potential. The function of CDs can also be modified by using various surface functional
groups, allowing them to act, for example, as detectors and cleaners for different heavy
metal ions or by doping with other ions. By controlling the surface light energy groups,
they can be better used in the required fields.

Green chemistry is a discipline that has gradually received attention in recent years.
The core concept focuses on the development of environmentally friendly chemical tech-
nologies. At the technical level, chemical technologies and methods are applied to reduce
or eliminate the use and generation of hazardous substances in chemical synthesis and
analysis, and recovery and reuse technologies are combined with increasing energy and
material use efficiency. Green chemistry and nanotechnology have become emerging
technology research and development directions in recent years. With the deepening of
the concept of sustainability, combining the advantages of the two and accelerating the
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expansion of their research and development applications has become a top priority. Lab-
oratories are committed to determining the complementary relationships between green
chemistry practices and nanotechnology and applying them to materials development,
chemical analysis, energy, environmental, and other related fields. The preparation of CDs
well embodies the concept of green chemistry. Cheap, environmentally friendly carbon
source precursors and natural renewable raw materials as carbon sources for preparation,
such as eggs, grass, leaves, silk, coffee grounds, beer, and other materials, have become
carbon sources for the synthesis of CDs.

Excellent performance and a unique structure provide natural CDs unlimited charm
and various changes. Natural CDs, combined with biological and pharmaceutical molecules
of interest through surface modification, seem to be an emerging platform for imaging
probes that are both diagnostic and therapeutic. The next generation of nano-molecular
probes integrates a variety of fluorescent dyes, drugs, and multifunctional nanomaterials
into a single nanoprobe, providing superior signal contrast, controllable transmission, and
targeted drug delivery capabilities. However, before this kind of multifunctional imaging
probe was used in diagnosis and treatment, there were still many challenges, such as
long-term safety, risk-benefit, biocompatibility, and biodistribution, to be evaluated. In the
future, we need to solve several critical scientific problems in the research of natural CDs.
First of all, the uncertain chemical groups on the surface indicate that natural-synthetic
CDs are a kind of unsure material. It means the method of natural mass production of
high-quality CDs is still a big challenge. Secondly, due to the different sources of naturally
transformed CDs, the luminescence centers of CDs are also dissimilar. Finding a suitable
luminescence position is also essential to research content. Third, categorizing different
natural CDs and conducting a systematic comparative analysis will be beneficial research
methods. Nanotoxicology is the emerging study of potential adverse effects derived from
the interaction between nanomaterials and biological systems, and it is bound to become
more critical. To further clarify its physical toxicity and adjust the size and structure ac-
cordingly, it will significantly improve CDs’ application performance while expanding a
more comprehensive range of applications. The scale and complexity of biomedical issues
have always been an enormous challenge for researchers. It is more necessary to conduct
cross-disciplinary research in chemistry, physics, materials, biomedical engineering, toxi-
cology, public health, and clinical medicine. As more research on natural CDs continues to
develop, the topic will achieve breakthroughs and progress in a short period.
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AO/EtBr Acridine orange and ethidium bromide
B-NCdots Biomass nitrogen co-doped carbon dots
c-CDs Camellia bee pollen carbon dots
CDs Carbon dots
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CNDs Carbon Nanodots
CPDs Carbonized polymer dots
CQDs Carbon quantum dots
CdSe Cadmium selenide
CdS Cadmium sulfide
ACDs CDs derived from Artemisia argyi leaves
Ce6 Chlorin e6
l-CGCDs Large chlorhexidine gluconate carbon dots
m-CGCDs Medium chlorhexidine gluconate carbon dots
s-CGCDs Small chlorhexidine gluconate carbon dots
DCFDA 2′,7′-dichlorofluorescein diacetate
DOX Doxorubicin
DCDs Dual emission carbon dots
EtOH Ethanol
Fn-CDs F. nucleatum-carbon dots
HBCUs Hypocrella Bambusa
HBCDs Hypocrella Bambusa CDs
GSH Glutathione
GQDs Graphene quantum dots
l-CDs Lotus bee pollen carbon dots
MCDs Milk vetch-derived CDs
NCDs Nitrogen-doped CDs
NBCDs Natural biomass CDs
NIR-CDs Near-infrared emissive CDs
PDT Photodynamic therapy
PL Photoluminescence
PTT Photothermal therapy
PCQDs Plum-based carbon quantum dots
H2N-PEG-NH2 Polyethylene glycol diamine
OCDs Osmanthus leaves-derived CDs
QY, φ Quantum yield
ROS Reactive oxygen species
R-CDs Red-emitting CDs
wCDs Rose-red fluorescence CDs
SCDs Single-emission carbon dots
MCDs Shiitake mushroom derived CDs
TCDs Tea leaves-derived CDs
Tf Transferrin
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