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Abstract

Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the
information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes
individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to
remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the
links of a dynamical contact network whose reshaping may be biased based on each individual’s health status. We adopt
some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on
the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease
spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might
anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting
network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness.
We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the
population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the
infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the
average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a
disease to spread to the entire population (in case recovery or immunity is impossible).
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Introduction

During recent years it has become clear that disease spreading

[1–3] transcends geography: the contact process is no longer

restricted to the immediate geographical neighbors, but exhibits

the stereotypical small-world phenomenon with inescapable

impact [4–7]. The SARS and, at the time of writing, the influenza

A outbreaks provide arresting examples of this effect in a biological

context, although the spread of computer viruses constitutes

perhaps the most obvious manifestation of such a property. Recent

advances in the science of networks [2] also brought the impact of

disease interactions beyond geography to the spotlight, providing

compelling evidence of the role that the networks of contacts

between individuals or computers play in the dynamics of

infectious diseases [3,5]. In the majority of cases in which complex

networks of disease spreading have been considered [7], they were

taken to be static entities. However, social networks are

intrinsically dynamical entities. In fact, modern societies have

developed rapid means of information dissemination, both at local

and at centralized levels, which one naturally expects to alter

individuals’ response to vaccination policies, their behavior with

respect to other individuals and their perception of likelihood and

risk of infection [8]. In some cases one may even witness the

adoption of centralized measures, such as travel restrictions [9,10]

or the imposition of quarantine spanning parts of the population

[11], which may induce abrupt dynamical features onto the

structure of the contact network. Furthermore, individual

knowledge (based on local information) about the health status

of acquaintances, partners, relatives, etc., combined with individ-

ual preventive strategies [12–20] such as condoms, vaccination,

the use of face masks or prophylactic drugs, avoidance of visiting

specific web-pages, staying away from public places, etc., may also

lead to bias in the organization of disease paths along dynamical

networks.

As a result, quite a few studies have recently investigated the

impact of dynamical networks on disease progression, as well as

the influence of the way information (disease awareness) flows in

parallel with disease progression and the role of noise in disease

dynamics [21–33]. At par with these models, our model studies

disease dynamics in a finite and constant population of individuals.

Contrary to current models though (see Discussion Section for

more details), our dynamical contact structure allows for a variable

number of overall links between individuals, which in turn

depends on the overall incidence of disease in the population.

This increased complexity of the model, however, will allow us to

describe analytically disease dynamics in finite populations.

Infection occurs along the links of a contact network whose

structure may change based on each individual’s health status and
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the availability of information regarding the health status of others.

We assume the existence of some form of (unsupervised) local

information about the health status of social contacts, depending

on which individuals may be more or less effective in avoiding

contact with those infected while remaining in touch with the

healthy. We investigate some of the most widely used models of

disease spreading, such as the popular Susceptible-Infected-

Susceptible (SIS) model [1,3], the Susceptible-Infected (SI) model

[1] used to study, e.g., AIDS [1,34], and the Susceptible-Infected-

Recovered (SIR) model [1,35], more appropriate to model, for

instance, single season flu outbreaks [1] or computer virus

spreading [5]. We provide analytical results which show that, on

finite adaptive networks, the effective infectiousness of a disease

depends on i) the size of the population, ii) the number of infected

and ultimately iii) on the efficiency of local information spreading.

These results, obtained under the assumption that network

reshaping occurs much faster than disease spreading, are shown

(numerically) to remain valid for a much wider range of time

scales. When combined with the analytical results already known

for static networks [3], which describe well the opposite limit in

which the network dynamics is slow compared to disease

dynamics, we demonstrate that one can describe analytically most

of the time scale spectra. We further show how availability of

information may either drastically reduce the time required to

eradicate a disease (when recovery from the disease is possible), or

drastically increase the time after which the entire population

becomes infected (when the disease cannot be cured). Finally, we

discuss the implications of assuming that individuals exhibit

diverse response profiles to available information [36–38].

Let us start by introducing the well established SIS model [1,3],

whereby individuals can be in one of two epidemiological states:

Infected (I) or Susceptible (S). Individuals occupy the nodes of a

graph, whereas the links of the graph define who interacts with

whom. As usual, we define a transmission probability l and a

recovery probability d. We assume a population of finite and

constant size N, but with variable number of links [39,40]. Links

are established and removed at rates which also depend on the

health status of the individuals connected: Links of different types

— SS, SI and II — will tend to last differently. The SIR model, on

the other hand, requires the introduction of a new epidemiological

state — Recovered (or Removed, R) — representing individuals

who, once recovered from the infection, acquire immunity. In

SIR, the same parameters l and d defined above remain finite,

but now we have three new kinds of links — SR, RI and RR.

Finally, the SI model can be viewed as the limit of the SIS model

when d~0, representing diseases from which recovery is

impossible.

Suppose all individuals seek to establish links at the same rate c.

For simplicity, we assume that new links are established and

removed randomly, a feature which may not always apply in real

cases, where the limited social horizon of individuals or the nature

of their social ties may constrain part of their neighborhood

structure (see Discussion). Let us further assume that links may be

broken off at different rates, based on the nature of the links and

the information available about the neighbors: Let us denote these

rates by bpq for links of type pq (p,q [ S,I ,Rf g). This allows us to

write down a system of ordinary differential equations [39,40] for

the time evolution of the number of links of each type. These and

all other technical details of the model are presented in the

Methods section. In the steady state of the linking dynamics, the

number of links of each type is given by L�pq~wpqLM
pq , where

wpq~c
�

czbpq

� �
are the fractions of active pq-links, compared to

the maximum possible number of links LM
pq , for a given number of

S, I and R. In the absence of disease only SS links exist, and hence

wSS determines the average connectivity of the network under

disease free conditions, characterizing the type of the population

under study. In the presence of I individuals, to the extent that S

individuals manage to avoid contact with I, they succeed in

escaping infection. Hence, the intuition is clear: Reshaping of the

contact network based on available information of the health

status of individuals will contribute to inhibit disease progression.

In the extreme limit of perfect information and individual capacity

to immediately break up contacts with infected, we are isolating all

infected, thus containing disease progression. Our goal here,

however, is to understand how and in which way partial individual

information affects the overall disease dynamics.

Often individuals prevent infection by avoiding unprotected

contact with infected once they know the state of their contacts or

are aware of the potential risks of such infection [12–20,28,32]:

such is the case of many sexually transmitted diseases [12,41–43],

for example, and, more recently, the voluntary use of face masks

and the associated campaigns adopted by local authorities in

response to the SARS outbreak [11,13–15]. In the present study,

we assume that individuals are not centrally supervised or

informed: Individual decision is based on available local

information about the health state of one’s contacts. To the extent

that such information spreads quickly and contacts are not too

frequent, one can study analytically the limit in which the network

dynamics — resulting from adaptation to the flow of local

information — is much faster than disease dynamics. In this case,

one may separate the time scales between network adaptation and

contact (disease) dynamics: The network has time to reach a steady

state before the next contact takes place. Consequently, the

probability of having an infected neighbor is modified by a

neighborhood structure which will change in time depending on

the impact of the disease in the population and the overall

efficiency of local information flow. It will be shown that a quickly

adapting community induces profound changes in the dynamics of

disease spreading, irrespective of the underlying epidemic model.

Furthermore, we will demonstrate numerically that the two

limiting cases amenable to analytic treatment — static networks

on the one hand, and quickly adapting networks on the other hand

Author Summary

During the past decade, we learned that the structure of
contact networks plays a crucial role in the spread of
diseases. Most theoretical studies addressing this issue
assume that contact networks are static entities, whereas
the actual disease paths continuously reshape based on
local social dynamics. This work aims to achieve a better
understanding of disease spreading in populations char-
acterized by a dynamically structured contact network
where contacts appear and disappear over time. The
network dynamics are entangled with the disease dynam-
ics, as individuals may have access to local information that
makes them aware of both the existence of the disease
and the health status of their contacts, allowing them to
minimize exposure to infection. Here we show the
equivalence between disease propagation in an adaptive
contact network and that in a well-mixed population with
a rescaled transmission probability, which depends also on
the fraction of infected in the population. Thus, one can
emulate the effect of an adaptive contact network with a
simple correction of the transmission probability. This
result is obtained in the limit where network adaptation
proceeds much faster than disease spreading, but we
demonstrate that it also holds for a much wider range of
scenarios.

Epidemiology in the Information Age
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— remain valid for a wide range of intermediate time scales,

strengthening the power of the analytical predictions derived here.

Results

The amount of information available translates into differences

mostly between the break-up rates of links that may involve a

potential risk for further infection (bSI, bIR, bII), and those that do

not (bSS, bSR, bRR). Therefore, we consider one particular rate bI for

links involving infected individuals (bI:bSI~bIR~bII ), and

another one, bH, for links connecting healthy individuals

(bH:bSS~bSR~bRR). In general, one expects bI to be maximal

when each individual has perfect information about the state of

her neighbors and to be (minimal and) equal to bH when no

information is available, turning the ratio between these two rates

into a quantitative measure of the amount of information available

or the efficiency of information use. Note that we reduce the model

to two break-up rates in order to facilitate the discussion of the

results. The general principles and conclusions remain valid when

all break-up rates are incorporated explicitly. It is worth noticing

that three out of these six rates are of particular importance for the

overall disease dynamics: bSS, bSR and bSI. These three rates,

combined with the rate c of creating new links, define the fraction

of active SS, SR and SI links, and subsequent correlations between

individuals [44], and therefore determine the probability for a

susceptible to become infected (see Methods). This probability will

increase when considering higher values of c (assuming bI.bH). In

other words, when individuals create new links more often,

therefore increasing the likelihood of establishing connections to

infected individuals (when present), they need to be better

informed about the health state of their contacts in order to

escape infection. In the fast linking limit, the other three break-up

rates (bII, bIR and bRR) influence disease progression since they

contribute to altering the average degree of the network.

In the Methods, we show that disease spreading in a quickly

adapting network can be studied as if it took place in a well-mixed

population with same average degree SkT as the original network

and transmission probability lA. Since the lifetime of a link

depends on its type, the average degree SkT of the network

depends on the number of infected in the population, and hence becomes

frequency (and time) dependent. Similarly, fast linking dynamics

leads to a rescaling of the transmission probability, l?lA~g{1l,

with g depending on the particular model of disease spreading. In

the SIR model, g is given by

g~
wSS

wSI

z 1{
wSS

wSI

� �
i

N{1
z

wSR{wSS

wSI

� �
r

N{1
,

where i denotes the number of infected individuals in the

population and r the number of recovered (immune). The

rescaling parameter g for the SI and SIS models is the same,

but with r~0. Note that g scales linearly with the frequency of

infected in the population, decreasing the more individuals get

infected (assuming wSS=wSIw1), and depends implicitly (via the

ratio wSS=wSI ) on the amount of information available.

We would like to stress the distinction between the description

of the disease dynamics at the local level and that at the population

level. Strictly speaking, a dynamical network does not change the

disease dynamics at the local level, meaning that infected

individuals pass the disease to their neighbors with probability

intrinsic to the disease itself. At the population level, on the other

hand, disease progression proceeds as if the infectiousness of the

disease effectively changes, as a result of the network dynamics.

Hence, analyzing an adaptive network scenario at a population

level can be achieved via a correction on the transmission

probability, keeping the mathematically more attractive well-

mixed scenario. In this sense, from a well-mixed perspective,

dynamical networks contribute to change the effective infectious-

ness of the disease, which becomes frequency and information

dependent.

One can define a gradient of infection G, which measures the

tendency of the disease to either expand or shrink in a population

with given configuration (defined by the number of individuals in

each of the states S, I and R). For the SIS model, eradication of the

disease is favored (G(i),0), irrespective of the fraction of infected,

whenever RA
0 :

l
d NwSIv1 (see Eq. 35 in Text S1), indicating how

the presence of information (bH,bI) changes the basic reproductive

ratio. This is illustrated in the upper panel of Figure 1, which

depicts G for different values of bI (assuming bHƒbI ) and a fixed

transmission probability l. The corresponding quasi-stationary

distributions, which characterize the relative time the population

spends in each configuration (and defined in Methods), are shown

in the lower panel and clearly reflect the sign of G. Whenever G(i)

is positive (negative), the dynamics will act to increase (decrease),

on average, the number of infected. Figure 1 indicates how the

availability of local yet reliable information hinders disease

progression: For bI~0:75 the interior root of G(i) disappears,

making disease expansion unlikely in any configuration of the

population.

The analysis of the gradient of infection of the SIS model has

the natural advantage of showing the effect of adaptive networks in

a one-dimensional simplex (the fraction of infected). Yet, an

analogous result holds for the SIR model. The gradient of

infection now also depends on the number of recovered (r)

individuals in the population and, once again, allows us to identify

when disease expansion will be favored or not. Figure 2 gives a

complete picture of the gradient of infection, using the appropriate

simplex structure in which all points satisfy the relation i+r+s = N.

The dashed red line indicates where G i,rð Þ~0 in case individuals

do not have any information about the health status of their

contacts, i.e., links that involve infected individuals disappear at

the same rate as those that do not (bI~bH ). Disease expansion is

more likely than disease contraction (G i,rð Þw0) when the

population is in a configuration above the line, and less likely

otherwise. Similarly, the solid blue line indicates where G i,rð Þ~0
whenever individuals share information about their health status,

and use it to avoid contact with infected. Once again, the

availability of information modifies the disease dynamics,

inhibiting disease progression for a broad range of configurations.

Up to now we have assumed that the network dynamics

proceeds much faster than disease spreading. This may not

always be the case, and hence it is important to assess the domain

of validity of this limit. In the following, we discuss the particular

case of the SIS model. An analogous study for both SIR and SI
yields qualitatively similar results, as discussed in the Text S1.

Figure 3 shows the average SIT of the quasi-stationary dis-

tributions (circles) obtained via computer simulations (see

Methods for details) as a function of the relative time scale t of

network update (taking as unit time scale that associated with

disease dynamics). Whenever t??, we can characterize the

disease dynamics analytically, assuming a well-mixed population

(complete graph), whereas for t?0 we recover the analytical

results obtained in the fast linking limit. At intermediate time

scales, Figure 3 shows that as long as t is smaller than 10, network

dynamics contributes to inhibit disease spreading by effectively

increasing the critical spreading rate. Overall, the validity of the

time scale separation extends well beyond the limits one might

anticipate based solely on the time separation ansatz. As long as

Epidemiology in the Information Age
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the time scale for network update is smaller than the one for

disease spreading (tv1), the analytical prediction for the limit

t?0, indicated by the lower dashed line in Figure 3, remains

valid. The analytical result in the extreme opposite limit (t??),

indicated by the upper dashed line in Figure 3, holds as long as

tw105. Moreover, it is noteworthy that the network dynamics

influences the disease dynamics both by reducing the frequency of

interactions between susceptible and infected, but also by reducing the

average degree of the network. These complementary effects are

disentangled for intermediate regimes, in which the network

dynamics is too slow to warrant sustained protection of

susceptible individuals from contacts with infected, despite

managing to reduce the average degree (shown by crosses). In

fact, for tw10 the disease dynamics is mostly controlled by the

average degree, as shown by the solid lines in Figure 3. Here, the

average stationary distribution was determined by replacing, in

the analytic expression for static networks, SkT by the time-

dependent average connectivity SkT� computed numerically.

Note that the specific behavior of SkT� shown in Figure 3 results

from the frequency dependence of SkT. When bIwbH , the

network will reshape into a configuration with smaller SkT as soon

as the disease expansion occurs. For tv1, SkT� reflects the

lifetime of SS links, as there are hardly any infected in the

population. For 100
vtv103, the network dynamics proceeds fast

enough to reduce SkT, but too slowly to reach its full potential in

hindering disease progression. Given the higher fraction of

infected, and the fact that SI and II links have a shorter lifetime

than SS links, the average degree drops when increasing t from 1

to 103. Any further increase in t leads to a higher average degree,

as the network approaches its static limit.

Contrary to the deterministic SIS model, the stochastic nature

of disease spreading in finite populations renders certain the

Figure 1. Disease spreading under fast linking dynamics in the SIS mode. The upper panel shows the gradient of infection G as a function
of the fraction of infected for different values of the rate b1 at which links with infected disappear (bI:bSI~bII ): bI ~0:8 (dotted line), bI~0:4
(dashed line) and bI ~0:2 (solid line). The lower panel shows the corresponding quasi-stationary distributions, both analytically (lines) and via
individual-based computer simulations (circles for bI ~0:8, squares for bI~0:4 and crosses for bI ~0:2). We use bH:bSS~0:2, c~0:25, N~100,
Nl=d~4 and t~10{2 .
doi:10.1371/journal.pcbi.1000895.g001
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probability that the disease disappears after some time. However,

this result is of little relevance given the associated times required

to reach the absorbing state (except, possibly, in very small

communities). Indeed, the characteristic time scale of the dynamics

plays a determinant role in the overall epidemiological process and

constitutes a central issue in disease spreading.

In the Text S1 we derive an analytical expression for

the average recovery time (ti) of a population with i infected

individuals. Figure 4A shows the recovery time t1 in adaptive

networks for different levels of information, illustrating the

spectacular effect brought about by the network dynamics on

the recovery time. While on networks without information

(bI = bH) the recovery time rapidly increases with the rate of

infection l, adding information moves the fraction of infected

individuals rapidly to the absorbing state, and, therefore, to the

disappearance of the disease. Moreover, as shown in the Text S1,

the size of the population can have a profound effect on the

recovery times. With increasing population size, the population

spends most of the time in the vicinity of the state associated with

the interior root of G(i). For large populations, this acts to reduce

the intrinsic stochasticity of the dynamics, dictating a very slow

extinction of the disease.

When recovery from the disease is impossible, a situation

captured by the SI model, the population will never become

disease-free again once it acquires at least one infected individual.

The Markov chain that represents such diseases therefore has

another absorbing state, corresponding to networks where

everyone has been infected, besides the previous one in which

no one is infected. The time to reach this state again depends on

the presence of information. When information prevails, suscep-

tible individuals manage to resist infection for a long time, thereby

delaying the rapid progression of the disease, as shown in the inset

of Figure 4B. Naturally, the average number of generations

needed to reach a fully infected population increases with the

availability of information, as illustrated in the main panel of

Figure 4B.

Finally, in all models discussed here we also investigated the

effect of allowing for different individual rates associated with the

way each individual creates or destroys her social ties. Due to age-

structure of most populations or intrinsic individual or cultural

differences, some individuals will tend to react differently

whenever they, or a contact, get infected [36,38]. In the Text

S1 we show that the disease spreading remains unaffected when

individual rates (of seeking and removing links) are drawn from a

Figure 2. Gradient of infection in the SIR model in a network with information (solid blue line, bI ~0:8, bH~0:2), and without
information (dashed red line, bI ~bH~0:2). Each point in the triangle (the so-called simplex) satisfies that population size is conserved, e.g.
i+r+s = N. Vertices of the simplex represent populations with only one class of individuals present. The colored lines in the interior of the simplex
indicate configurations in which G i,rð Þ~0. For each case, disease expansion is more likely than disease contraction in configurations above the line,
and less likely otherwise, showing that availability of information greatly reduces the regions of state space in which disease may progress
(c~0:25, N~100, Nl=d~10).
doi:10.1371/journal.pcbi.1000895.g002
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normal distribution with variable variance, as long as the average

value for the rate remains unchanged.

Discussion

Making use of three standard models of epidemics involving a

finite population in which infection takes place along the links of a

dynamical graph, the nodes of which are occupied by individuals,

we have shown analytically that the bias in graph dynamics

resulting from the availability of information about the health

status of others in the population induces fundamental changes in

the overall dynamics of disease progression.

The network dynamics proposed here differs from those used in

previous models of disease spreading on adaptive networks [21–

31]. Similar to most models, the population size remains fixed.

Unlike most of these studies, however, we do not impose any local

or global linking constraints, meaning that individuals can create

(or remove) a link without the need for removing (or creating)

another one – in other words, the number of links will change in

time, also adapting to the disease configuration of the population.

Consequently, the average degree of the network results from the

self-organization of the network structure, and co-evolves with the

disease dynamics (cf. networks evolving towards critical values of

connectivity, as studied in [45]). A population suffering from high

disease prevalence where individuals avoid contact in order to

escape infection will therefore exhibit a lower average degree than

a population with hardly any infected individuals. Such a

frequency-dependent average degree prevents also that contain-

ment of infected individuals would result automatically in the

formation of a dense healthy cluster, which is extremely vulnerable

to future infection, as reported before in [21,25,26].

The description of disease spreading as a stochastic contact

process embedded in a Markov chain constitutes a second

important distinction between the present model and previous

studies. This approach allows for a direct comparison between

analytical predictions and individual-based computer simulations,

and for a detailed analysis of finite-size effects and convergence

times, whose exponential growth will signal possible bistable

disease scenarios. In such a framework, we were able to show that

adaptive networks in which individuals may be informed about the

health status of others lead to a disease whose effective

infectiousness depends on the overall number of infected in the

population. In other words, disease propagation on adaptive

networks can be seen as mathematically equivalent to disease

spreading on a well-mixed population, but with a rescaled effective

infectiousness. In accord with the intuition advanced in the

introduction, as long as individuals react promptly and consistently

to accurate available information on whether their acquaintances

are infected or not, network dynamics effectively weakens the

disease burden the population suffers from. Last but not least, if

disease recovery is possible, the time for disease eradication

drastically reduces whenever individuals have access to accurate

Figure 3. Disease spreading under general linking dynamics in the SIS model. Circles show results of individual-based simulations for the
quasi-stationary average fraction of infected SIT as function of t. The lower (upper) dashed line shows the analytical prediction of SIT for t?0
(t??), calculated as the average of the quasi-stationary distribution. The analytical prediction in the fast linking limit (t?0) remains valid as long as
tv1, the prediction in the limit of static networks (t??) as long as tw105 . Crosses indicate the quasi-stationary average degree SkT� observed in
individual-based simulations for given t. The solid line depicts the analytical prediction of SIT in static networks whose average degree equals the
value of SkT� for given t. Results in figure illustrate that for tw102, the network dynamics influences disease progression only by controlling SkT� .
We use bI ~0:8, bH~0:2, c~0:25, N~100 and Nl=d~4.
doi:10.1371/journal.pcbi.1000895.g003
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information about the health state of their acquaintances and use it

to avoid contact with those infected. If recovery or immunity is

impossible, the average time needed for a disease to spread

increases significantly when such information is being used. In

both cases, our model clearly shows how availability of

information hinders disease progression (by means of quick action

on infected, e.g., their containment via link removal), which

constitutes a crucial factor to control the development of global

pandemics.

Finally, it is also worth mentioning that the knowledge about the

health state of the others may not always be accurate or available

in time. This is for instance the case for diseases where recently

infected individuals remain asymptomatic for a substantial period.

The longer the incubation period associated with the disease, the

less successful individuals will be in escaping infection, which

reduces in our model to a lower effective rate of breaking SI links,

with the above mentioned consequences. Moreover, the (social)

network through which awareness of the health status of others

proceeds may lead to different rates of information spread. In such

cases, one may model explicitly the spread of the health state of

each individual, as done in Refs. [28,32], and study the interplay

between disease expansion and individuals’ awareness of the

disease. Of course, depending on the particular disease at hand

and the contact network along which it propagates, one may have

to take other factors into account, besides network adaptability, in

order to make accurate predictions of disease progression.

Creation and destruction of links may for instance not always

occur randomly, as we assumed here, but in a way that is biased by

a variety of factors such as social and genetic distance,

geographical proximity, family ties, etc. The resulting contact

Figure 4. Impact of information on recovery and infection times. A) Average number of generations required for disease eradication in an
adaptive contact network for different rates bI, using the SIS model. The remaining parameters are bH~0:2, c~0:25 and N~100. The availability of
information drastically reduces the time for disease eradication. B) The main plot shows the average number of generations after which a disease
infects the entire population in the SI model, using the same parameters as in the upper panel. The inset shows how, starting from one infected
individual, the fraction of infected changes in time for the same rates bI and l~10{3 . The results obtained via individual-based computer simulations
(circles, t~10{1) fit perfectly with those calculated analytically (lines).
doi:10.1371/journal.pcbi.1000895.g004
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network may therefore become organized in a specific way,

promoting the formation of particular structures, such as networks

characterized by long-tailed degree distributions or with strong

topological correlations among nodes [2,46–48] which, in turn,

may influence the disease dynamics. The impact of combining

such effects, resulting from specific disease scenarios, with those

reported here will depend on their prevalence. A small fraction of

non-random links, or of ties which cannot be broken, will likely

induce small modifications on the average connectivity of the

contact network, which can be incorporated in our analytic

expressions without compromising their validity regarding popu-

lation wide dynamics. On the other hand, when the contact

network is highly heterogeneous (e.g., exhibiting pervasive long-

tail degree distributions), non-random events may have very

distinct effects, from being almost irrelevant (and hence can be

ignored) to inducing hierarchical cascades of infection [49], in

which case our results will not apply.

Methods

Epidemic spreading in finite, well-mixed populations
We define disease dynamics in finite populations of size N as a

stochastic process. Time evolves in discrete steps and two types of

events may occur which change the composition of the population:

infection events and recovery events. Let us assume the SIR model, as

this is the most general case (see Text S1 for a detailed analysis

specific for each disease model). Each state of the population is

characterized by two indices i,rð Þ, where i is the number of

infected individuals in the population and r the number of

recovered (and immune) individuals (izrƒN ). The number of

infected decreases with a rate given by

T{ i,rð Þ~ 1

t0

i

N
d ðM1Þ

where t0 is the recovery time scale,
i

N
the probability that a

randomly selected individual is infected and d the probability that

this individual recovers.

Adopting t0 as a reference, we assume that the higher the

average number of contacts SkT, the smaller the time scale tINF at

which infection update events occur (tINF ~t0=SkT) [3]. Hence,

the rate of increasing the number of infected is given by

Tz i,rð Þ~SkT
t0

N{i{r

N

i

N{1
l: ðM2Þ

The first factor stands for the typical time scale at which infection

events occur. The second factor represents the probability of

randomly picking a healthy individual. This individual interacts

with a random neighbor, who is infected with probability given by

the third factor (well-mixed assumption). This contact leads to an

additional infection with probability l. When r~0, Equations

(M1) and (M2) describe both SIS and SI (d~0) models.

We obtain the finite population analogue of the well-known mean-

field equations characteristic of these models by recognizing that,

in the limit of large populations, t0G i,rð Þ~Tz i,rð Þ{T{ i,rð Þ
provides the rate of change of infected individuals. For large N,

replacing i
N

by x and N{i{r
N

by y, the gradients of infection are given by

t0G i,rð Þ~SkT
N{i{r

N

i

N{1
l{

i

N
d �?N??

SkTlxy{dx: ðM3Þ

Assuming a fixed number of recovered individuals r0, t0G i,r0ð Þ~0

for i~0 and i�r0
~N{

N{1ð Þd
SkTl

{r0. Moreover, i�r0
becomes the

finite population equivalent of an interior equilibrium for

R
r0
0 :

l

d
SkT

N{r0

N{1
w1. The disease will most likely expand when

ivi�r0
, the opposite happening otherwise. The same condition holds

for the SIS model, taking r0~0.

Quasi-stationary distributions in finite populations
Equations (M1) and (M2) define a Markov chain M with

variable states depending on the epidemic model (see Text S1).

The fraction of time the population spends in each state is given by

the stationary distribution of M, which is defined as the

eigenvector associated with eigenvalue 1 of the transition matrix

of M [50,51]. In the SIS model, the state without infected (i = 0) is,

however, an absorbing state of the Markov Chain. The quantity of

interest is therefore the stationary distribution of the Markov chain

obtained from M by excluding the absorbing state i = 0. This

distribution is also known as the quasi-stationary distribution of M

[52] and corresponds to the fraction of time the population spends

in each state, assuming the disease does not go extinct (see

Figure 1).

Network dynamics
Consider a network of constant size N with variable number of

links. New links are established randomly at rate c. Existing links

between individuals with health states p and q (p,q [ S,I ,Rf g)
disappear at rate bpq. The time evolution of the number Lpq of pq-

links can be written as a system of ordinary differential equations
_LLpq~c LM

pq{Lpq

� �
{bpqLpq [39,40]. LM

pq denotes the maximum

number of pq-links, which depends on the number of individuals in

states p and q (LM
pp~p p{1ð Þ=2 and LM

pq~pq for p=q) and

thereby couples the network dynamics to the disease dynamics. In

the steady state of the linking dynamics ( _LLpq~0), the number of

links of links of each type is given by L�pq~wpqLM
pq , with

wpq~c
�

czbpq

� �
.

Epidemic spreading in dynamical networks
When the time scale for network update (tNET ) is much smaller

than the one for disease spreading (tDIS ), the number of infected

increases with a rate

Tz i,rð Þ~SkT
N{i{r

N

wSI i

wSS N{i{r{1ð ÞzwSI izwSRr
l, ðM4Þ

where we made t0~1. The effect of the network dynamics becomes

apparent in the third factor, which represents the probability that a

randomly selected neighbor of a susceptible is infected. In addition,

Equation (M1) remains valid, as the linking dynamics does not affect

the rate at which the number of infected decreases. Similarly to the

case of static networks, one can show that the disease remains

endemic in the SIS model whenever RA
0 :

l

d
NwSIw1. A similar

result holds for the SIR model (see Text S1). It is noteworthy that we

can write Equation M4 as follows

Tz i,rð Þ~SkT
N{i{r

N

i

N{1

wSI N{1ð Þ
wSS N{i{r{1ð ÞzwSI izwSRr

l, ðM5Þ

which shows that disease spreading in an adaptive network is

equivalent to that in a well-mixed population with frequency

dependent average degree SkT and a transmission probability that

is rescaled according to lA~g{1l, where
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g~
wSS

wSI

z 1{
wSS

wSI

� �
i

N{1
z

wSR{wSS

wSI

� �
r

N{1
, ðM6Þ

which is valid for both SIR, SIS (r~0) and SI (d~0,r~0) models.

Computer simulations
All individual-based simulations start from a complete network

of size N = 100. Disease spreading and network evolution proceed

together under asynchronous updating. Disease update events take

place with probability 1ztð Þ{1
, where t~tNET=tDIS and

tDIS~1, network update events occur otherwise. For network

update events, we randomly draw two nodes from the population.

If connected, then the link disappears with probability given by the

respective bpq. Otherwise, a new link appears with probability c.

When a disease update event occurs, a recovery event takes place

with probability 1zSkTð Þ{1
, an infection event otherwise. In

both cases, an individual j is drawn randomly from the population.

If j is infected and a recovery event has been selected then j will

become susceptible (or recovered, model dependent) with

probability d. If j is susceptible and an infection event occurs,

then j will get infected with probability l if a randomly chosen

neighbor of j is infected. The quasi-stationary distributions shown

in Figure 1 are computed as the fraction of time the population

spends in each configuration (i.e., number of infected individuals)

during 109 disease event updates (107 generations). The average

number of infected SIT and the mean average degree of the

network SkT� observed during these 107 generations are shown in

Figure 3. The results reported are independent of the initial

number of infected in the network. Finally, the disease progression

in time, shown in Figure 4b, is calculated from 104 independent

simulations, each simulation starting with 1 infected individual.

The reported results correspond to the average amount of time

after which the population reaches a state with i infected.

Supporting Information

Text S1 Adaptive contact networks change effective disease

infectiousness and dynamics. 1. The SIS model. 1.1 Recovery

times in finite populations. 2. The SI model. 2.1. Infection times in

finite populations. 2.2. Infection times in dynamical networks. 3.

The SIR model. 3.1. The SIR model in finite populations. 3.2.

The SIR model in dynamical networks. 4. Individual diversity in

linking dynamics.

Found at: doi:10.1371/journal.pcbi.1000895.s001 (2.08 MB PDF)
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networks: coevolution of disease and topology. arXiv 1005.

34. May RM (2004) Uses and Abuses of Mathematics in Biology. Science 303:

790–793.

35. Kermack WO, McKendrick AG (1927) A Contribution to the Mathematical

Theory of Epidemics. Proc Roy Soc Lond A 115: 700–721.

36. McNamara JM, Barta Z, Fromhage L, Houston AI (2008) The coevolution of

choosiness and cooperation. Nature 451: 189–192.

37. McNamara JM, Barta Z, Houston AI (2004) Variation in behaviour promotes

cooperation in the Prisoner’s Dilemma game. Nature 428: 745–748.

38. Van Segbroeck S, Santos FC, Lenaerts T, Pacheco JM (2009) Reacting

differently to adverse ties promotes cooperation in social networks. Phys Rev

Lett 102: 058105.

39. Pacheco JM, Traulsen A, Nowak MA (2006) Active linking in evolutionary

games. J Theor Biol 243: 437–443.

Epidemiology in the Information Age

PLoS Computational Biology | www.ploscompbiol.org 9 August 2010 | Volume 6 | Issue 8 | e1000895



40. Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and

structure in complex networks with dynamical linking. Phys Rev Lett 97:
258103.

41. Payn B, Tanfer K, Billy JOG, Grady WR (1997) Men’s behavior change

following infection with a sexually transmitted disease. Fam Plann Perspect 29:
152–157.

42. Emlet CA (2006) An examination of the social networks and social isolation in
older and younger adults living with HIV/AIDS. Health Soc Work 31: 299–308.

43. Zacks S, Beavers K, Theodore D, Dougherty K, Batey B, et al. (2006) Social

stigmatization and Hepatitis C Virus Infection. J Clin Gastroenterol 40:
220–224.

44. Keeling MJ (1999) The effects of local spatial structure on epidemiological
invasions. Proc Biol Sci 266: 859–867.

45. Bornholdt S, Rohlf (2000) Topological Evolution of Dynamical Networks:
Global Criticality from Local Dynamics. Phys Rev Lett 84: 6114–6117.

46. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world

networks. Proc Natl Acad Sci U S A 97: 11149–11152.
47. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev

Mod Phys 74: 47–98.

48. Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM
45: 167–256.

49. Barthelemy M, Barrat A, Pastor-Satorras R, Vespignani A (2004) Velocity and
hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett

92: 178701.

50. Karlin S, Taylor HE (1975) A First Course in Stochastic Processes: Academic
Press.

51. Van Kampen NG (2007) Stochastic Processes in Physics and Chemistry: North
Holland.
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