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Abstract
Aerial	survey	is	an	important,	widely	employed	approach	for	estimating	free‐ranging	
wildlife	over	large	or	inaccessible	study	areas.	We	studied	how	a	distance	covariate	
influenced	probability	of	double‐observer	detections	for	birds	counted	during	a	heli‐
copter	survey	in	Canada’s	central	Arctic.	Two	observers,	one	behind	the	other	but	
visually	obscured	from	each	other,	counted	birds	in	an	incompletely	shared	field	of	
view	to	a	distance	of	200	m.	Each	observer	assigned	detections	to	one	of	five	40‐m	
distance	 bins,	 guided	 by	 semi‐transparent	marks	 on	 aircraft	windows.	Detections	
were	 recorded	 with	 distance	 bin,	 taxonomic	 group,	 wing‐flapping	 behavior,	 and	
group	size.	We	compared	two	general	model‐based	estimation	approaches	pertinent	
to	sampling	wildlife	under	such	situations.	One	was	based	on	double‐observer	meth‐
ods	without	distance	information,	that	provide	sampling	analogous	to	that	required	
for	mark–recapture	(MR)	estimation	of	detection	probability,	p̂,	and	group	abundance,	
̂G,	 along	 a	 fixed‐width	 strip	 transect.	 The	 other	method	 incorporated	 double‐ob‐
server	MR	with	a	categorical	distance	covariate	(MRD).	A	priori,	we	were	concerned	
that	estimators	 from	MR	models	were	compromised	by	heterogeneity	 in	 p̂ due to 
un‐modeled	distance	information;	that	is,	more	distant	birds	are	less	likely	to	be	de‐
tected	by	both	observers,	with	the	predicted	effect	that	p̂	would	be	biased	high,	and	
̂G	 biased	 low.	We	 found	 that,	 despite	 increased	 complexity,	MRD	models	 (ΔAICc	
range: 0–16) fit data far better than MR models (ΔAICc	range:	204–258).	However,	
contrary	to	expectation,	the	more	naïve	MR	estimators	of	p̂ were biased low in all 
cases,	but	only	by	2%–5%	in	most	cases.	We	suspect	that	this	apparently	anomalous	
finding	was	the	result	of	specific	limitations	to,	and	trade‐offs	in,	visibility	by	observ‐
ers	on	the	survey	platform	used.	While	MR	models	provided	acceptable	point	esti‐
mates	of	group	abundance,	their	far	higher	stranded	errors	(0%–40%)	compared	to	
MRD	estimates	would	compromise	ability	to	detect	temporal	or	spatial	differences	in	
abundance.	Given	improved	precision	of	MRD	models	relative	to	MR	models,	and	the	
possibility	of	bias	when	using	MR	methods	from	other	survey	platforms,	we	recom‐
mend	avian	ecologists	use	MRD	protocols	and	estimation	procedures	when	survey‐
ing	Arctic	bird	populations.
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1  | INTRODUC TION

Ecologists	 typically	 consider	 a	 change	 in	 animal	 abundance	 as	 a	
metric	of	population	health	(Nichols	&	Hines,	2002).	Use	of	aircraft	
for counting animals permits observers to draw inference about 
abundance	 over	 large	 areas	 that	may	 be	 difficult	 to	 access	 other‐
wise	 (Seber,	 1982:454).	 However,	 inferences	 drawn	 from	 counts	
of	wildlife	populations	about	abundance	are	often	complicated	by	
incomplete detection of animals: not all detectable animals present 
in	 the	 surveyed	 area	 are	 counted.	 As	 such,	 substantial	 effort	 has	
been	devoted	to	developing	survey	protocols	and	methods	of	cor‐
rection	for	detection	bias	(also	termed—visibility	bias)	 in	aerial	sur‐
veys	(Pollock	&	Kendall,	1987).	In	North	America,	aerial	surveys	of	
waterfowl have become an integral tool for population estimation 
and	are	guided	largely	by	standardized	protocols	developed	by	the	
US	Fish	and	Wildlife	Service	and	Canadian	Wildlife	Service	(1987).	
For	 example,	 a	 long‐term	 operational	 survey	 for	 duck	 abundance	
has been conducted over the prairies of the interior of the continent 
each	May	since	1955	(Smith,	1995);	ducks	are	identified	by	species	
and	 counted	during	 aerial	 surveys	of	 400	m	 fixed‐width	 transects	
divided	 into	 ~29	km	 segments	 from	 aircraft	 flying	 ~50	m	 above	
ground	level	at	145–170	km/hr.	A	subsample	of	these	segments	are	
surveyed	by	ground	crews	that	also	count	ducks	so	that	a	visual	cor‐
rection	factor	(VCF,	i.e.,	the	reciprocal	of	detection	probability)	can	
be	 computed	 to	 adjust	 all	 aerial	 counts	 to	 account	 for	 incomplete	
detection	 from	the	air.	Other	 surveys,	particularly	 in	 the	Arctic	or	
heavily	forested	habitats,	use	the	same	protocol	for	aerial	counts	but	
without ground counts due to remoteness and associated logistic 
constraints	that	impede	access	by	ground	observers.	In	such	cases,	
count	data	from	a	single	survey	platform	can	be	used	to	estimate	de‐
tection	probability	(Koneff,	Royle,	Otto,	Wortham,	&	Bidwell,	2008).

Historically,	single	platform	methods	were	broadly	classified	as	
one	 of	 two	 types:	 (a)	 those	 that	 employ	multiple	 observer	 proto‐
cols	 (e.g.,	 Caughley	&	Grice,	 1982;	Cook	&	 Jacobson,	 1979;	Grier,	
Gerrard,	Hamilton,	&	Gray,	1981;	Koneff	et	al.,	2008),	or	 (b)	 those	
that	 require	only	a	 single	observer	who	 records	 the	perpendicular	
distance	of	detected	groups	of	animals	to	the	transect	line	(i.e.,	dis‐
tance	 sampling,	DS;	Buckland	et	 al.,	 2001;	Burnham,	Anderson,	&	
Laake,	1980).	Double‐observer	methods	are	analogous	to	mark–re‐
capture	(MR)	methods	and	exploit	matched	pairs	of	detections	and	
non‐detections	from	two	observers	to	estimate	detection	probabil‐
ities	using,	 for	 example,	 a	 Lincoln‐Petersen	estimator	 (Alpizar‐Jara	
&	Pollock,	1996;	Seber,	1982).	Development	of	Horvitz–Thompson	
type	estimators	(Alho,	1990;	Huggins,	1989,	1991)	for	mark–recap‐
ture	data	are	a	marked	 improvement	over	simple	Lincoln‐Petersen	
estimators	 in	 that	 they	 allow	 investigators	 to	 control	 for	 variation	
in	detection	probabilities	as	a	function	of	recorded	covariates	(e.g.,	
distance,	group	size,	species).	Regardless,	crucial	assumptions	of	MR	

models	are	that	observers	independently	detect	animals	and	that	de‐
tection probabilities are homogeneous for animals with the same de‐
tection	covariates.	These	assumptions	may	be	violated	during	aerial	
surveys	where	each	observer	has	a	shared	field	of	view,	and	groups	
of	animals	that	are	visually	distinct	may	be	more	likely	to	be	detected	
by	both	observers	than	inconspicuous	animals.	For	example,	proba‐
bility	of	detection	of	a	group	of	organisms	by	both	observers	within	
fixed‐width	strip	transects	may	vary	with	distance	from	the	survey	
platform	(Laake	&	Borchers,	2004).	Not	accounting	for	such	sources	
of	detection	heterogeneity	within	estimation	is	well	known	to	lead	
to	negatively	biased	abundance	estimates	(Seber,	1982).

By	contrast,	DS	procedures	are	insensitive	to	moderate	hetero‐
geneity	 in	 detection	 probability	 owing	 to	 a	 “pooling	 robustness”	
property	(Burnham	et	al.,	2004).	In	the	context	of	aerial	surveys,	the	
main weakness of conventional DS procedures is the assumption of 
perfect	detection	on	the	transect	line	(or,	if	distances	are	binned,	the	
detection	bin	closest	to	the	aircraft).	This	is	untenable	in	many	aerial	
surveys	owing	 to	 the	altitude	of	 the	aircraft	 and	 the	complex	and	
imperfect nature of the visual detection process. Several approaches 
exist	to	improve	estimates	of	abundance	by	using	distance	data	to	
reduce	heterogeneity	 in	detection.	 In	 the	 first,	we	 can	 simply	use	
recorded distances to animals as covariates within MR estimation 
(an	 approach	we	 term	MRD,	 for	mark–recapture	 using	 categorical	
or	binned	distance).	In	the	second,	joint	likelihoods	can	be	specified	
for	the	mark–recapture	data	(detections/non‐detections)	and	for	the	
distribution of observed distances. This approach is known as mark–
recapture	distance	sampling	(MRDS;	Borchers,	Laake,	Southwell,	&	
Paxton,	2006;	Borchers,	Zucchini,	&	Fewster,	1998;	Buckland,	Laake,	
&	Borchers,	2010;	Burt,	Borchers,	Jenkins,	&	Marques,	2014;	Laake	
&	Borchers,	2004).	When	possible	to	implement,	MRDS	is	prefera‐
ble	because	more	assumptions	about	 individual	heterogeneity	can	
be	 addressed.	However,	 several	 features	 of	 our	 data	 set	 (notably,	
responsive	movement	of	some	animals	away	from	the	aircraft)	made	
MRDS estimation challenging to implement. For purposes of this 
paper,	we	only	provide	direct	comparisons	of	MR	to	MRD;	we	revisit	
this	choice	in	the	Discussion,	where	we	compare	MRD	to	MRDS.	We	
note	that	MRD	is	equivalent	to	Burt	et	al.’s	 (2014)	“MR	FI”	model,	
which	uses	distance	as	a	covariate	affecting	detectability	in	MR.	The	
only	 substantive	difference	 is	 that	MRD	conditions	on	 categorical	
distance	data	(i.e.,	distance	is	included	as	a	factor)	while	the	MR	FI	
model	conditions	on	continuous	distance.	However,	unlike	any	of	the	
Burt	et	al.	(2014)	“MRDS”	models,	the	distribution	of	observed	dis‐
tances	is	never	explicitly	modeled	(e.g.,	to	estimate	the	shape	of	the	
detection function).

Koneff	et	al.	(2008)	applied	the	double‐observer	MR	approach	to	
waterfowl	counts	made	from	fixed‐width	strip	transects	in	forested	
areas	of	eastern	North	America	and	found	that	detection	probability	
of	ducks	was	related	to	individual	observers,	aircraft	type,	position	of	
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observers	within	aircraft,	and	waterfowl	group	size.	They	suggested	
that	MR	methods	were	 tractable	 in	operational	 surveys;	 however,	
they	also	presumed	that	an	additional	covariate	of	aircraft	distance	
from detections was important for reducing potential bias associ‐
ated	with	 unaccounted	 for	 heterogeneity	 in	 detection	 probability.	
However,	 these	 authors	 concluded	 that	 it	 was	 not	 operationally	
tractable to record perpendicular distances to animal groups from 
fixed‐wing	 aircraft,	 data	 that	 are	 needed	 to	 apply	MRD	or	MRDS	
estimation.

Past	 helicopter	 surveys	 have	 also	 used	 double‐observer	 ap‐
proaches	 to	 estimate	 detection	 probability	 of	 Arctic	 waterfowl	
(Hines	 &	 Kay,	 2006;	 Hines,	Wiebe	 Robertston,	 Kay,	 &	Westover,	
2006)	applied	to	counts	made	within	200	m	of	aircraft.	In	this	paper,	
we	 address	 the	 recommendation	 by	Koneff	 et	 al.	 (2008)	 to	 focus	
on	 the	 incorporation	of	 distance	data	 in	 aerial	waterfowl	 surveys,	
while accounting for effects of other covariates including bird spe‐
cies,	group	size,	whether	birds	were	flying	or	not,	and	observer	po‐
sition	in	a	helicopter.	Specifically,	we	explore	the	feasibility	of	using	
MRD	compared	to	MR	methods	to	estimate	abundance	or	density	
of select species of waterfowl and other wildlife from a helicopter 
over	Arctic	habitats.	 In	particular,	we	predicted	that	a	disregard	of	
distance	as	a	source	of	heterogeneity	in	detection	probability	would	
result	in	overestimates	of	detection	probability	and	underestimates	
of	abundance,	compared	to	an	MRD	approach	that	better	accounts	
for	detection	heterogeneity.

2  | METHODS

2.1 | Field methods

From	 17	 to	 20	 June,	 2014,	 we	 used	 a	 double‐observer	 approach	
while also recording distance to detections of wildlife observations 
in	 the	Queen	Maud	Gulf	Migratory	 Bird	 Sanctuary.	 Observations	
were	made	from	a	Bell	206	Long	Ranger	by	a	forward	observer	 in	
the left front seat and a rear observer in the left back seat behind 
the	forward	observer.	Before	any	observations,	each	observer	used	
a	water‐soluble	marker	to	mark	semi‐transparent	 lines	on	their	 re‐
spective helicopter windows corresponding to distance classes of 
1	=	0–40	m,	2	=	40–80	m,	3	=	80–120	m,	4	=	120–160	m,	5	=	160–
200	m,	 and	 6	>	200	m	 (Figure	 1).	Hypotenuses	 of	 triangles	with	 a	
common	vertical	 side	of	50	m,	 but	horizontal	 distances	of	40,	 80,	
120,	160,	and	200	m,	are	64,	94,	130,	168,	and	206	m,	respectively.	
So,	as	the	helicopter	flew	50	m	above	ground	level	on	this	training	
session,	each	observer	 took	a	 sighting	 to	 the	ground	with	a	 range	
finder and marked a line collinear with the range finder and the ap‐
propriate	hypotenuse	distances	 to	mark	 lines	on	 the	window	with	
a grease pencil that represented binned perpendicular distances of 
40	m	intervals.

During	observations,	 the	helicopter	 traveled	between	100	and	
180	km/hr	 ground	 speed,	 at	 50	m	 above	 ground	 level,	 consistent	
with	 US	 Fish	 and	Wildlife	 Service	 and	 Canadian	Wildlife	 Service	
(1987)	protocols.	Height	above	ground	level	was	verified	occasion‐
ally	by	the	front	observer	using	a	range	finder	to	determine	vertical	

distance	from	ground,	visible	vertically	through	the	left	chin	bubble	
of	 the	 aircraft,	 and	 communicated	 to	 the	pilot	whether	 an	 adjust‐
ment	was	 required.	Both	observers	were	able	 to	communicate	via	
the	aircraft	intercom,	although	they	were	not	visible	to	one	another.	
Both	 observers	 recorded	 detections	 of	 wildlife	 by	 species,	 group	
size,	whether	birds	were	flapping	their	wings	(usually	flying,	but	oc‐
casionally	running	or	stationary	on	the	ground)	or	not,	and	class	of	
distance	perpendicular	 to	 the	direction	of	 travel	by	 the	helicopter	
(see above). Flapping behavior of birds was recorded because it was 
assumed	that	detection	of	flying	groups	could	have	been	higher	than	
of groups that were immobile and on the ground.

The forward observer did not communicate his observations to 
the	 rear	 observer.	 However,	 the	 rear	 observer	 communicated	 his	
observations	 via	 intercom	 to	 the	 forward	observer,	who	 recorded	
all	detections	made	by	either	observer.	 If	 a	detection	of	 the	same	
animal	group	was	made	by	both	observers,	 invariably	 the	 forward	
observer recorded his detection before the rear observer commu‐
nicated	his	detection	to	the	forward	observer.	 If	the	rear	observer	
detected	an	animal,	but	the	forward	observer	did	not,	then	this	was	
recorded	 by	 the	 forward	 observer	 as	 such.	 Thus,	 observations	 by	
each	 observer	 were	 made	 independently	 of	 one	 another.	 An	 ex‐
ample	 of	 communication	 by	 the	 rear	 observer	 to	 the	 forward	ob‐
server	is	“2	white‐fronts	flying	Charlie,”	representing	a	detection	in	
the	 third	 distance	 bin,	 80–120	m	 from	 the	 helicopter	 (see	 below).	
The time interval between detections of different groups was suf‐
ficiently	long	that	chances	for	detections	of	different	groups	by	ob‐
servers	being	erroneously	treated	as	the	same	detection	was	very	
unlikely.	In	most	cases,	distance	classes	of	the	same	detections	were	
the	same,	although	occasionally	flying	birds	would	move	from	one	
distance class where the forward observer detected the group of an‐
imals	in	a	different	(usually	closer)	class	by	the	time	the	rear	observer	
detected	this	same	group;	as	well,	there	were	also	some	distance	bin	
mismatches between observers for bird groups that were not flap‐
ping	their	wings,	suggesting	a	small	amount	of	measurement	error	
(Conn	&	Alisauskas,	2018).

F I G U R E  1  Example	of	distance	classes	marked	nearest	the	left	
front	seat	of	a	Bell	206	Long	Ranger	helicopter
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2.2 | Analysis methods

2.2.1 | Data formatting

Our	 interest	 in	 this	 paper	was	 to	 assess	 hypothetical	 bias	 in	 esti‐
mates	from	MR	models	relative	to	MRD	models.	Such	models	usually	
assume	that	covariates	 recorded	by	both	observers	 (e.g.,	distance)	
are	 the	 same,	 so	 we	 needed	 to	 reconcile	 mismatching	 distance	
data	 prior	 to	 analysis	 (see	 Discussion	 for	 description	 of	 an	 alter‐
native	 approach).	 Let	 yio	 be	 a	 binary	 indicator	 for	whether	 or	 not	
observer o detects waterfowl group i,	 and	dio denote the distance 
bin	 recorded	by	observer	o to group i.	We	 included	detection	his‐
tories	in	the	analyses	if	(a)	yi1 = 1 and di1 ∈{1,2,3,4,5}	(i.e.,	observer	
1	detects	the	animal	in	distance	bins	1–5),	or	(b)	yi1	=	0,	yi2	=	1,	and	
di2∈{1,2,3,4,5}	(i.e.,	observer	1	misses	the	animal	but	observer	2	de‐
tects it in bins 1–5). The distance used for waterfowl group i was set 
to di = yi1di1 +	(1	−	yi1)di2	(i.e.,	giving	preference	to	the	first	observer's	
distance determination). These protocols were an attempt to reduce 
possible	 bias	 associated	with	 responsive	movement.	 For	 instance,	
the original position and whether or not a group was within the strip 
width	 (0–200	m)	was	presumably	more	reliable	when	made	by	the	
first	observer	since	birds	would	have	had	less	opportunity	to	move	
away	from	the	aircraft.

2.2.2 | Modeling double‐observer detections

We	fit	several	MR	and	MRD	models	to	double‐observer	encounter	histo‐
ries that were a function of different combinations of predictive covari‐
ates:	group	size	(linear	effect),	species	(categorical,	nine	levels),	flying/not	
flying	(categorical,	two	levels),	distance	bin	(categorical,	five	levels),	and	

observer	(categorical,	two	levels).	All	models	that	included	distance	bin	
and	observer	effects	also	included	their	interaction.	Note	that	our	use	of	
categorical	distance	bins	permitted	greater	modeling	flexibility,	although	
at	the	cost	of	an	increased	number	of	parameters	to	estimate,	compared	
to an approach where distance is modeled as a continuous effect.

Different	models	corresponded	to	different	ways	that	data	might	
be	analyzed	under	different	survey	protocols.	For	example,	the	MR	
analyses	without	distance	covariates	could	be	fitted	with	data	from	
fixed‐width	strip	transects	where	observers	do	not	record	perpen‐
dicular	distance	to	an	object	 (e.g.,	Hines	&	Kay,	2006;	Hines	et	al.,	
2006;	US	Fish	&	Wildlife	Service	&	Canadian	Wildlife	Service,	1987).	
We	fitted	a	total	of	10	models	to	MR	detection	histories	(Table	1).

We	used	the	Huggins–Alho	closed‐captures	model	(Alho,	1990;	
Huggins,	1989,	1991)	 to	model	 group	detection	by	each	observer,	
such that

Here,	β	denotes	a	column	vector	of	logit‐linear	regression	param‐
eters and X denotes	an	associated	design	matrix	(see	e.g.,	Draper	&	
Smith,	1998).	Under	this	framework,	maximum	likelihood	is	used	to	
obtain	estimates	of	 the	regression	parameters,	β. Estimates of the 
number of waterfowl groups (Gs),	and	total	abundance	of	species	s 
(Ns) can then be derived as.

yio∼Bernoulli(pio∕p
∗
i
),where

logit(pio)=X� , and

p∗
i
=1− (1−pi1) (1−pi2)

Type Model k LogL AICc ΔAICc

MRD Species + Group + Fly + Observer* 
Distance {MRD1}

20 −1024.5 2089.3 0.0

MRD Species	+	Group	+	Fly*Observer* 
Distance

28 −1017.3 2091.3 2.0

MRD Species	+	Group	+	Observer*Distanc
e

19 −1029.8 2098.0 8.7

MRD Group	+	Fly	+	Observer*Distance 12 −1040.8 2105.7 16.4

MR Species	+	Group	+	Fly	+	Observer 12 −1134.6 2293.4 204.1

MR Species + Group + Observer {MR1} 11 −1138.5 2299.1 209.8

MR Group	+	Observer	+	Fly 4 −1150.7 2309.4 220.1

MR Species + Group 10 −1145.3 2310.7 221.4

MR Species 9 −1151.6 2321.2 231.9

MR Null 1 −1172.6 2347.3 258.0

Notes.	Models	varied	by	 inclusion	of	different	combinations	of	predictor	covariates,	and	whether	
terms	were	additive	(separated	with	a	“+”)	or	were	interactive	(separated	with	a	“*”)	on	the	logit	scale.	
Predictor	 covariates	 were	 Species	 (categorical),	 Group	 (continuous),	 Fly	 (binary;	 wings	 not	 flap‐
ping	=	0,	wings	flapping	=	1),	Observer	(binary;	front	seat	vs.	rear	seat	of	helicopter),	and	Distance	
(categorical;	5,	40	m	distance	bins).	We	present	the	number	of	parameters	(k),	log	likelihood	(LogL),	
and	small	sample	AICc	scores	for	each	fitted	model	(Burnham	&	Anderson,	2002).	We	highlight	(in	
bold) the best MRD model {MRD1} and the MR model {MR1}	most	appropriate	 for	estimation	of	
detection and abundance.

TA B L E  1   Mark–recapture models 
accounting for distance (MRD) versus 
mark–recapture models without distance 
data	(MR)	fit	to	double‐observer	
detections of waterfowl and other wildlife 
detected	in	the	Arctic	during	aerial	survey	
with a helicopter
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where Ωs	is	the	set	of	waterfowl	groups	detected	by	at	least	one	
observer that are assigned to species s,	 and	 gi is the number of 
birds in the ith waterfowl group. Since our main focus here was to 
identify	factors	that	affected	detection,	we	only	report	estimates	
of ̂Gs here.

We	 implemented	 the	 Huggins–Alho	 procedure	 in	 Program	
MARK	 (White	 &	 Burnham,	 1999)	 via	 the	 RMark	 package	 (Laake,	
2013)	 in	 the	 R	 computing	 environment	 (R	 Core	 Team,	 2016).	We	
limited	 observations	 to	 species	 categories	 for	 which	 we	 had	 ≥20	
detection histories: Cackling goose (Branta hutchinsii),	 king	 eider	
(Somateria spectabilis),	 long‐tailed	 duck	 (Clangula hyemalis),	 north‐
ern pintail (Anas acuta),	 rock	 and	willow	 ptarmigan	 (Lagopus	 spp.),	
sandhill crane (Grus canadensis),	 tundra	swan	 (Cygnus columbianus),	
loon (Gavia	 spp.),	 and	 white‐fronted	 goose	 (Anser albifrons). Each 
species	or	genus	was	modeled	using	a	different	“group”	specification	
within	the	same	analysis	in	order	to	increase	precision	of	estimates	
by	sharing	information	about	detection	probability	across	taxonomic	
groupings	 (see	 e.g.,	 Conn,	 Arthur,	 Bailey,	 &	 Singleton,	 2006).	We	

used	Akaike's	 information	criterion	(AIC;	Akaike,	1974;	Burnham	&	
Anderson,	2002)	to	select	among	models.

We	assessed	bias	of	estimators	from	MR	models	that	disregard	
distance	 (i.e.,	 those	 that	 treat	 data	 as	 though	 collected	 on	 200	m	
fixed‐width	 strip	 transects),	 against	 the	highest‐ranked	AIC	model	
from	our	candidate	set	(which	turned	out	to	be	an	MRD	model).	We	
calculated	anticipated	relative	bias	of	MR	estimates,	�̂�,	as

3  | RESULTS

Of	 1,246	 detections	 made	 by	 either	 observer,	 427	 were	 made	
by	 both	 observers,	 432	 by	 the	 front	 observer	 only,	 and	 377	 by	
the	rear	observer	only.	The	number	of	observations	made	by	the	
front observer versus rear observer was 251 versus 50 in bin 1 
(0–40	m),	 209	versus	210	 in	bin	2	 (40–80	m),	 115	versus	181	 in	
bin	 3	 (80–120	m),	 138	 versus	 184	 in	 bin	 4	 (120–160	m),	 93	 ver‐
sus	 105	 in	 bin	 5	 (160–200	m),	 and	 53	 versus	 74	 beyond	 200	m,	
respectively.	Notably,	detection	fell	off	as	a	function	of	distance	
for both observers but was depressed for the rear observer closer 
to the transect line because of visual obstruction to field of view 
(Figure	2).	This	was	caused	by	the	float	of	the	helicopter,	used	for	

̂Gs=
∑

i∈Ωs

1∕p̂∗
i
, and

̂Ns=
∑

i∈Ωs

gi∕p̂
∗
i
, respectively

Relative bias = 100 ⋅

(

�̂�
MR− �̂�

MRD

�̂�MRD

)

F I G U R E  2  Number	of	waterfowl	
detections	(bars;	pooled	by	species)	
for mark–recapture distance data 
obtained	from	a	Bell	206	Long	Ranger	
helicopter,	together	with	empirical	
conditional detection probabilities 
(plotted as a percentage; points with 
lines).	Observations	are	stratified	by	
observer	(1	=	front	seat,	2	=	back	seat),	
and	whether	waterfowl	were	flying	or	not.	
Empirical detection probabilities were 
conditional	on	detection	by	the	other	
observer.	For	example,	points	in	the	first	
column	of	plots	were	determined	by	using	
detections and distances for observer 2 as 
trials for observer 1



864  |     ALISAUSKAS And COnn

buoyancy	when	 landing	on	water.	The	 front	observer	had	a	 less	
obstructed view of bin1.

Analyses	 of	 double‐observer	 detection	 histories	 within	 a	
Huggins–Alho	 analysis	 suggested	 an	 influence	 on	 detection	 prob‐
ability	 by	 all	 covariates	 considered	 (Table	 1).	 In	 particular,	 MRD	
models (ΔAICc	range:	0–16,	Table	2)	were	far	superior	to	MR	mod‐
els without distance (ΔAICc	 range:	 204–258,	 Table	 2).	 Detection	
probabilities	 varied	 substantially	 by	 species,	 observer,	 distance	
from	aircraft,	whether	birds	exhibited	wing‐flapping,	and	group	size	
(Table	3).	Detection	probability	declined	with	distance	for	the	front	
seat	observer,	but	was	gamma‐shaped	(unimodal)	 for	the	rear‐seat	
observer,	whose	 field	of	 view	was	partially	obstructed	by	 the	 left	
helicopter	float	(Figure	2).	Overall,	detection	probability	was	higher	
from	the	front	seat	than	the	back,	was	higher	for	flying	waterfowl	
than	non‐flying	waterfowl,	and	increased	as	a	function	of	group	size,	
as	anticipated	(Table	3).	Most	of	the	species	effects	overlapped,	but	
it	appeared	that	tundra	swans	had	a	higher,	although	imperfect,	rate	
of	detection	while	loons,	long‐tailed	ducks,	and	ptarmigan	had	lower	
detection probabilities than the other species.

We	expected,	a	priori,	that	failure	to	account	for	distance	should	
have	resulted	in	overestimation	of	detection	probability	and	under‐
estimated	numbers	of	bird	groups	present	on	transects.	Instead,	the	
opposite	tendency	occurred:	Failure	to	account	for	distance	resulted	

in	number	of	groups	being	consistently	overestimated	for	all	species	
but	only	moderately	so	(2%–5%),	except	for	loons	(16%).	Failure	to	
account for distance resulted in much greater species variation in its 
effect	on	estimates	of	standard	errors	for	abundances,	with	either	
no	difference	for	3	species,	or	consistently	much	greater	uncertainty	
(6%–40%)	than	if	distance	was	included	as	a	covariate.

4  | DISCUSSION

We	addressed	potential	bias	in	double‐observer	aerial	surveys	owing	
to	detection	heterogeneity	induced	by	animal	groups	observed	at	dif‐
ferent	distances	 from	 the	aircraft.	 Such	heterogeneity	 is	 known	 to	
cause	negative	bias	in	mark–recapture	abundance	estimators	(Seber,	
1982),	which	 is	potentially	problematic	 for	aerial	 strip	 transect	sur‐
veys	 as	 commonly	 implemented	 in	North	American	waterfowl	 sur‐
veys.	However,	despite	clear	potential	for	such	bias,	our	abundance	
estimates	from	models	that	accounted	for	distance	effects	{MRD}	on	
observations	from	a	helicopter	were	remarkably	similar	to	estimates	
from	models	that	ignored	those	distance	covariates	{MR}.	However,	
precision	of	some	estimates	was	reduced	considerably	in	our	specific	
application.	We	suspect	that	reasonable	concordance	between	MR	
and	MRD	estimates	was	related	to	trade‐offs	 in	visibility	 issues	as‐
sociated with the particular configuration of the aircraft used as our 
survey	platform.	 In	particular,	 the	presence	of	helicopter	floats	ob‐
viously	 obstructed	 the	 rear‐seat	 observer's	 field	 of	 view.	Although	
detections	 by	 the	 rear	 observer	 for	 the	 closest	 distance	 bin	 were	
considerably	 fewer	 than	 by	 the	 forward	 observer's	 unobstructed	
view,	the	rear	observer	appeared	to	compensate	for	this	difference	
by	focusing	greater	attention	on	distance	bins	3,	4,	and	5,	particularly	
detecting	more	flying	birds	than	the	forward	observer	(Figure	2).	In	
addition,	both	observers	detected	fewer	birds	in	distance	bin	3	than	
in	distance	bin	4,	contrary	to	expectation.	Possibly,	the	requirement	
to	scan	across	a	200	m	field	of	view	may	induce	both	observers	to	un‐
intentionally	focus	greater	attention	at	the	extremes	(closest	and	far‐
thest	distances)	of	the	transect	than	in	the	middle.	Furthermore,	the	
architecture	of	various	fixed‐wing	and	helicopter	aircraft	can	differ	
considerably,	impacting	the	field	of	view	for	each	observer.	For	exam‐
ple,	bubble	windows	could	reduce	but	not	eliminate	visibility	issues	
associated	with	 the	 presence	 of	 floats.	 Such	 unconscious	 idiosyn‐
crasies of human observer behavior in combination with particular 
visibility	issues	specific	to	airframe	design	and	window	placement	re‐
inforce	the	fundamental	requirement	of	any	sampling	design:	that	de‐
tection	probability	should	be	estimated	in	some	fashion	for	improved	
inference,	regardless	of	aircraft	type	used	as	a	survey	platform.

Further complications during sampling arise when there is re‐
sponsive movement of animals between distance bins between 
detections	 of	 the	 same	 animal	 group	 by	 each	 observer.	 Such	 re‐
sponsive movement can lead to (often positive) bias in estimates of 
abundance	(Borchers,	Marques,	Gunnlaugsson,	&	Jupp,	2010;	Conn	
&	Alisauskas,	2018)	from	MRDS	models,	and	can	impede	estimation	
of	MRDS	parameters	that	represent	individual	heterogeneity	(Burt	
et	al.,	2014).	Although	MRDS	models	are	preferable	to	MR	or	MRD	

TA B L E  2  Logit‐linear	covariate	effects	and	SE	for	the	highest‐
ranked	AIC	mark–recapture	model	{MRD1}	from	Table	1

Effect Effect size (SE)

Intercept 0.50	(0.34)

Group size 0.08 (0.02)

Flying 0.59 (0.18)

Species‐KIEI 0.00	(0.24)

Species‐LTDU −0.41	(0.25)

Species‐NOPI 0.35	(0.37)

Species‐ROPT −0.36	(0.40)

Species‐SACR 0.27 (0.29)

Species‐TUSW 1.15	(0.32)

Species‐Loons −1.02	(0.51)

Species‐WFGO 0.20 (0.19)

Observer	2 −2.39	(0.25)

Observer	1:Distance	2 −0.56	(0.32)

Observer	2:Distance	2 1.80 (0.21)

Observer	1:Distance	3 −1.05	(0.33)

Observer	2:Distance	3 2.18 (0.27)

Observer	1:Distance	4 −1.11	(0.32)

Observer	2:Distance	4 1.68	(0.24)

Observer	1:Distance	5 −1.42	(0.35)

Observer	2:Distance	5 1.11 (0.27)

Notes.	 The	 intercept	 corresponds	 to	 detection	 of	 non‐flying	 Canada	
geese	 by	 observer	 1	 in	 distance	 bin	 1,	 and	 the	 “Observer	 2”	 effect	 is	
specific	to	detection	bin	1	viewed	rear	seat	of	a	Bell	206	Long	Ranger	
helicopter	with	floaths	(i.e.,	with	obstructed	view).
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models	when	assumptions	are	met,	there	was	considerable	evidence	
for responsive movement in our data set which led us to consider 
simpler	MR	and	MRD	models	that	did	not	include	a	probability	mass	
function for the distance data. For comparison between MR and 
MRD	models,	we	edited	distance	bin	observations	 in	 favor	of	 the	
front	observer	to	eliminate	any	mismatches	in	this	study.	Clearly	this	
was	not	ideal	in	practise,	but	permitted	a	test	of	past	data	collection	
methods	without	distances	recorded,	against	an	improved	standard	
that	 included	distance	 information.	Our	use	of	MRD	compared	 to	
MR showed vast improvements of model fit to data. Further im‐
provement	could	likely	be	realized	by	explicitly	modeling	movement	
and	measurement	error	with	unedited	records,	as	done	by	Conn	and	
Alisauskas	 (2018).	 In	 particular,	 their	 analysis	 suggested	 residual	
presence	of	individual	heterogeneity	above	and	beyond	the	simple	
MRD formulation we used here.

Researchers have several options for integrating counts with de‐
tection	probability	during	such	surveys	from	which	to	draw	inference	
about	density	or	abundance	in	a	study	area.	For	example,	it	may	be	ad‐
vantageous	to	increase	survey	coverage	by	acquiring	single	observer	
count	data	from	both	sides	of	the	aircraft	(Hines	et	al.,	2006).	In	this	
case,	 double‐observer	 protocols	 to	 estimate	 detection	 probability	
could	be	implemented	for	a	portion	of	the	survey,	or	during	portions	
of	 flights	 that	 are	 “off‐transect”	 (Hines	 &	 Kay,	 2006).	 For	 instance,	
one	observer	could	re‐seat	themselves	behind	the	other	observer,	as	
done	throughout	our	study.	In	an	operational	aerial	survey,	off‐tran‐
sect	double‐observer	data	for	MRD	estimates	of	detection	probability	
could be gathered when the aircraft must suspend transect coverage 
to	travel	to	and	from	refueling	sites,	for	example.	Then,	abundance	or	
density	could	be	estimated	in	an	ad	hoc	fashion	with	the	simple	canon‐
ical	estimator,	for	example	N = C/p*,	or	via	model‐based	analogs	(e.g.,	
Miller,	Burt,	Rexstad,	&	Thomas,	2013;	Conn,	Laake,	&	Johnson,	2012).

Our	 Arctic	 study	 area	 differed	 in	 an	 important	way	 from	 the	
double‐observer	methods	used	by	Koneff	et	al.	(2008)	in	a	forested	

study	area,	 farther	 south.	The	methods	used	 in	our	 study	do	not	
account	 for	 birds	 that	 are	 hidden	 from	 the	 field	 of	 view	 (e.g.,	 by	
vegetation)	within	 the	 sampled	 strip.	We	 believe	 that	 such	 avail‐
ability	 bias	 (Marsh	 &	 Sinclair,	 1989)	 played	 no	 role	 for	 detecting	
birds	that	were	most	commonly	observed	on	land	in	our	study	since	
vegetation was shorter than the birds under observation (Conkin 
&	Alisauskas,	2013;	Didiuk	&	Ferguson,	2005).	However,	detection	
probability	was	lowest	for	Loons	and	long‐tailed	ducks,	two	species	
most	 often	detected	on	water,	 and	 that	 tend	 to	dive	 in	 response	
to	approaching	aircraft.	King	eider	was	another	species	most	often	
detected	on	water,	but	their	detection	probabilities	were	similar	to	
those	 of	 largely	 terrestrial	 cackling	 geese	 probably	 because	 their	
normal	 response	 was	 flight,	 rather	 than	 diving,	 in	 apparent	 eva‐
sive	response	to	aircraft.	Rock	Ptarmigan	also	had	lower	detection	
probability,	possibly	due	to	the	very	cryptic	plumage	of	females	in	
particular.

We	used	relatively	simple	models	for	waterfowl	detection	data	
where	species	was	a	fixed	effect	on	detection.	Our	study	focussed	
on	relatively	common	species,	but	to	include	rarer	species,	it	would	
likely	be	necessary	to	borrow	strength	from	an	ensemble	of	species.	
For	example,	species	could	be	treated	as	a	random	effect	within	a	hi‐
erarchical	modeling	framework	(see	e.g.,	Sollman,	Gardner,	Williams,	
Gilbert,	&	Veit,	2016).	For	larger	surveys,	one	may	also	wish	to	esti‐
mate	species–habitat	relationships	(e.g.,	Conkin	&	Alisauskas,	2013),	
permitting	 prediction	 of	 abundance	 in	 unsurveyed	 locations	 (e.g.,	
Miller	et	al.,	2013,	Sollman	et	al.,	2016).

Our	work	suggested	that	past	helicopter	surveys	that	used	only	
MR	methods	on	 fixed‐width	 transects	without	distance	data	 (e.g.,	
Hines	&	Kay,	2006;	Hines	et	al.,	2006)	may	have	provided	reasonably	
accurate	inference	about	abundance.	However,	such	tests	between	
MR and MRD methods for estimating detection and bias should 
probably	be	done	for	other	types	of	aircraft	design	and	configura‐
tion	that	affect	visibility.	Data	can	be	tractably	gathered	to	model	

TA B L E  3  Estimates	of	unconditional	detection	probability,	p̂∗,	and	number	of	groups,	 ̂G,	for	each	of	nine	avian	species	in	the	Arctic	region	
covered	by	aerial	surveys	for	different	models,	together	with	standard	error

Species

p̂∗ (SE) ̂G (SE) Relative bias (%)

Model{MRD1} Model{MR1} Model{MRD1} Model {MR1} p̂∗ ̂G SE ( ̂G)

̂GCAGO
0.80	(0.03) 0.78	(0.03) 345	(16) 357	(17) −3 3 6

̂GKIEI
0.80	(0.04) 0.78	(0.04) 154	(11) 158 (11) −2 3 0

̂GLTDU
0.70 (0.06) 0.65 (0.06) 207 (21) 218	(23) −7 5 10

̂GNOPI
0.87 (0.06) 0.83	(0.07) 41	(3) 43	(4) −4 5 33

̂GROPT
0.71 (0.10) 0.68 (0.10) 59 (11) 60 (11) −4 2 0

̂GSACR
0.85 (0.05) 0.84	(0.05) 81 (5) 85 (7) −2 5 40

̂GTUSW
0.96 (0.02) 0.91	(0.03) 65	(4) 66	(4) −5 2 0

̂GLOON
0.52 (0.15) 0.37	(0.12) 116	(39) 134	(48) −29 16 23

̂GWFGO
0.84	(0.03) 0.85 (0.02) 321	(10) 329	(12) 1 2 20

Notes.	Estimates	are	from	the	highest‐ranked	mark–recapture	estimators	accounting	for	distance	(MRD1)	and	the	highest‐ranked	MR	model	that	did	
not	account	for	distance	(MR1).	Note	that	we	present	estimates	of	p̂∗	at	mean	values	of	detection	covariates.	Based	on	results	in	Table	1,	we	posit	that	
Model	{MRD1}	was	the	closest	approximation	of	truth,	against	which	relative	bias	was	evaluated.
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effects	of	different	observers,	 responsive	animal	behavior,	and	er‐
rors	in	distance	determinations	(Conn	&	Alisauskas,	2018),	but	addi‐
tional	covariates	that	presumably	affect	detection	probability,	such	
as	airspeed,	deviations	 from	altitude,	cloud	coverage,	habitat	 type	
etc.,	could	also	be	recorded	to	the	extent	possible.

Overall,	because	of	the	added	benefits	of	apparent	reductions	
in	 bias	 and	 especially	 improvement	 precision	 for	 some	 species,	
we	 urge	 that	 surveys	 of	 waterfowl	 or	 other	 wildlife	 from	 either	
fixed‐wing	aircraft	or	helicopters	consider	distance	information	in	
conjunction	 with	 double‐observer	 methods.	 Although	 we	 found	
that our MR estimator which ignored distance data did not result 
in	appreciably	biased	estimates,	the	markedly	improved	estimates	
of	 precision	when	 using	DS	 in	 conjunction	with	 double‐observer	
methods	could	improve	ability	to	test	for	differences	in	abundance	
or	density	among	regions	or	between	years.	Modeling	both	spatial	
and temporal change in population abundance is a central focus 
behind	 decisions	 about	 population	 health.	 Improved	 precision	
of	 estimates	when	MRD	 (this	 study)	 or	MRDS	methods	 (Conn	&	
Alisauskas,	2018)	are	used	provide	added	incentive	for	considering	
their	application	to	data	from	aerial	survey.	We	join	other	authors	
(e.g.,	Laake,	Dawson,	&	Hone,	2008)	in	recommending	that	wildlife	
survey	 planners	 routinely	 collect	 distance	 data	when	 conducting	
double‐observer	surveys,	if	permitted	by	the	configuration	of	the	
survey	platform	used	and	the	behavior	and	mean	group	size	of	the	
species studied.
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