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Optical characterization of red 
blood cells from individuals with 
sickle cell trait and disease in 
Tanzania using quantitative phase 
imaging
JaeHwang Jung1,*, Lucas E. Matemba2,*, KyeoReh Lee1, Paul E. Kazyoba3, Jonghee Yoon1, 
Julius J. Massaga3, Kyoohyun Kim1, Dong-Jin Kim4 & YongKeun Park1,5

Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in 
this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. 
Here, we present optical measurements of individual red blood cells from healthy individuals and 
individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. 
By employing a quantitative phase imaging unit, an existing microscope in a clinic is transformed into a 
powerful quantitative phase microscope providing measurements on the morphological, biochemical, 
and biomechanical properties of individual cells. The present approach will open up new opportunities 
for cost-effective investigation and diagnosis of several diseases in low resource environments.

Sickle cell disease (SCD) is an autosomal genetic blood disorder from the inheritance of point-mutated glo-
bin genes producing abnormal hemoglobin (Hb)1. Under deoxygenated conditions, the abnormal hemoglobin, 
also known as hemoglobin S (HbS), become self-assembled inside red blood cells (RBCs), which results in the 
formation of rigid fibril structures. These fibril structures cause damages to the cell membrane making RBCs 
less deformable and can even change RBCs into sickle shapes. Stiffened RBCs in patients with SCD damage 
endothelial cells and even cause the occlusion of microvascular structures2. Thus, patients with SCD suffers severe 
anemia, pain, devastating disabilities, and in some cases, premature death3,4. In contrast, individuals with sickle 
cell trait (SCT), the heterozygous condition of SCD, do not exhibit apparent health issues. Without genetic anal-
ysis, the SCT individuals are hardly distinguished from healthy individuals. Rarely, severe clinical manifestations 
including exertional rhabdomyolysis (the rapid breakdown of skeletal muscle due to injury to muscle tissue) have 
been reported in individuals with SCT under extreme conditions such as severe dehydration and high-intensity 
physical activity5,6.

According to the World Health Organization, approximately 4.5% of the world population carries the sickle 
genes7. The sickle genes are found more frequently in the tropics, especially in Sub-Saharan Africa. For example, 
the prevalence of the sickle genes in Tanzania is estimated to be 13% and even up to 50% among some ethnic 
groups8,9. The mortality of infants with SCD is as high as 90% in areas with limited medical facilities and 50% in 
areas with improved health infrastructures10 while only 1% of the infants with SCD dies in the United States11. 
The high prevalence of sickle genes imposes heavy economic and clinical burdens on Sub-Saharan Africa coun-
tries. Although genetic and biochemical information about SCD and SCT have been well understood, mechan-
ical properties of these diseases have not been fully investigated. Measuring and understanding the mechanical 
properties of SCD and SCT RBCs are crucial to comprehend the mechanisms of diseases and evaluate the efficacy 
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of drugs and medical treatments targeted to relieve the complications of the diseases. However, these kinds of 
studies have been mostly performed in developed countries in US or Europe, mainly due to accessibility and 
well equipped medical research facilities. Unfortunately, research in these developed countries may not reflect 
situations in Sub-Saharan Africa because it is difficult to find and access untreated samples in the developed 
countries. The patients in the developed countries take medical treatments which could influence the properties 
of the RBCs. For example, hydroxyurea increases the presence of fetal heloglobin (HbF) in place of HbS and 
HbF does not cause sickling and presumably the mechanical properties of RBCs12. In addition, chronic blood 
transfusion, another common treatment for severe cases, adds foreign RBCs without HbS and also changes the 
average characteristics of the RBC population. Considering theses asepcts, the investigation of SCD and SCT in 
Sub-Saharan Africa can provide valuable information to understand the diseases. Despite the devastating burden 
of SCD, unfortunately, there have been insufficient investigations regarding SCT and SCD across the region due 
to the lack of funds, facilities, and experts. Hence, it is high time to develop and transfer simple, cost-effective 
and easy-to-use technology to help study the disease and build their knowledge about SCT and SCD. For a bet-
ter understanding of SCD, SCT, and their complications, various technical approaches have been demonstrated 
mostly focusing on the mechanical properties of RBCs12. The mechanical properties of SCD RBCs have been 
measured based on invasive or force-applying techniques including micropipette aspiration13 and filtration14 as 
well as a flow-controlled chamber15, optical tweezers16, and atomic force microscope17. Although all these tech-
niques have undoubtedly improved the understanding of the relation between SCD and the mechanical prop-
erties of the RBCs, simultaneous investigations of the multiple properties of individual cells are still required to 
better understand the diverse interactions of the mechanical, biochemical, and morphological characteristics.

Recently, quantitative phase imaging (QPI) techniques have been introduced to study the morphology and 
mechanical properties of individual SCD RBCs18,19. QPI is an interferometric microscopy technique capable of 
measuring optical phase delays of biological cells and tissues noninvasively and quantitatively20,21. However, most 
QPI techniques require complicated, sensitive, and bulky optical instrumentation which has to be operated and 
occasionally aligned by well-trained personnel. Therefore, all the previous studies with QPI have been performed 
at research facilities collaborating with medical hospitals in developed countries. This constraint is unfortunate 
because QPI has much to offer the fields of SCD and SCT with its unique single-cell profiling capability and 
label-free and quantitative imaging ability, particularly for the study of RBC-related pathophysiology22–28.

Here, we report the investigation of SCD and SCT RBCs in Africa using QPI. Exploiting a recently developed 
quantitative phase imaging unit (QPIU)29, an existing simple bright-field microscope in a local clinic in Tanzania 
was converted into a highly precise and sensitive QPI instrument. We note that the objectives of this study are 
(1) to demonstrate the capability of QPI techniques in African countries regarding technical development and 
(2) to perform systematic measurements and comparative analyzes of individual RBCs from healthy, SCD, and 
SCT patients as scientific advances. Using the QPIU, we performed optical measurements on the morphological, 
biochemical, and mechanical properties of individual RBCs collected from individuals with SCD and SCT. The 
quantitative characteristics of the RBCs including the aspect ratio, membrane curvature, Hb contents, and mem-
brane fluctuation were measured from the quantitative phase images. In total, 623 RBCs from 23 individuals (5 
healthy, 8 SCT, and 10 SCD donors) were measured, and their morphological, biochemical, and mechanical prop-
erties were systematically analyzed. We found that both the RBCs from SCD and SCT patients had significantly 
different morphological and biomechanical properties compared to the healthy RBCs. The demonstration of the 
QPIU in Tanzania will provide new opportunities for the cost-effective and quantitative investigation of SCD as 
well as other neglected tropical diseases in low- and middle-income countries.

Results
Experimental setup.  To perform QPI in Tanzania, a standard bright-field optical microscope was converted 
into a highly stable and precise quantitative phase microscope with a QPIU (Fig. 1a). The QPIU is compact, 
simple, robust and easy-to-use. The QPIU consists of only three optical components: two linear polarizers and 

Figure 1.  Principle and demonstration of the quantitative phase imaging unit (QPIU). (a) A photograph 
of experiments performed at a local clinic in Tanzania using the QPIU. (b) A photograph and (c) schematic of 
the QPIU. The QPIU consists of a Rochon prism and two parallel linear polarizers (P). The green and the black 
arrows indicate the optical paths and polarization direction, respectively. (d) A recorded hologram of a sickle-
shaped RBC. The inset shows the magnified interference pattern.
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a Rochon prism (Fig. 1b). The unit can be attached to the image port of a standard microscope, and it does not 
require optical alignment. The principle behind the QPIU is lateral-shearing common-path interferometry29. 
Briefly, a beam from the image port of the microscope is first linearly polarized and then split into two beams with 
different propagation directions with a polarization prism (Fig. 1c). The polarization states of the two beams are 
matched to be parallel with the polarizer placed after the prism. Then, a spatially modulated interferogram is gen-
erated at an overlapped region of the two beams at the CCD plane (Fig. 1d). From the measured interferogram, an 
optical field image consisting of both the amplitude and phase map is retrieved using a field-retrieval algorithm30.

In this experiment, a Rochon prism was used for the polarizing prism, instead of a Wollaston prism, which 
was used in a previous paper29. Whereas a Wollaston prism deviates both polarized beams from an optical axis, a 
Rochon prism deviates only one polarized beam. Thus, the use of the Rochon prism further simplifies the optical 
system of the QPIU because a CCD plane can be adjusted as perpendicular to the optical axis and not perpendic-
ular to the direction of one of the deviated beams. The two polarizers are rotated so that the polarization direc-
tion of the polarizers have a 45° angle to the polarization axes of the beams, which ensures the maximum image 
contrast of the interferogram patterns and thus the maximum signal-to-noise ratio of the measurements. The 
Rochon prism and two polarizers are precisely adjusted and compactly assembled in an aluminum tube, which 
is mounted in front of a CCD camera (FL3-U3-32S2M-CS, Point Grey). As an illumination source, a laser diode 
(CPS532, λ =​ 532 nm, Thorlabs Inc.) is installed on a bright-field microscope (B-382PLi-ALC, Optika) equipped 
with a 100×​ oil immersion objective (NA =​ 1.25, M-148, Optika). We note that the QPIU is compatible with both 
upright and inverted microscopes, and the choice of an objective lens is arbitrary. The detailed designing param-
eter for QPIU can be found elsewhere29.

The QPIU system is highly stable even when all the experiments were performed on a typical office desk. The 
temporal stability of the QPIU system, defined as the standard deviation value of background over time, was 
9.4 nm, which is comparable to the 7 nm of fluctuation noise in a recent common-path interferometric system on 
a scientific-grade anti-vibration optical table31. This highly stable QPIU system is also cost-effective. The total cost 
of building a QPIU microscope is less than $3,000 USD including the microscope, the laser source, the camera 
and QPIU while a typical quantitative phase microscope system costs more than $30,000 USD. The cost only for 
the QPIU is less than $1,000 USD. This cost could be further decreased when the QPIU is commercially opti-
mized, for example, via mass production and using cheaper materials for a main body.

Classification of the RBCs.  RBCs were collected at a medical center in Tanzania from 23 individuals  
(5 healthy, 8 SCD, and 10 SCT). At least 17 RBCs per participant and 623 RBCs were measured. The classifications 
of individuals into healthy, SCD, and SCT were confirmed with Genotyping by sequencing with polymerase chain 
reaction (See Methods). We categorized the collected RBCs into four groups: healthy RBCs, SCT RBCs, irreversi-
bly sickled SCD cells (ISCs), and reversibly sickled SCD cells (RSCs). There are 149, 286, 34, 154 RBCs in healthy, 
SCT, ISC, and RSC groups, respectively. In this study, we considered each cell as a single data and excluded top 
and bottom 3% population to remove outliers. The measured data for individual donors are tabulated and statis-
tical analysis using the mean values of individual donors are presented in Supplementary Table S1 and Figures 
S1–4, respectively.

The RBCs from individuals with SCD were separated into the RSC and ISC groups depending on their shapes 
because they had distinguishable shapes and were expected to have different characteristics. Under oxygenated 
conditions, some RBCs in SCD patients remain sickle shapes due to permanently damaged membranes. These 
permanently deformed RBCs are considered as ISCs and usually have dense Hb concentration and reduced 
deformability32. Other RBCs that recover discoid shapes are called RSCs. As the RSCs suffer repeated transforms 
and accumulate damage on membranes, the cells become ISCs losing some ions and water but not Hb. The dis-
tinction of the ISCs and RSCs was achieved by visual inspections done by a trained medical doctor. The other 
RBCs from individuals with SCD were in discocyte shapes and considered as RSCs because the SCD patients 
in this study had not received a blood transfusion. SCD patients who receive a blood transfusion would have a 
population of healthy cells in the sample as well. Although the RBCs from SCD patients can be further classified 
into four subtypes based on their Hb concentration33,34, we used the two classifications for SCD RBCs mentioned 
above mainly due to the lack of equipment for the separation in the clinic.

Topography of the RBCs.  To demonstrate the capability of precise individual cell imaging, we performed 
quantitative phase imaging of the collected RBCs at the medical center in Tanzania. For each cell, 240 interfero-
grams were recorded at a frame rate of 60 Hz with the QPIU. The optical phase image Δ​φ(x, y, t) is retrieved from 
a measured interferogram using a field retrieval algorithm30. Then, the height map of a cell h(x, y, t) is calculated 
from Δ​φ(x, y, t) using the relation Δ​φ(x, y, t) =​ 2π/λ·Δ​n·h(x, y, t), where λ is the wavelength of light in a vacuum, 
and Δ​n is the refractive index contrast between a RBC and the medium (See Methods).

The representative cell height maps are shown in Fig. 2a–d for the healthy, SCT, ISC, and RSC groups, respec-
tively. Healthy RBCs exhibited characteristic discocyte shapes (Fig. 2a). SCT RBCs also showed discocyte shapes 
similar to the healthy RBCs (Fig. 2b). ISCs exhibited distinct sickle shapes whereas the RSCs had discocyte shapes 
(Fig. 2c–d).

Dynamic membrane fluctuations of the RBCs.  To investigate the biomechanical properties of individ-
ual RBCs in SCD and SCT, we addressed the dynamic membrane fluctuations in the cell membranes. Dynamic 
membrane fluctuations in RBCs, with the displacement of tens of nanometers at millisecond temporal dynamics, 
are strongly related to the deformability of RBCs. These dynamic membrane fluctuations in RBCs have been 
quantitatively and precisely measured using QPI techniques35–38, especially for the study of the effects of diverse 
pathophysiological conditions and the deformability of RBCs, including osmotic pressure39, morphology23, 
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ATP22, malaria24,40,41, babesiosis26, and cord blood42. Among them, QPI techniques have been previously used to 
measure dynamic membrane fluctuations in RBCs from patients with SCD18,19.

To address the dynamic membrane fluctuations in RBCs, dynamic displacements of the cell height maps 
Δh(x, y, t) are obtained by subtracting the instantaneous height maps from the temporal averaged height map 
as Δh(x, y, t) =​ h(x, y, t) −​ 〈​h(x, y, t)〉​t. The representative instantaneous height displacement maps are shown in 
Fig. 2e–h for the healthy, SCT, ISC, and RSC groups, respectively. Healthy RBCs had high membrane fluctuations, 
implying large deformability (Fig. 2e), and SCT and RSC RBCs also showed comparable but slightly decreased 
deformability (Fig. 2f,h). However, ISCs exhibited significantly decreased dynamic membrane fluctuations, com-
pared to the other groups, suggesting reduced deformability (Fig. 2g). Corresponding magnitudes of the mem-
brane fluctuation, which were calculated as standard deviation of the dynamic membrane displacement, were 
presented in Fig. 2i–l.

Analysis of the morphological and biomechanical properties of the RBCs.  To systematically inves-
tigate the alterations associated with SCT and SCD, the morphological and biomechanical parameters of the 
RBCs were retrieved from individual RBCs, including the aspect ratio, cell membrane curvature, and membrane 
fluctuations (Fig. 3). The aspect ratio was calculated by the ratio of diameters along the long and short axes of 
a cell. The long and short axes of a cell were found by fitting an ellipse to the cell boundary (See Supplementary 
Information). The healthy and SCT RBCs had symmetric shapes. The ISCs presented significantly decreased 
aspect ratios due to the sickled shapes. The RSCs showed slight decreases in the aspect ratios compared to 
the healthy and SCT RBCs. The mean values of the aspect ratios were 0.89 ±​ 0.08, 0.90 ±​ 0.06, 0.44 ±​ 0.07 and 
0.81 ±​ 0.12 (mean ±​ standard deviation) for the healthy, SCT, ISC, and RSC groups, respectively (Fig. 3a). The 
analysis that was obtained using mean values of individual donors instead of each cell data also presented compa-
rable results (Supplementary Figure S1).

To study whether a dimple shape is maintained, the curvature of the cell membrane was calculated from the 
measured cell height map (See Methods). The dimple shape in healthy RBCs was maintained by the intact spectrin 
cytoskeletal structures and membrane-bound proteins. It is known that polymerized HbS can cause damages to 
the cortex structures of the RBC membrane43. The damaged membrane could result in the change of a dimple  
curvature. The mean values of the curvature are −​0.133 ±​ 0.13, −​0.169 ±​ 0.10, −​0.054 ±​ 0.17 and −​0.202 ±​ 0.12 μ​m−1  
for the healthy, SCT, ISC, and RSC groups, respectively (Fig. 3b). The results show that the SCT RBCs and RSCs 
have dimple shapes in the middle of the cell membrane, whereas the ISCs lost their dimple shapes. The statistical 
analysis using mean values of individuals instead of every cell data also presents ISCs have significantly flattened 
curvatures compared to RSCs. as shown in the Supplementary Figure S2.

Figure 2.  Shapes and fluctuations of RBCs. Height (the top row; a–d), instantaneous membrane displacement 
(the middle row; e–h), and magnitidue of fluctuation (the bottom row; i–l) map of a RBC from a healthy 
individual (a,e,i), a RBC from an individual with SCT (b,f,j), an irreversibly sickled RBC (c,g,k) and a reversibly 
sickled RBC (d,h,l) from an individual with SCD, respectively.
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Hemoglobin contents in the individual RBCs.  The total mass of Hb inside RBCs is an important bio-
chemical parameter indicating the capacity of oxygen transportation by the RBCs. Using the present method, the 
total amount of Hb inside individual RBCs, or the Hb contents, can be calculated from the quantitative phase 
images44,45. Because Hb represents the majority of the soluble proteins in RBCs, the Hb mass inside a cell can be 
related to the integration of the optical phase delay over the cell area as follows:

∫ ∫
λ
πα

φ= = ∆Hb C h x y dA x y dAcontents ( , )
2

( , ) , (1)Hb

where α is the refractive index increment of Hb (0.002 dL/g)46; CHb is the Hb concentration in a RBC and ∫ dA is 
the integration over the cell area A47.

The mean values of the Hb contents were 30.99 ±​ 4.16, 28.10 ±​ 3.47, 28.62 ±​ 4.75 and 30.96 ±​ 4.24 pg for the 
healthy, SCT, ISC, and RSC groups, respectively (Fig. 3c). The mean Hb contents averaged over the RBCs corre-
spond to the mean corpuscular hemoglobin (MCH), which is a medical parameter extensively used in the clinical 
laboratory. The mean value of the Hb contents of the healthy group was within the physiological level (27–33 pg). 
The Hb contents of the SCT and ISC groups were slightly decreased compared to the healthy RBCs, and the mean 
values of the Hb contents for every group were within the normal physiological range (27–33 pg). This result is 
in agreement with previous reports that there is no medically significant difference in Hb contents for SCT and 
SCD RBCs48,49. This is also verified in statistical analysis using the mean values of individual donor, as shown in 
the Supplementary Figure S3.

Cell membrane deformability of individual RBCs.  To analyze the biomechanical properties of the 
RBCs, the dynamic membrane fluctuations of the RBCs in the four groups were quantified from the measured 
dynamic 2-D height fluctuation images. Dynamic fluctuation in RBC membranes, consisting of tens of nanome-
ter displacements at millisecond temporal frequencies, reflects the biomechanical properties of RBCs, including 
the viscoelastic properties of the cell membrane cortex as well as the viscosity of the cytoplasm50. To represent the 
deformability of the RBCs, we calculated the temporal standard deviations of the dynamic membrane displace-
ments and spatially averaged over a cell area as follows:

∫= ∆Fluctuation h x y t dAstd[ ( , ; )] (2)

where std indicates the temporal standard deviation.
The average values for the fluctuations were 45.38 ±​ 5.18, 40.04 ±​ 3.65, 27.04 ±​ 4.05 and 40.36 ±​ 4.19 nm for 

healthy, SCT, ISC, and RSC groups, respectively (Fig. 3d). The values of the membrane fluctuations for the healthy 
RBCs were the highest among the groups, and their values are comparable with previous reports22–24. The ISCs 

Figure 3.  Measured morphological and mechanical parameters. (a) Aspect ratios of the projected areas of 
the cells. (b) Membrane curvatures of the center dimple regions. (c) Hb contents in individual cells.  
(d) Dynamic fluctuations in the cell membranes. (e) A scatter plot of the dynamic membrane fluctuation 
versus cell aspect ratio. Solid lines correspond to 95% confidence ellipses for each group. Statistical tests were 
performed with the Mann–Whitney U-tests (a) and Student’s t-tests (b–d) against the Healthy group (*​p <​ 0.05; 
*​*​p <​ 0.01; *​*​*​p <​ 0.001). There are 135, 258, 30, 138 data points for Healthy, SCT, ISC, and RSC groups, 
respectively, in the figure.
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exhibited significantly decreased membrane fluctuations indicating a reduced cell deformability; the results 
agree well with previous reports18,19. The membrane fluctuations of the RSCs were between the fluctuation of the 
healthy RBCs and ISCs in agreement with previous findings13,18,51. The SCT RBCs had a similar level of fluctua-
tions as the RSCs, which is also consistent with recent reports16,52,53. Consistent results are also observed in the 
analysis using mean values of individual donors, as shown in Supplementary Figure S4.

Correlation between the shapes and deformability of the individual RBCs.  The results above 
show that both elongated forms and reduced membrane deformability in RBCs are the distinct characteristics of 
the SCT and SCD. For further clarification, correlation analysis between the dynamic membrane fluctuation and 
the aspect ratio were performed at the individual cell level for the four groups (Fig. 3e). The ISCs population was 
clearly isolated from the other population, and the other groups shared overlaps in the scatter plot. Even though 
both SCT and RSC RBCs showed cell deformability comparable to the healthy RBCs, the SCT RBCs had aspect 
ratios comparable to the healthy RBCs whereas the RSC RBCs had slightly reduced aspect ratios. Additionally, in 
the scatter plot, the population of the SCT RBCs is a subset of the healthy RBCs, implying that the SCT RBCs are 
difficult to distinguish from healthy RBCs based on their morphological, biochemical, and mechanical properties.

Discussion
This study presents systematic cell analysis of RBCs in Tanzania using the QPIU. We performed optical meas-
urements of multiple characteristics of RBCs collected from SCT and SCD individuals. To date, this is the first 
report to investigate using holographic microscopy or QPI techniques in a clinical setting in Africa. Despite the 
recent discoveries and developments of several biophotonic approaches targeted for translational medicine, the 
application to clinical studies in Africa has been difficult due to a lack of funds, facilities, and experts in African 
countries. This study performed in Tanzania clearly shows that QPI techniques can be transferred into local 
clinical environments in underdeveloped countries, which significantly expand the applicability and potentials of 
QPI techniques and provide new possibilities for research and diagnosis in environments with limited resources.

In this study, a systematic investigation of the morphological, biochemical, and mechanical properties of indi-
vidual RBCs was performed. The collected RBCs were categorized into four groups, healthy, SCT, ISC, and RSC 
groups, depending on the genotypes of the donors and the cell morphology. For each RBC, the optical phase delay 
images were obtained, from which the morphological (cell aspect ratio and membrane curvature), biochemical 
(Hb contents), and biomechanical (dynamic membrane fluctuation) properties were retrieved and investigated.

The aspect ratios of the RBCs clearly showed the elongated shapes of the ISCs and the round shapes of the 
other RBCs. The RSCs had a broaden distribution for the aspect ratio which might be due to partially damaged 
membranes. The SCT RBCs showed almost identical round shapes with the healthy RBCs. In accordance with 
the similar shapes of the healthy and SCT RBCs and the RSCs, their membranes had the distinct curvatures of 
dimples. On the other hand, the membrane of the ISCs became flattened on average although some of the ISCs 
still exhibited strong dimpled membranes. The reduced curvatures of the ISCs were thought to be related to the 
damaged spectrin networks which are responsible for the dimple formation54. The detailed mechanism for the 
reduced curvature should be investigated with further experiments. For example, the QPI combined with optical 
tweezers could be used to study the relation between the membrane curvature and repeated elongation55.

As a biochemical assessment, we measured the Hb contents inside the individual RBCs. The measured Hb 
contents of the SCT RBCs and ISCs were slightly lower (<​10%) than that of the healthy RBCs. However, the 
deviations did not seem to be medically significant because all MCHs for the four groups were still within the 
physiological range. This result is consistent with previous work which had reported the MCH of SCT and SCD 
RBCs were within the physiological ranges48,49. Thus, the minor difference in MCH was believed to originate from 
the biological variations of the individuals. An additional source for the different MCHs could be related to the 
different losses of Hb components during a RBC life span56. An important fact is that the similar values of MCH 
among the groups clearly indicate the comparable oxygen capacity of the individual RBCs regardless of the sickle 
genes. Thus, it is evident that anemia is developed by the lack of an RBC population and blocked capillaries rather 
than the reduced oxygen capacity of the individual cells.

The membrane fluctuation, the dynamic characteristics indicating the deformability of the cells, was quanti-
fied by investigating the dynamics of the cell height. The measured membrane fluctuations showed that the SCT 
and SCD RBCs had less deformability than that of the healthy RBCs. In particular, the ISCs had the smallest 
fluctuation which was due to the permanent change in the membrane cortex structures as a result of repeated 
sickling52,57. It is worth noticing that the SCT RBCs and RSCs had lower values for the fluctuations compared to 
the healthy RBCs despite the indistinguishable morphology from the healthy RBCs. The result suggests that the 
reduced deformability not be solely caused by the polymerization of HbS and raises the necessity for further study 
on the mechanism of membrane stiffening.

From the correlative analysis between the aspect ratio and the fluctuation, we reconfirmed that the reduced 
deformability and elongated shape are distinct properties of the ISCs. The ISCs had the lowest fluctuation and 
aspect ratio among the groups, suggesting a correlation between the elongation and fluctuation. One possible 
reason is that a low aspect ratio means a high bending energy stored in the lipid membrane, which could suppress 
dynamic membrane fluctuation.

In this experiment, we categorized the SCD RBCs into two types, ISCs and RSCs, according to the shape 
of the cells. However, the RBCs from SCD individuals are often classified into four or more groups depending 
on their Hb concentration. With the combination of appropriate density-based separation techniques and QPI 
techniques, we would be able to investigate the characteristics of the RBCs according to more specific conditions. 
Furthermore, non-contact optical measurements of the individual membrane fluctuation controlling the oxygen 
level of the sample solutions may provide new quantitative findings for the hemodynamic characteristics of the 
SCT and SCD RBCs.
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The method presented in this study can be readily applied in other clinical settings in underdeveloped coun-
tries because the QPIU is cost-effective and easy-to-use. Building the prototype QPIU system used in this study 
cost less than $1,000 USD, but it can be further reduced significantly if cheaper optics are used and mass produc-
tion is involved. Furthermore, no special training is required to operate the system because the QPIU is align-free 
and image analysis can be fully automated. Although the QPIU system has limited modality due to its simplicity, 
it can provide unique label-free and quantitative imaging capability for blood cells, parasites, and bacteria, which 
are important for the study and diagnosis of several neglected tropical diseases.

In summary, we have successfully demonstrated the practicality of the QPIU in Africa for the first time. We 
did measurements on the quantitative phase imaging of RBCs from individuals with SCD and SCT and investi-
gated various cellular parameters. This study also showed that an existing simple bright-field microscope could 
be converted into a high-performance quantitative phase imaging instrument capable of measuring morpholog-
ical, biochemical, and mechanical properties at the same time. This approach provides valuable information to 
clinics which has been usually obtained with complete blood counter and cell biomechanics experimental appa-
ratuses such as micropipette aspiration, which is difficult to implement and do in local clinics in underdeveloped 
countries.

We believe it is a perfect time to transfer the QPIU technique to underdeveloped countries as the awareness 
about the clinical and economic burdens of SCD increases. This demonstration suggests that the QPIU is an 
important and potential tool because the technique is cost-effective, compact, easy-to-use, and does not require 
expensive reagents or consumables. These advantages obviously provide additional opportunities for studying 
other parasitic and bacterial epidemics and will finally significantly contribute to the improvement of these health 
conditions in Africa. We believe that our demonstration in Tanzania presents an important and promising exam-
ple of transferring advanced technology from the laboratory to the practical field.

Materials and Methods
Recruitment procedures.  The sample preparation procedures and the methods were approved by the 
Medical Research Coordinating Committee of the National Institute for Medical Research (reference number: 
NIMR/HQ/R.8a/Vol. IX/1896) and the Institutional Review Board (IRB project number: KH2015–37). The study 
was conducted as a part of an ongoing hospital-based acute febrile illness study and done at the National Institute 
for Medical Research (NIMR) laboratory, located within Morogoro Regional Referral Hospital, Tanzania. 
Participants were recruited from the patients admitted to the pediatric ward number 6, and the remaining 
ones were patients who presented to the outpatient department with fever and other symptoms to seek treat-
ment. Relatives of admitted participants also assisted in inviting other known sickle cell patients who were also 
requested to take part in the study. The remaining participants were healthy individuals who volunteered to take 
part in. Verbal consent was obtained from all study participants and the parents or guardian of recruited children 
before any sample collections. All study participants were tested for malaria using malaria rapid diagnostic tests 
(05FK60, Standard Diagnostics, Inc.) to minimize the chances of creating confusion with the effect of malaria. It 
has been suggested that malaria infection particularly P. falciparum parasites alters the characteristics of the cell 
membrane24.

Genotyping by sequencing polymerase chain reaction (PCR) products.  The sickle genotypes 
(AA, AS and SS) of the patients were confirmed by DNA sequencing of the PCR products of the beta-globin 
gene region including the sickle single nucleotide polymorphism (SNP)58. The genomic DNA was purified from 
500 μ​l of whole blood with a commercial kit. The sickle SNP, A/T transversion in the codon 6 of the human 
beta-globin gene, was determined by DNA sequencing with the Big Dye Terminator sequencing kit (ABI). A 
520 bp PCR product of the gene region including the sickle SNP loci was amplified with primers (Sickle_F: 
AAAGTCAGGGCAGAGCCATC; Sickle_R: AAGGGTCCCATAGACTCACCC), with 30 cycles of 94 °C for 
30 sec., 55 °C for 30 sec., 72 °C for 60 sec. The corresponding PCR fragment was purified from the agarose gel and 
subjected to DNA sequencing.

Sample preparations.  Under aseptic procedures, approximately 1 mL of peripheral blood was collected 
from the participants (known sickle cell patients and their biological parents and blood relatives). Specimens were 
collected in vacutainers tubes containing EDTA anticoagulant. All samples were stored at room temperature for 
a maximum of 10 hours before the measurements were conducted. The whole blood samples were diluted 500 
times in phosphate buffered saline (PBS, Welgene Inc.) solution. The diluted blood solutions (5 μ​L) were injected 
into glass channels made of slide glass and a KOH-washed coverslip. Double-sided tapes of 100 μ​m thicknesses 
(3M Company) were used for spacers in the channels. The blood samples were considered to be under an oxy-
genated condition because no chemicals for deoxygenation were used, and the blood samples were sufficiently 
exposed to oxygen in the air.

Calculating the RBC height from the optical phase images.  The height of the RBC is obtained from 
Δ​φ(x, y, t) through the equation: Δ​φ(x, y, t) =​ 2π/λ·Δ​n·h(x, y, t), where λ is the wavelength of light in a vacuum 
(λ =​ 532 nm) and Δ​n is the refractive index contrast between an RBC and a medium (i.e., PBS solution). In this 
experiment, because the refractive index contrast can be considered to be solely originating from the Hb inside 
the RBCs, the refractive index contrast could be expressed as Δ​n =​ α·CHb

45,59, where CHb is the Hb concentration, 
and α is the refractive index increment of the Hb (α =​ 0.002 dL/g46). Because we were not able to measure CHb 
for the individual RBCs at the clinic, the values of CHb were adapted from previous reports to determine Δ​n. 
Specifically, for the healthy and SCT RBCs which have a physiological concentration of Hb, we used CHb =​ 34 g/
dL46,48. For the SCD RBCs, two different CHb values were used depending on the groups because the Hb concen-
tration of the SCD RBCs is a bimodal distribution33,60. One population, mainly comprised of the RSCs, is known 



www.nature.com/scientificreports/

8Scientific Reports | 6:31698 | DOI: 10.1038/srep31698

to have an average Hb concentration similar to that of the healthy RBCs (CHb =​ 34 g/dL). The other population, 
mainly comprised of the ISCs, is known to have an average concentration of 45 g/dL33. Thus, the optical phase 
delay of 1 radian corresponds to the height of 1.249 μ​m for the healthy and SCT RBCs and RSCs and a height of 
0.944 μ​m for the ISCs.

Calculating the membrane curvature.  To quantify the membrane curvature of the individual cells, a 
mean curvature, which is the mean of two principal curvatures, at each point on the cells was calculated from the 
height map. The calculated mean curvatures at each point were averaged over a dimple region around the center 
of the cells. The dimple region is defined by an elliptical area whose diameters are 40% of the diameters of the 
individual RBCs.
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