scientific reports

Check for updates

OPEN In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size

Nivas Shyamala¹, Chaitra Lava Kongettira¹, Kaushik Puranam¹, Keerthi Kupsal¹, Ramanjaneyulu Kummari¹, Chiranjeevi Padala^{1,2} & Surekha Rani Hanumanth¹

Genetic and epigenetic modifications of genes involved in the key regulatory pathways play a significant role in the pathophysiology and progression of multifactorial diseases. The present study is an attempt to identify single nucleotide variations (SNVs) at CpG sites of promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes influencing CpG island (CGI) existence and size associated with the pathophysiology of Diabetes mellitus, Coronary artery disease and Cancers. Promoter sequences located between -2000 to + 2000 bp were retrieved from the EPDnew database and predicted the CpG island using MethPrimer. Further, SNVs at CpG sites were accessed from NCBI, Ensembl while transcription factor (TF) binding sites were accessed using AliBaba2.1. CGI existence and size were determined for each SNV at CpG site with respect to wild type and variant allele by MethPrimer. A total of 200 SNVs at CpG sites were analyzed from the promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes. Of these, only 17 (8.5%) SNVs were found to influence the loss of CGI while 70 (35%) SNVs were found to reduce the size of CGI. It has also been found that 59% (10) of CGI abolishing SNVs are showing differences in binding of TFs. The findings of the study suggest that the candidate SNVs at CpG sites regulating CGI existence and size might influence the DNA methylation status and expression of genes involved in molecular pathways associated with several diseases. The insights of the present study may pave the way for new experimental studies to undertake challenges in DNA methylation, gene expression and protein assays.

Multifactorial diseases like Diabetes mellitus (DM), Coronary artery disease (CAD) and Cancers are the top leading causes of death worldwide¹. Globally, understanding of underlying mechanisms and prevention of these diseases with different strategies are potential challenges for researchers in medicine². These diseases are influenced by common risk factors such as family history, smoking, obesity, insufficient physical activity, etc³. Studies suggest that besides these conventional risk factors, genetic and epigenetic modifications of certain genes also play a significant role in pathophysiology and progression of these diseases⁴⁻⁶.

Evidences suggest that epigenetic modifications regulate the genome structure and expression pattern of genes^{7,8}. These mechanisms include DNA methylation, histone modification and non-coding RNAs regulation, which can be inherited from one generation to the next⁹. DNA methylation is a common molecular alteration at CpG sites of DNA sequence which is influenced by genetic and environmental factors. DNA methylation in various cell types regulate the expression of genes and shows an association with the pathophysiology of diseases 10-13.

DNA methylation at CpG sites is an enzymatic reaction catalysed and maintained by DNA methyltransferase (DNMT) family in particular DNMT3A, 3B and DNMT114. DNMTs convert cytosine to 5-methylcytosine by adding methyl group at CpG dinucleotide sites of CpG islands (CGIs). CGIs are typically located at the regulatory regions, predominantly in promoters and are 500-1500 bp long^{15,16}. Commonly, transcriptional activity of promoter depends on the binding efficiency of RNA polymerase II and transcription factors (TF) to the core

¹Present address: Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India. ²Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana State, India. Memail: surekharanih@gmail.com

promoter¹⁷. Studies suggested that the methylation of cytosines in a promoter DNA suppresses the rate of transcription, reduces the mRNA copy number and ultimately affects the protein synthesis^{18–20}.

Initially, genes under the study ACAT1^{21,22}, APOB^{23,24}, APOE²⁵⁻²⁷, CYBA^{28,29}, FAS^{30,31}, FLT1^{32,33}, KSR2³⁴, LDLR^{24,35}, MMP9^{36,37}, PCSK9^{13,38,39}, PHOX2A⁴⁰⁻⁴², REST^{43,44}, SH2B3⁴⁵⁻⁴⁷, SORT1⁴⁸⁻⁵⁰ and TIMP1^{51,52} were selected which were found to be involved in several key regulatory pathways associated with the pathology of DM, CAD and Cancers (Supplementary Table 1). These genes and gene products enormously involve in various pathways: ACAT1, PCSK9 & SORT1 in cholesterol homeostasis; APOB, APOE & LDLR in lipid metabolism; CYBA, KSR2 & PHOX2A in oxidative stress; FAS, REST & SORT1 in apoptosis; FLT1 & SH2B3 in inflammation and angiogenesis; MMP9 & TIMP1 in maintenance of extracellular matrix and vascular smooth muscle cells.

Studies suggest that the single nucleotide variations (SNVs) located at promoter, exonic & intronic regions of these genes regulate the expression, alternative splicing of mRNA, structural conformation of proteins, etc^{28,30,31,36,53}. Moreover, these genes were found to have genome-wide significant loci for risk of multifactorial diseases in various populations. In addition, epigenetic studies have suggested that the DNA methylation of *ACAT1*⁵⁴, *APOB*⁵⁵, *APOE*¹⁹, *CYBA*⁶, *FAS*²⁰, *FLT1*⁵⁶, *LDLR*⁵⁷, *MMP9*⁵⁸, *PCSK9*^{13,59}, *REST*⁶⁰, *SH2B3*⁶¹, *SORT1*⁶² and *TIMP1*⁶³ genes play a substantial role in regulation of gene expression.

There are few reports published to show the tangible impact of SNVs at CpG sites on CpG island existence or size in genes influencing the pathophysiology of various diseases^{64–66}. A genome-wide CpG SNP identification study revealed that CpG SNPs are significantly associated with the Cancers⁶⁴. Furthermore, GWAS datasets on DM and CAD have identified novel functional SNPs at CpG sites which affect the expression and function of genes via epigenetic regulations⁶⁵. Experimental studies on O6-methylguanine-DNA methyltransferase (*MGMT*) gene rs16906252 and *RAD50* gene DNase I hypersensitive sites (*RHS*) 7 region rs2240032 polymorphisms suggested that SNPs at CpG sites can influence the DNA methylation at promoter regions, transcription factors binding at enhancer or silencer region and miRNA binding at 3'UTR region^{67–70}. The SNVs at CpG sites might modulate the existence and size of CpG islands at the promoter region; altering the methylation patterns and binding of transcription factors which ultimately affect the gene activation or silencing or expression^{64,65}. Therefore, studies are warranted to identify SNVs at CpG sites regulating CpG island existence & size and their consequent effects on DNA methylation and gene expression.

Hence, the present study is an attempt to identify candidate SNVs at CpG sites in promoter region of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes regulating the existence and size of CpG islands.

Materials and methods

Study design. The detailed study design is presented in Fig. 1.

Literature search and databases. We have conducted a comprehensive electronic search to browse genes under study, SNVs data and their respective literature using following data bases: National Library of Medicine (https://www.nlm.nih.gov/), National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), dbSNP (https://www.ncbi.nlm.nih.gov/ snp/), Cancer Genetics Web (http://www.cancerindex.org/geneweb/), Google scholar (https://scholar.google.com/), GeneCards: the human gene database (https://www.genecards.org/). The search was limited to key words 'ACAT1', 'APOB', 'APOE', 'CYBA', 'FAS', 'FLT1', 'KSR2', 'LDLR', 'MMP9', 'PCSK9', 'PHOX2A', 'REST', 'SH2B3', 'SORT1' 'TIMP1', polymorphisms, genetic variations, CpG islands, DNA methylation, Diabetes mellitus, Coronary artery disease and Cancer.

Promoter sequence retrieval. Promoter sequences located between -2000 to +2000 bp were retrieved from Eukaryotic promoter database (EPD) new to check the CpG island status of genes under the study. EPD new allows access to several databases of experimentally validated promoters and published articles of model organisms. EPDnew contains 4806 promoters from various species like *Homo sapiens*, *Mus musculus*, *Caeno-rhabditis elegans*, *Drosophila melanogaster*, *Arabidopsis thaliana*, *Saccharomyces cerevisiae*, etc.⁷¹.

Prediction of CpG Islands. CpG islands (CGIs) in promoter sequence of genes under the study were predicted using MethPrimer v1.1 beta. CGI existence and size were determined for each single nucleotide variation at CpG site with respect to wild type and variant allele. MethPrimer predicts potential CGIs in the input promoter DNA sequence and designs sequence specific primers for Methylation-Specific PCR and Bisulfite-Sequencing PCR. The output results are presented in graphical view for predicted CpG island and in text format for PCR primers⁷². The criteria used for gain and loss of CGI prediction is Island size > 100bp, GC percent > 50.0, ratio of Obs/Exp no of CpG dinucleotides > 0.60⁷³.

Selection of SNVs at CpG sites. CpG sites were identified from the results of MethPrimer and the SNVs at CpG sites were accessed from National Center for Biotechnology Information (NCBI) and Ensembl. NCBI and Ensembl are widely used genome browsers in global scientific community. The browsers were developed with the data of genomic regions, genes, gene sequence, genetic variations, phenotypes, etc. The tools visualize DNA sequence and their respective annotated genetic variations to identify the SNVs at CpG sites in CpG islands^{74,75}.

Transcription factor binding site prediction. AliBaba2.1 tool was used for the prediction of transcription factor binding sites in wild type and variant alleles of SNVs at CpG sites. It is an online tool to identify transcription factors and their respective binding sites for the input DNA sequence by constructing matrices on

than other current approaches⁷⁶.

the fly from TRANSFAC 4.0 sites. AliBaba tool has significantly higher sensitivity and sensitivity/specificity ratio

Co-expression prediction. APOE, CYBA, FAS, LDLR, MMP9, PCSK9, PHOX2A, SH2B3 and TIMP1 genes were analysed to know the other co-expressing, physically interacting, co-localizing and key biological pathway related genes using GeneMANIA. GeneMANIA is a potent database of almost 2300 networks with 600 million interactions covering upto 164,000 genes in model organisms and provide genomic, proteomic, and gene function data. It is an effective approach to predict the function of input single gene/ multiple gene queries physically interacting proteins, co-expressing and co-localizing genes, genetic interactions, shared protein domains and pathways^{77,78}.

Layouts generated by GeneMANIA web server have nodes and edges. Nodes represent gene and its products, while edges represent co-expression interaction and weight of each edge implies the evidence of co-functionality data source.

Gene ontology enrichment analysis. Gene ontology (GO) enrichment analysis of genes (*ACAT1*, *APOB*, *APOE*, *CYBA*, *FAS*, *FLT1*, *KSR2*, *LDLR*, *MMP9*, *PCSK9*, *PHOX2A*, *REST*, *SH2B3*, *SORT1*, *TIMP1*) was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 online tool (https://david.ncifcrf.gov/home.jsp). The GO terms were classified into three categories: biological process (BP), cellular component (CC) and molecular function (MF) with significant p value of <0.05. Further, GO term enrichment analysis was used to annotate the disease class and functional clustering of genes under the study.

Results

Promoter sequence of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes were analysed for the prediction of CpG islands and have observed CpG islands for all the genes (Fig. 2A, B). Further, the existence and sizes of CGI for wild type and variant alleles of all the CpG SNVs were analyzed. In addition, transcription factors binding to both the wild type and variant alleles of CpG SNVs abolishing CGI were predicted.

A total of 200 SNVs at CpG sites were studied for ACAT1 (10), APOB (3), APOE (1), CYBA (7), FAS (12), FLT1 (6), KSR2 (31), LDLR (16), MMP9 (28), PCSK9 (8), PHOX2A (22), REST (5), SH2B3 (29), SORT1 (16) and TIMP1 (6) genes. Of these, 17 (8.5%) candidate SNVs abolished the CpG islands existence and 70 (35%) SNVs potentially decreased the CpG islands size in various genes (Table 1). The percentage of abolished CGIs and change in size of CGIs of all genes are represented in Table 1 and Fig. 3.

CpG SNVs abolishing and reducing sizes of CGI. APOE gene has a single SNV rs769448 at CpG site, its variant allele has lost the entire 112 bp CGI. Among the 16 CpG SNVs studied in 2 CGIs (island 1:138 bp,

island 2:167 bp) of *LDLR* gene, 5 SNVs (rs1026272027, rs887608252, rs1006494933, rs532491368, rs1024897634) have abolished the entire CGI whereas 7 SNVs have shown a 2-30 bp reduction in CGI size.

In *SH2B3* gene, 29 CpG SNVs were studied in 2 CpG islands (island 1:214 bp; island 2:796 bp), out of which 2 SNVs (rs538445017, rs922413124) in the first CGI has abolished the entire CGI. Whereas, remaining 3 SNVs in the first CGI and the other 2 SNVs in second CGI have shown a 18–100 bp decrease in the size of CGI.

Amongst the 28 CpG SNVs selected in 2 CpG islands (island 1:172 bp; island 2:205 bp) of *MMP9* gene, 5 SNVs (rs139620474, rs370018925, rs201069991, rs1014494202, rs146719297) in the first CGI have abolished the entire CGI, while 10 SNVs in the second CpG island have reduced 55-71 bp in their sizes.

In *TIMP1* gene, 6 SNVs were analyzed in 2 CpG islands (island 1:126 bp; island 2:125 bp), the results revealed that 4 SNVs (rs779329701, rs993047389, rs376386551, rs926004266) in the first CGI have abolished the entire CGI, whereas the remaining 2 SNVs in the second CpG island have shown a 16-20 bp reduction in their CGI size.

Further, the CpG site SNVs 5 in ACAT1, 2 in APOB, 4 in CYBA, 11 in FAS, 5 in FLT1, 4 in KSR2, 4 in PCSK9, 8 in PHOX2A, 2 in REST and 2 in SORT1 are reducing the CGI sizes ranging from 1-85 bp.

Transcription factor binding site analysis. SNVs at CpG sites abolishing the CGIs of *LDLR*, *MMP9*, *SH2B3*, *TIMP1* and *APOE 1* genes were analysed to predict the difference in binding of transcription factors (TF) at the site of variation. As represented in Table 2, we have observed that SNVs 4 in *LDLR*, 2 in *MMP9*, 1 in *SH2B3*, 2 in *TIMP1* and 1 in *APOE* genes have shown a difference in binding of TFs.

To the 4 SNVs of *LDLR* gene that abolished CGI, TFs binding site prediction has shown that rs1026272027 wild type allele has a binding site for C/EBPapl and variant allele has a binding site for C/EBPbet. For rs887608252,C/T, rs1006494933,G/A and rs1024897634,C/T SNVs, there were no TF binding sites for their wild type alleles, but their variant alleles have binding sites for C/EBPapl, GATA-1 & Oct-1 and Oct-1 TFs respectively.

Likewise, 2 SNVs abolishing CGIs in *MMP9* gene have shown the difference in binding of TFs, rs370018925 wild type allele has no binding site for any TF whereas variant allele is bound by Sp1 transcription factor. Though the rs1014494202 has Sp1 binding site for wild type allele, variant allele has an additional binding site for BRF-1 transcription factor.

For rs922413124 in *SH2B3* gene, there was a binding site for Sp1 in wild type allele, but it is abolished in variant allele. Similarly, *APOE* rs769448 has binding site for Sp1 transcription factor but its variant allele is lacking a site for binding of any transcription factor.

Furthermore, 2 SNVs that abolished CGIs in *TIMP1* gene has shown that the wild type alleles of rs779329701 and rs376386551 has binding sites for Egr-1 and Sp1 transcription factors while variant alleles have binding sites for NF-1 and N-Myc transcription factors respectively.

Co-expression analysis. GeneMANIA co-expression network revealed that *APOE*, *LDLR*, *MMP9*, *SH2B3* and *TIMP1* genes might regulate the expression of several other genes. Single gene queries have shown that *APOE* gene influencing the expression of *APOC3*, *APOA1*, *APOB*, *LIPC*; *LDLR* influences *LCN2*, *TIMP1*; *MMP9* influences *LIPC*, *MMP1*, *LCN2*; *SH2B3* influences *VLDLR*, *LDLRAP1*, *TGFB1*, *KIT*; *TIMP1* influences *VLDLR*, *LDLR*, *MMP1*, *MMP9*, *MMP3*, *LCN2*, *SH2B3* genes (Fig. 4A–E). While multi gene queries interestingly displayed that *APOE*, *LDLR*, *MMP9*, *SH2B3* and *TIMP1* genes expression are associated with each other (Fig. 5). GeneMANIA consolidated networks revealed that the *APOE*, *LDLR*, *MMP9*, *SH2B3*, *TIMP1* genes are involved in various signaling pathways. It has been shown that *APOE* & *LDLR* genes are involved in lipid and lipoprotein metabolisms, while *MMP9* and *TIMP1* genes are significantly modulating the degradation of extracellular matrix. In addition, these genes show an internal correlation in their co-expression network (Supplementary Fig. 1).

Gene ontology enrichment analysis. The gene ontology enrichment analysis of the genes set is shown in Fig. 6. The top 10 GO terms of biological process (BP), cellular component (CC), molecular function (MF) and disease class analyses in genes were sorted by p-value or gene count. According to the BP analysis, the GO term pathways were mainly associated with the cholesterol biosynthesis, metabolism and homeostasis, regulation of apoptosis, receptor mediated endocytosis, etc (Fig. 6A). For the CC analysis, the GO terms of these genes were mainly located and enriched in the plasma membrane, extracellular exosomes and space, golgi apparatus, etc (Fig. 6B). In the MF analysis, 15 genes were mainly enriched and associated with binding activity and transporter activity particularly protein binding, metal ion binding, identical protein binding, low-density lipoprotein particle receptor binding, cholesterol transporter activity, etc (Fig. 6C).

The GO terms disease class analysis of these genes revealed that the genes are associated with metabolic diseases, neurological diseases, cardiovascular diseases, cancers, etc (Fig. 6D). Later, functional annotation clustering of these genes was performed and functional chart of cluster with highest gene enrichment score (3.17) is shown in Fig. 6E. Out of the 15 genes *APOB*, *APOE*, *LDLR*, *PCSK9*, *SORT1* genes are associated with golgi complex, early endosome, cholesterol metabolism, etc (Supplementary data 1).

Discussion

The multifactorial diseases like diabetes mellitus, coronary artery disease and cancers are leading cause for morbidity and mortality worldwide. Genetic and epigenetic modifications are also recognized as significant risk factors for the pathophysiology of these diseases. Studies reported that epigenetic modifications play a crucial role in cell differentiation at embryonic development⁷⁹. Besides, environmental factors and age affect the DNA methylation and demethylation patterns in mammalians⁸⁰. The methylation patterns of promoter DNA depends upon the presence of CpG sites, CpG islands existence and their respective size in the promoter region. Genetic

		Single nucleotide variations (SNVs)		CpG island status with			
S. No.	CpG island and size (bp)	(rs number; variation)	CpG coordinates on chromosome	Wild type allele	Variant allele	Change in CpG island size (bp)	
Gene	Acetyl-Coenzyme A acetyltrans	ferase 1 (ACAT1)					
1	Island;341	rs539426263;C/A*	chr11:108121278	Present	Present	339	
2		rs376263677;G/C	chr11:108121289	Present	Present	341	
3		rs376263677;G/T*		Present	Present	339	
4		rs979540931:C>G*	chr11:108121307	Present	Present	339	
5		rs551761017:C>A*	chr11:108121313	Present	Present	339	
6		rs1191223847:G>A*	chr11:108121314	Present	Present	339	
7		rs1294688280:C>T	chr11:108121367-108121378	Present	Present	341	
8		rs1294688280:G>A		Present	Present	341	
9		rs1246409549:C>T	chr11:108121403	Present	Present	341	
10		rs1197006182:G > A	chr11:108121404	Present	Present	341	
Gene	Apolipoprotein B (APOB)						
11	Island:344	rs745633995·G/A*	chr2:21044088	Present	Present	340	
12	Island, 544	rs956977643-C/T*	chr2:21044082	Present	Present	3/3	
12		r:072245426.C/A	chr2:21044076	Drecent	Procent	344	
13 Como	Analinanastain E (ADOE)	157/3343420,C/A	CIII2.21044076	Fiesent	Fiesent	J-1-1	
Gene	Aponpoprotein E (APOE)		1 10 4400(222	Descent	41.1.1.1	0	
14	Island;112	(CVD 4)	Chir19:44906322	Present	Abolished	0	
Gene	Cytochrome b-245 alpha chain (1 16 00 51 005	D	D	105	
15	Island;136	rs10212153/1;C/1*	chr16:88651087	Present	Present	135	
16		rs544939582;G/A*	chr16:88651070	Present	Present	135	
17		rs756019435;C/T*	chr16:88651047	Present	Present	135	
18		rs376510042;G/T*	chr16:88651064	Present	Present	135	
19		rs756019435;C/T	chr16:88651047	Present	Present	136	
20		rs750384376;G/A	chr16:88651046	Present	Present	136	
21		rs373406027;G/A	chr16:88651027	Present	Present	136	
Gene	Factor associated suicide death	receptor (FAS)					
22	Island 1;199	rs752145197;G/C*	chr10:88990538	Present	Present	190	
23		rs755644207;C/T*	chr10:88990539	Present	Present	177	
24		rs886047456;G/A*	chr10:88990540	Present	Present	191	
25		rs777366435;C/A*	chr10:88990541	Present	Present	190	
26		rs533623533;G/A*	chr10:88990542	Present	Present	191	
27		rs9658677;G/A	chr10:88990582	Present	Present	199	
28		rs902017811;C/A*	chr10:88990595	Present	Present	128	
29		rs1021894100;C/T*	chr10:88990642	Present	Present	128	
30		rs769222279;G/C*	chr10:88990643	Present	Present	128	
31		rs777296029;C/A*	chr10:88990656	Present	Present	128	
32		rs904814296;G/C*	chr10:88990657	Present	Present	128	
33		rs557366318;G/A*	chr10:88990715	Present	Present	184	
Gene	Fms related tyrosine kinase 1 (F	LT1)					
34	Island 1;211	rs935059277;G/C	chr13:28495711	Present	Present	211	
35		rs61763160;C/T*	chr13:28495681	Present	Present	199	
36		rs1024357361;G/A*	chr13:28495655	Present	Present	198	
37		rs779832391;G/A*	chr13:28495524	Present	Present	188	
38	Island 2;204	rs1028125144;C/G	chr13:28495300	Present	Present	188	
39		rs998030865;G/T	chr13:28495276	Present	Present	188	
Gene	ene Kinase suppressor of ras 2 (KSR2)						
40	Island;838	rs73408418;C/T*	chr12:117969559	Present	Present	803	
41		rs962883023;G/A*	chr12:117969543	Present	Present	804	
42		rs1010334504:G/C	chr12:117969521	Present	Present	838	
43		rs891447546:G/T/A—T	chr12:117969518	Present	Present	838	
44		rs552191962·G/C	chr12:117969510	Present	Present	838	
45		rs182966035;G/A	chr12:117969500	Present	Present	838	
		rs939897252;CCCAGCCGGAGCGCA	1				
46		CCTGCT/-*	chr12:117969450-117969478	Present	Present	817	
47		rs1011133176;C/T	chr12:117969464	Present	Present	838	
48		rs114278232;G/A	chr12:117969418	Present	Present	838	
49		rs528230001;C/G	chr12:117969394	Present	Present	838	
50		rs7300907;G/C/A—C	chr12:117969393	Present	Present	838	
51		rs1034361818;G/C	chr12:117969386	Present	Present	838	
52		rs931680247;C/A	chr12:117969367	Present	Present	838	
Continued				1			

		Single nucleotide variations (SNVs)		CpG island status with		
S. No.	CpG island and size (bp)	(rs number; variation)	CpG coordinates on chromosome	Wild type allele	Variant allele	Change in CpG island size (bp)
53		rs898886083;G/C	chr12:117969341	Present	Present	838
54		rs545819605:C/T	chr12:117969330	Present	Present	838
55		rs971514425:G/A	chr12:117969329	Present	Present	838
56		rs908447922:TCCCCCGCCGCCC/-*	chr12:117969312-117969327	Present	Present	824
50		m027590274.C/A	chr12.117969310	Present	Present	020
59		1572/3003/4;G/A	chi12.117969310	Present	Present	0.00
58		rs968/682/5;C/1	chr12:11/969289	Present	Present	838
59		rs1022089500;C/T	chr12:117969287	Present	Present	838
60		rs954962287;G/C	chr12:117969273	Present	Present	838
61		rs956144219;C/G	chr12:117969268	Present	Present	838
62		rs890348830;G/A	chr12:117969244	Present	Present	838
63		rs557703958;G/T/C T	chr12:117969236	Present	Present	838
64		rs999829657;G/T	chr12:117969228	Present	Present	838
65		rs886214687;G/A	chr12:117969152	Present	Present	838
66		rs1057218279;C/A	chr12:117969151	Present	Present	838
67		rs535742283;C/T	chr12:117969140	Present	Present	838
68		rs534893029;G/T/A—T	chr12:117969130	Present	Present	838
69		rs974051469:C/T	chr12:117969128	Present	Present	838
70		rs980137500:G/C	chr12:117969116	Present	Present	838
Gene	Low density linoprotein recento	* (IDIP)	cm12.11/ 303110	Tresent	Tresent	650
71	Low density inpoprotein recepto	m=21970546;C/C	-h-10.11097615	Durant	Descent	120
71	Island 1;138	185518/0546;C/G	CIF19:1108/615	Present	Present	138
72		rs543676881;G/A/T*	chr19:11087616	Present	Present	136
73		rs1026272027;G/T**	chr19:11087638	Present	Abolished	0
74		rs887608252;C/T**	chr19:11087645	Present	Abolished	0
75		rs1006494933;G/A**	chr19:11087646	Present	Abolished	0
76		rs532491368;G/A**	chr19:11087670	Present	Abolished	0
77		rs1024897634;C/T**	chr19:11087677	Present	Abolished	0
78		rs1038399041;C/T*	chr19:11087733	Present	Present	108
79		rs899331076;G/A*	chr19:11087734	Present	Present	108
80		rs371798074;C/T*	chr19:11087737	Present	Present	108
81		rs1046779346;G/C	chr19:11087738	Present	Present	138
82	Island 2·167	rs574713917:C/G	chr19·11089227	Present	Present	167
83	Ioland 2,107	rs17249134·G/T	chr19.11089281	Present	Present	167
84			-h-10.11090222	Dresent	Darcont	157
04		5 10005005 C/TH		Present	Present	152
85		rs549995837;C/1*	chr19:11089343	Present	Present	152
86		rs182017676;C/A*	chr19:11089347	Present	Present	152
Gene	Matrix metalloproteinase 9 (MA	MP9)	1			
87	Island 1;172	rs139620474;C/A/T—A** or C/A/T— T**	chr20:46009878	Present	Abolished	0
88		re370018925·C/T**	chr20.46009908	Present	Abolished	0
80			-h-20.46000000	Dresent	Abaliahad	0
89		18201069991;G/A		Present	Abolished	0
90		rs1014494202;C/1**	chr20:46009936	Present	Abolished	0
91		rs146719297;G/A**	chr20:46009937	Present	Abolished	0
92		rs200849957;C/G/T—G or C/G/T—T	chr20:46009970	Present	Present	172
93		rs1805089;G/A	chr20:46009971	Present	Present	172
94		rs1023660861;C/T	chr20:46009976	Present	Present	172
95		rs143695450;G/A/T—A or T	chr20:46009977	Present	Present	172
96		rs45482493;C/T	chr20:46009991	Present	Present	172
97		rs377251829;C/A	chr20:46010010	Present	Present	172
98		rs140352541;G/T	chr20:46010020	Present	Present	172
99	Island 2;205	rs762336901;C/T*	chr20:46010433	Present	Present	137
100		rs765973004;C/G*	chr20:46010475	Present	Present	135
101		rs756724622:C/G*	chr20:46010497	Present	Present	134
102		rs749347450:C/T*	chr20:46010509	Present	Present	134
102		rc200637345·C/T*	chr20.46010511	Drecent	Drecent	134
105		1520003/343;0/1	-h-20.46010511	Descent	Descent	157
104		rs/5/4584/0;C/1	chr20:46010515	Present	Present	150
105		rs/45724816;G/-*	chr20:46010529	Present	Present	149
106		rs776477347;G/A*	chr20:46010539	Present	Present	150
107		rs201902138;C/G/T—G or C/G/T—T*	chr20:46010558	Present	Present	149
108		rs767959655;G/A*	chr20:46010561	Present	Present	149
109		rs753889026;C/A	chr20:46010569	Present	Present	205
Continued						

		Single nucleotide variations (SNVs)		CpG island status with		
S. No.	CpG island and size (bp)	(rs number; variation)	CpG coordinates on chromosome	Wild type allele	Variant allele	Change in CpG island size (bp)
110		rs777580909;G/A	chr20:46010628	Present	Present	205
111		rs202214757;C/A	chr20:46010629	Present	Present	205
112		rs183834856;G/A	chr20:46010630	Present	Present	205
113		rs984503896;C/A	chr20:46010639	Present	Present	205
114		rs201044639;G/A	chr20:46010640	Present	Present	205
Gene	Proprotein convertase subtilisin	//////////////////////////////////////	I			
115	Island;491	rs911797629;C>T*	chr1:55039338	Present	Present	464
116		rs987969811;G>A*	chr1:55039389	Present	Present	464
117		rs371053631;C/T*	chr1:55039390	Present	Present	464
118		rs978397913;G/A*	chr1:55039391	Present	Present	464
119		rs865997599;C/T	chr1:55039416	Present	Present	491
120		rs887437926;G/T	chr1:55039452	Present	Present	491
121		rs188274059:C/A/T	chr1:55039516	Present	Present	491
122		rs745962158;G/A	chr1:55039517	Present	Present	491
Gene	Paired like homeobox 2a (PHOX	(2A)				
123	Island:964	rs946255361:G/A*	chr11:72244638	Present	Present	880
123	Islandy of	rs985554082:C/G	chr11:72244600	Present	Present	964
125		rs565201625:C/A*	chr11:72244597	Present	Present	879
125		rs545309058·G/A*	chr11:72244596	Present	Present	880
120		rs919731208·G/T*	chr11:72244574	Present	Present	880
127		r:072070104.C/C	ch=11.72244555	Drosont	Dresent	064
120		r:904705049:C/C/A_C	chr11.72244555	Present	Present	904
129		15904/03747,C/G/A -G	chr11.72244511	Present	Present	904
130		rs1021/050806;G/A	chr11:72244510	Present	Present	904
151		181010393824;C/G	chirit:/224450/	Present	Present	904
132		rs950416969;G/C	cnr11:/22443/1	Present	Present	964
133		rs959032571;G/C*	chr11:/2244355	Present	Split	315;641
134		rs553/52383;G/A*	chr11:/2244322	Present	Split	390;571
135		rs1021105224;G/A*	chr11:72244319	Present	Split	390;571
136		rs1019884836;G/A*	chr11:72244305	Present	Split	390;571
137		rs889804293;G/C	chr11:72244293	Present	Present	964
138		rs917708636;C/T	chr11:72244248	Present	Present	964
139		rs937911897;C/T	chr11:72244236	Present	Present	964
140		rs987854333;C/G	chr11:72244197	Present	Present	964
141		rs992203984;G/A	chr11:72244196	Present	Present	964
142		rs956196630;G/T	chr11:72244194	Present	Present	964
143		rs1019771178;C/T	chr11:72244193	Present	Present	964
144		rs1008498233;G/T	chr11:72244187	Present	Present	964
Gene	RE1 silencing transcription fact	for (REST)				
145	Island;298	rs964635804;G/A*	chr4:56907734	Present	Present	291
146		rs982281493;G/C	chr4:56907790	Present	Present	298
147		rs928222537;G/C	chr4:56907803	Present	Present	298
148		rs938247687;G/A	chr4:56907809	Present	Present	298
149		rs1047872828;G/GGCGGT*	chr4:56907870-56907874	Present	Present	304
Gene	SH2B adaptor protein 3 (SH2B3	3)				
150	Island 1;214	rs960136772;G/A*	chr12:111405136	Present	Present	150
151		rs538445017;C/T**	chr12:111405235	Present	Abolished	0
152		rs922413124;G/A**	chr12:111405236	Present	Abolished	0
153		rs995735060;C/A*	chr12:111405248	Present	Present	114
154		rs574117302;C/T	chr12:111405270	Present	Present	214
155	Island 2;796	rs542650199;C/A/G—A or C/A/G—G*	chr12:111405555	Present	Present	778/754
156		rs1028968561;C/T*	chr12:111405609	Present	Present	778
157		rs1042427838;C/A	chr12:111405693	Present	Present	796
158		rs763506765;G/C	chr12:111405694	Present	Present	796
159		rs899785538;C/A	chr12:111405709	Present	Present	796
160		rs75390213;G/A	chr12:111405712	Present	Present	796
161		rs943838180;G/A	chr12:111405728	Present	Present	796
162		rs982567306;G/T	chr12:111405743	Present	Present	796
163		rs1015319598;C/A	chr12:111405750	Present	Present	796
164		rs1029498594;G/A	chr12:111405764	Present	Present	796
Continued	ı	1	1	1		1

S. No.	CpG island and size (bp)	Single nucleotide variations (SNVs) (rs number; variation)	CpG coordinates on chromosome	CpG island status with			
				Wild type allele	Variant allele	Change in CpG island size (bp)	
165		rs974278790;C/A/T-A or C/A/T-T	chr12:111405774	Present	Present	796	
166		rs532367698;G/T	chr12:111405775	Present	Present	796	
167		rs1013689151;G/A	chr12:111405795	Present	Present	796	
168		rs917942737;G/C	chr12:111405807	Present	Present	796	
169		rs566012237;C/T	chr12:111405823	Present	Present	796	
170		rs1005740439;G/C	chr12:111405854	Present	Present	796	
171		rs1054248299;C/T	chr12:111405879	Present	Present	796	
172		rs890806829;C/T	chr12:111405889	Present	Present	796	
173		rs1015267150;G/T	chr12:111405900	Present	Present	796	
174		rs962487794;C/T	chr12:111405903	Present	Present	796	
175		rs868119397;G/C/T—C or G/C/T—T	chr12:111405908	Present	Present	796	
176		rs1033875297;C/T	chr12:111405929	Present	Present	796	
177		rs959781377;G/C	chr12:111405930	Present	Present	796	
178		rs992435554;G/A	chr12:111405940	Present	Present	796	
Gene	Sortilin 1 (SORT1)						
179	Island;931	rs915825764;C/T*	chr1:109398261	Present	Present	928	
180		rs968169903;C/T	chr1:109398201	Present	Present	931	
181		rs112431410;C/G	chr1:109398185	Present	Present	931	
182		rs1056848876;C/T/G—T	chr1:109398179	Present	Present	931	
183		rs1003657108;G/C	chr1:109398178	Present	Present	931	
184		rs1037052612;G/A	chr1:109398159	Present	Present	931	
185		rs188539890;C/T	chr1:109398133	Present	Present	931	
186		rs544729829;G/T	chr1:109398113	Present	Present	931	
187		rs992705461;C/T	chr1:109398085	Present	Present	931	
188		rs574878989;C/G*	chr1:109398085-109398089	Present	Present	932	
189		rs978471974;G/C	chr1:109398069	Present	Present	931	
190		rs1043020951;C/G	chr1:109398068	Present	Present	931	
191		rs1022467277;C/G	chr1:109398031	Present	Present	931	
192		rs1031024794;C/T	chr1:109398005	Present	Present	931	
193		rs1001269821;G/C	chr1:109397996	Present	Present	931	
194		rs903970476;G/C	chr1:109397969	Present	Present	931	
Gene	Tissue inhibitor of metalloproteinase 1 (TIMP1)						
195	Island 1;126	rs779329701;G/A**	chrX:47582148	Present	Abolished	0	
196		rs993047389;G/A**	chrX:47582175	Present	Abolished	0	
197		rs376386551;C/T**	chrX:47582232	Present	Abolished	0	
198		rs926004266;G/A**	chrX:47582233	Present	Abolished	0	
199	Island 2;125	rs895934083;G/A*	chrX:47582749	Present	Present	105	
200		rs936052046;C/A/T—A or C/A/T—T*	chrX:47582798	Present	Present	109	

Table 1. Single nucleotide variations (SNVs) at CpG sites associated with loss or change in the size of CpG island. **indicates the SNVs abolish CpG island, *indicates the SNVs change CpG island size; rs:reference sequence

variants and epigenetic modifications of CGIs at promoter regions autonomously have a great impact on the regulation of gene expression.

The genes selected for the study are influencing the various pathways such as lipid metabolism and cholesterol homeostasis (*ACAT1, APOB, APOE, LDLR, PCSK9, SORT1*), oxidative stress (*CYBA, KSR2, PHOX2A*), apoptosis (*FAS, REST, SORT1*), inflammation & angiogenesis (*FLT1, SH2B3*), maintenance of extracellular matrix and vascular smooth muscle cells (*MMP9 & TIMP1*). Elucidation of gene expression regulating mechanisms have a significant role in understanding the pathogenesis and risk prediction of several diseases^{21–28,30–38,40–51}.

Accumulating evidences have shown that the genetic variants of the *APOE*, *LDLR*, *SH2B3*, *TIMP1*, *MMP9* genes were found to have an impact on risk of the diseases like diabetes, coronary artery disease, acute lymphoblastic leukemia, cancer, lung cancer, etc^{21,36,45,52,81-87}.

Dayeh, T. A. et al., have reported that CpG SNVs are associated with differential DNA methylation and gene expression in human pancreatic islets in type 2 diabetics⁸⁸. Hawkins, N. J. et al., and Rapkins, R. W. et al., studied the association of O6-methylguanine-DNA methyltransferase (*MGMT*) gene rs16906252 polymorphism with DNA methylation and reported that the individuals with *MGMT* rs16906252 T-allele has 5.5 folds and 2.64 folds highly methylated than C-allele individuals in colorectal cancer and glioblastoma patients respectively^{67,68}. Another study on effect of *RAD50* gene DNase I hypersensitive site7 (RHS7) region rs2240032 polymorphism on DNA methylation has shown that, it is significantly affecting the 5q31 locus *IL13* gene promoter DNA methylation

Figure 3. Single nucleotide variations showing influence on CGIs status & size for ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes.

		Transcription factors	
Gene	Single nucleotide variations (rs number; variation)	Wild type allele	Variant allele
	rs1026272027,G/T*	C/EBPapl	C/EBPbet
	rs887608252,C/T*	No TF	C/EBPapl
Low density lipoprotein receptor (LDLR)	rs1006494933,G/A*	No TF	GATA-1, Oct-1
	rs532491368,G/A	No TF	No TF
	rs1024897634,C/T*	No TF	Oct-1
	rs139620474,C/A/T -A or -T	No TF	No TF
	rs370018925,C/T*	No TF	Sp1
Matrix metalloproteinase 9 (MMP9)	rs201069991,G/A	No TF	No TF
	rs1014494202,C/T*	Sp1	Sp1, BRF-1
	rs146719297, G/A	Sp1	Sp1
SH2B adaptor protein 3 (SH2B3)	rs538445017,C/T	Tra-1	Tra-1
STI2D adaptor protein 5 (STI2D5)	rs922413124,G/A*	Sp-1	No TF
	rs779329701,G/A*	Egr-1	NF-1
Tissue inhibitor of metalloproteinase 1	rs993047389,G/A	Sp1	Sp1
(TIMP1)	rs376386551,C/T*	Sp1	N-Myc
	rs926004266,G/A	Sp1	Sp1
Apolipoprotein E (APOE)	rs769448, C/T*	Sp1	No TF

Table 2. Transcription factors associated with the single nucleotide variations (SNVs) abolishing CGIs.

 *change in transcription factor binding; No TF: No transcription factor

status⁶⁹. To date, there are very limited studies reported on the effect of single nucleotide variations at CpG sites on CpG island existence, size and their respective methylation status.

Furthermore, Palumbo, D. et al., reported that the methylation variability depends upon the CpG cluster density such as high density regions showing low levels of CpG methylation variability, while intermediate density and low density regions have increasingly higher levels of CpG methylation⁸⁹.

Study by Zhou, D. et al., identified 9,42,429 loci for CpG SNPs from HapMap phase II and observed that 51.9% were CpG gain-SNPs and 47.9% were CpG-loss-SNPs and his successive studies on tumor tissues of colon cancer have shown that CpG-loss-SNPs are lowering the methylation in tumor tissues and inferred that the SNPs at CpG sites are significantly associated with traits in cancers⁶⁴. In addition, Wang, Z. et al., identified novel functional CpG-SNPs by conditional false discovery rate (cFDR) analysis from statistical data of two large GWAS of type 2 DM and CAD. Among them, 13 CpG-SNPs of DM, 15 CpG-SNPs of CAD have a significant methylation quantitative trait locus effect and increased susceptibility to disease⁶⁵.

In view of the above, the present study has been designed to analyze the impact of single nucleotide variations at CpG sites in promoter CpG islands of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 & TIMP1 genes on their respective existence and size.

It has been shown that, *APOE* is involved in lipid metabolism, tissue repair, inflammation and plays a significant role in age related diseases. *APOE* modulates its effect on angiogenesis, tumor cell growth and metastasis

Figure 4. Concentric bipartites by GeneMANIA represents Co-expression networks of *A.APOE B.LDLR C.MMP9 D.SH2B3 E.TIMP1* genes.

Figure 5. Linear bipartite by GeneMANIA represents Co-expression networks of multi gene queries for *APOE*, *LDLR*, *MMP9*, *SH2B3* and *TIMP1*.

E. Functional annotation clustering

Figure 6. Gene ontology (GO) annotation. The top 10 GO terms in each category. (**A**) Biological process. (**B**) Cellular component. (**C**) Molecular function. (**D**) Disease class. (**E**) Functional annotation clustering.

D. Disease class

induction in cancers⁹⁰. A study reported that methylation of *APOE* is significantly lower in men with coronary heart disease than healthy control men and is inversely proportional to *APOE* plasma levels. Thus, it is considered that the DNA methylation is a potential factor for regulation of *APOE* gene expression¹⁹. In the present study, we have observed that *APOE* rs769448 has abolishing the CGI existence that might influence the methylation pattern and further may regulate the gene expression. The GO enrichment analysis has shown that the *APOE* gene is a key regulator in the cholesterol metabolism and transportation contributing to the initiation and progression of multiple diseases.

Similarly, Low density lipoprotein receptor (*LDLR*) gene encodes a cell surface LDL receptor protein mediating endocytosis of LDL particles regulate cholesterol levels. Evidences suggest that elevated circulating cholesterol levels are involved in the coronary artery disease, cancer growth promotion and progression^{91–93}. Ghose, S. et al. reported that *LDLR* gene undergoes hypomethylation and induces an increased expression which subsequently decreases the LDL levels and reduces the risk of CAD⁹⁴. In the present study, we have observed that 31% of CpG SNVs abolished the CGI existence and ~ 44% decreased the size of CGI. The abolishment and reduced CGI size, decreases the possibility of methylation and inversely increases the gene expression. The increased gene expression associates with decreased LDL-cholesterol levels and lead to reduced risk of diseases.

Furthermore, Src homology 2-B adaptor protein 3 (*SH2B3*) plays a critical role in haematopoiesis and acts as a negative regulator of several tyrosine kinases and cytokine signaling. *SH2B3* was associated with diseases like atherosclerosis and thrombosis, cancers, diabetes, etc^{95-97} . A recent study on Celiac disease (CeD) revealed that the expression of *SH2B3* is influenced by the methylation and it is reported that hypomethylation is associated with higher expression of the genes in CeD patients than controls. The methylated DNA sequence is showing differences in binding of regulatory elements to control the expression of gene at mRNA level⁶¹. The present study investigations have shown *SH2B3* gene promoter has 7% CGI abolishing SNVs besides 17% size reducing SNVs. The differences in CGI existence, binding of transcription factors and CGI size influences the methylation patterns to regulate the expression. According to gene ontology disease class term *SH2B3* is playing a significant role in metabolic, cardio vascular and immune diseases.

In recent years, there is a growing interest on matrix metalloproteinase (MMP) family to understand their significant association with various disease pathophysiologies such as cancers, CAD and DM⁸⁷. *MMP9* and Tissue inhibitors of metalloproteinases 1 (*TIMP1*) were known to be associated with the risk of cardiovascular disease and several cancers⁹⁸⁻¹⁰¹. A study on *MMP9* promoter methylation suggested that serum circulating levels were inversely associated with methylation level in Diabetic nephropathy patients. *MMP9* demethylation increases its serum circulating levels that might be accompanying with the incidence and prognosis of diabetic nephropathy¹⁰². Tissue inhibitors of metalloproteinases (*TIMPs*) are inhibitors of the *MMPs* involved in extracellular matrix degradation. In chronic periodontitis, *TIMP1* promoter methylation positively correlated with severity of the disease⁶³. In another study, DNA methylation in *TIMP3* gene contributed to its lower expression and eventually lead to metastasis of oral cancer¹⁰³. In the present analysis, ~ 18% of *MMP9* and ~ 67% of *TIMP1* CpG SNVs have shown for the loss of CGIs, further 57% of *MMP9* and 33% of *TIMP1* CpG SNVs reduced the size of CGI. GO enrichment analysis of *MMP9*, *TIMP1* revealed that these two genes are playing a significant role in metabolic, neurological, cardiovascular diseases and cancers. Altogether, abolishment and reduction of CGI size, differential binding of TFs could influence their gene expression in ECM remodelling and degradation which can further mediate the pathological conditions of various diseases.

Further, 50% of *ACAT1*, ~ 67% of *APOB*, 57% of *CYBA*, ~ 92% of *FAS*, 50% of *FLT1*, ~ 13% of *KSR2*, ~ 44% of *LDLR*, ~ 36% of *MMP9*, 50% of *PCSK9*, 36% of *PHOX2A*, 40% of *REST*, ~ 14% of *SH2B3*, ~ 13% of *SORT1* and 33% of *TIMP1* SNVs are altering the size of CGIs. Among all the 200 SNVs in the genes under study, we have observed that approximately 9% of SNVs at CpG site are abolishing the existence of CpG island; whereas 35% are decreasing the size of CGIs. Consequently, loss of CGI & decreased CGI size leads to the intermittent and asymmetrical DNA methylation pattern of gene which can regulate the expression of genes by affecting binding of transcription factors to the promoter.

The findings of the study suggest that the SNVs at CpG sites in the promoter region regulating CGI existence and size might influence the DNA methylation status and expression of genes that take part in molecular pathways associated with multifactorial diseases like diabetes mellitus, cardiovascular diseases, cancers, etc. The insights of the present study may pave the way for new experimental studies to undertake challenges in DNA methylation, gene expression and protein assays.

Limitations

A primary limitation of the study is that this is an in silico study, designed to know the impact of single nucleotide variations at CpG sites on CpG island existence, size and their respective DNA methylation pattern and gene expression. Another limitation of the study is that the genes are randomly selected from the various pathways to test the hypothesis. Therefore, the predicted results should be essentially validated using experimental analyses such as genotyping, DNA methylation and their subsequent gene expression assays for further correlation with disease phenotypes.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Received: 3 June 2021; Accepted: 3 January 2022 Published online: 04 March 2022

References

- Boasberg, J. et al. World health statistics overview 2019: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2019 (WHO/DAD/2019.1). Licence: CC BY-NC-SA 3.0 IGO. WHO (2019). https://doi.org/10. 1017/CBO9781107415324.004.
- Eyre, H. et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 109, 3244–3255 (2004).
- 3. Renehan, A. G. & Howell, A. Preventing cancer, cardiovascular disease, and diabetes. Lancet 365, 1449-1451 (2005).
 - Li, C. *et al.* DNA methylation reprogramming of functional elements during mammalian embryonic development. *Cell Discov.* 4, 9 (2018).
 - Mahmood, N. & Rabbani, S. A. DNA methylation readers and cancer: Mechanistic and therapeutic applications. *Front. Oncol.* 9, 489 (2019).
 - Bansal, A. & Pinney, S. E. DNA methylation and its role in the pathogenesis of diabetes. *Pediatr. Diabetes* https://doi.org/10. 1111/pedi.12521 (2017).
 - 7. Zoghbi, H. Y. & Beaudet, A. L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol. 8, 1-28 (2016).
 - Duan, L., Hu, J., Xiong, X., Liu, Y. & Wang, J. The role of DNA methylation in coronary artery disease. *Gene* 646, 91–97 (2018).
 Ling, C. & Groop, L. Epigenetics: A molecular link between environmental factors and type 2 diabetes. *Diabetes* 58, 2718–2725
 - (2009).
 10. Jia, T. *et al.* Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. *Mol. Psychiatry* https://doi.org/10.1038/s41380-019-0605-z (2019).
 - Agha, G. et al. Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease. *Circulation* 140, 645–657 (2019).
 - Zhao, C. H. et al. DNA methylation of antisense noncoding RNA in the INK locus (ANRIL) is associated with coronary artery disease in a Chinese population. Sci. Rep. 9, 1–12 (2019).
 - Shyamala, N. et al. PCSK9 genetic (rs11591147) and epigenetic (DNA methylation) modifications associated with PCSK9 expression and serum proteins in CAD patients. J. Gene Med. 23, 1–15. https://doi.org/10.1002/jgm.3346 (2021).
 - Fouad, M. A. *et al.* Impact of global DNA methylation in treatment outcome of colorectal cancer patients. *Front. Pharmacol.* 9, 1–14 (2018).
 - 15. Chen, Z. & Zhang, Y. Role of Mammalian DNA Methyltransferases in Development. Annu. Rev. Biochem. 89, 1-24 (2020).
 - 16. Sleutels, F. & Barlow, D. P. 5 The origins of genomic imprinting in mammalsAdvances in Genetics Vol. 46 (Elsevier, 2002).
 - 17. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. *Nat. Rev. Genet.* 21, 71-87 (2020)
 - Suzuki, M. M. & Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. *Nat. Rev. Genet.* 9, 465–476 (2008).
 - 19. Ji, H. et al. APOE hypermethylation is significantly associated with coronary heart disease in males. Gene 689, 84-89 (2019).
 - Manoochehri, M., Borhani, N., Karbasi, A., Koochaki, A. & Kazemi, B. Promoter hypermethylation and downregulation of the FAS gene may be involved in colorectal carcinogenesis. Oncol. Lett. 12, 285–290 (2016).
 - 21. Wang, Y. T. *et al.* ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: A case-control study. *Oncotarget* **8**, 89055–89063 (2017).
 - Zabielska, J., Sledzinski, T. & Stelmanska, E. Acyl-coenzyme A: Cholesterol acyltransferase inhibition in cancer treatment. Anticancer Res. 39, 3385–3394 (2019).
 - Feng, Y. Y. et al. Association between apolipoprotein B XbaI polymorphisms and coronary heart disease: A meta-analysis. BMC Cardiovasc Disord 20, 1–12 (2020).
 - 24. Hayat, M. *et al.* Genetic associations between serum low LDL-cholesterol levels and variants in LDLR, APOB, PCSK9 and LDLRAP1 in African populations. *PLoS ONE* **15**, 1–15 (2020).
 - Liu, S., Liu, J., Weng, R., Gu, X. & Zhong, Z. Apolipoprotein E gene polymorphism and the risk of cardiovascular disease and type 2 diabetes. *BMC Cardiovasc Disorders* 2, 1–6 (2019).
 - Wang, C., Yan, W., Wang, H., Zhu, J. & Chen, H. APOE polymorphism is associated with blood lipid and serum uric acid metabolism in hypertension or coronary heart disease in a Chinese population. *Pharmacogenomics* 20, 1021–1031 (2019).
 - 27. Saadat, M. Apolipoprotein E (APOE) polymorphisms and susceptibility to breast cancer: A meta-analysis. *Cancer Res Treat* 44, 121–126 (2012).
 - Tupurani, M. A. et al. Association of CYBA gene (-930 A/G and 242 C/T) polymorphisms with oxidative stress in breast cancer: A case-control study. PeerJ 2018, 1–17 (2018).
 - 29. Nowak, T. *et al.* Analysis of selected promoter polymorphisms and haplotypes of the CYBA gene encoding the p22phox, subunit of NADPH oxidases, in patients with coronary artery disease. *Free Radic. Res.* **52**, 1132–1139 (2018).
 - Kishore Kumar, G. et al. Polymorphisms of extrinsic death receptor apoptotic genes (FAS-670 G>A, FASL-844 T>C) in coronary artery disease. Apoptosis 21, 558–565 (2016).
 - 31. Anuradha, R., Saraswati, M., Kumar, K. G. & Rani, S. H. Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol. 33, 743–748 (2014).
 - 32. Kurotsu, S. *et al.* Distinct expression patterns of Flk1 and Flt1 in the coronary vascular system during development and after myocardial infarction. *Biochem. Biophys. Res. Commun.* **495**, 884–891 (2018).
 - 33. Qian, B. Z. *et al.* FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. *J. Exp. Med.* **212**, 1433–1448 (2015).
 - Neilsen, B. K., Frodyma, D. E., Lewis, R. E. & Fisher, K. W. KSR as a therapeutic target for Ras-dependent cancers. *Expert Opin. Ther. Targets* 21, 499–509 (2017).
 - 35. Do, R. *et al.* Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. *Nature* **518**, 102–106 (2015).
 - Padala, C. et al. Synergistic effect of collagenase-1 (MMP1), stromelysin-1 (MMP3) and gelatinase-B (MMP9) gene polymorphisms in breast cancer. PLoS ONE 12, 1–19 (2017).
 - Hassanzadeh-Makoui, R., Razi, B., Aslani, S., Imani, D. & Tabaee, S. S. The association between Matrix Metallo-proteinases-9 (MMP-9) gene family polymorphisms and risk of Coronary Artery Disease (CAD): A systematic review and meta-analysis. BMC Cardiovasc. Disord. 20, 1–15 (2020).
 - Benn, M., Nordestgaard, B. G., Grande, P., Schnohr, P. & Tybjærg-Hansen, A. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease. 3 Independent studies and meta-analyses. J. Am. Coll. Cardiol. 55, 2833–2842 (2010).
 - Kockx, M. & Kritharides, L. Pancreatic PCSK9 and its involvement in diabetes. J. Thorac. Dis. 11, S2018–S2022 (2019).
 Gardemann, A., Mages, P., Katz, N., Tillmanns, H. & Haberbosch, W. The p22 phox A640G gene polymorphism but
 - Gardemann, A., Mages, P., Katz, N., Tillmanns, H. & Haberbosch, W. The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. *Atherosclerosis* 145, 315–323 (1999).
 Li, T. *et al.* Association of the NAD(P)H oxidase p22 phox gene C242T polymorphism with type 2 diabetes mellitus, diabetic
 - 41. Li, 1. et al. Association of the NAD(P)H oxidase p22 phox gene C2421 polymorphism with type 2 diabetes mellitus, diabeted nephropathy, and carotid atherosclerosis with type 2 diabetes mellitus: A meta-analysis. Meta Gene 6, 1–8 (2015).
 - 42. Castaldo, S. A. *et al.* The role of CYBA (p22phox) and catalase genetic polymorphisms and their possible epistatic interaction in cervical cancer. *Tumor Biol.* **36**, 909–914 (2015).

- Forouzanfar, M. H. *et al.* Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet* 388, 1659–1724 (2016).
- 44. Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837-848 (2005).
- Hong, L. et al. Role of SH2B3 R262W gene polymorphism and risk of coronary heart disease A PRISMA-compliant meta-analysis. Medicine (United States) 97, 1–7 (2018).
 - 46. Clinical, E. Leuk. Res. 72, 67-70 (2018).
- 47. Ey, L. *et al.* The carriage of the type 1 diabetes-associated R262W variant of human LNK correlates with increased proliferation of peripheral blood monocytes in diabetic patients. *Pediatr. Diabetes* **12**, 127–132. https://doi.org/10.1111/j.1399-5448.2010. 00656.x (2011).
- 48. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).
- Biscetti, F. *et al.* Sortilin levels are associated with peripheral arterial disease in type 2 diabetic subjects. *Cardiovasc. Diabetol.* 18, 1–8 (2019).
- Roselli, S. *et al.* Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion. Oncotarget 6, 10473–10486 (2015).
- 51. Meng, C. *et al.* TIMP-1 is a novel serum biomarker for the diagnosis of colorectal cancer: A meta-analysis. *PLoS ONE* **13**, 1–15 (2018).
- Cheng, G. et al. Higher levels of TIMP-1 expression are associated with a poor prognosis in triplenegative breast cancer. Mol. Cancer 15, 1–13 (2016).
- 53. McPherson, R. & Tybjaerg-Hansen, A. Genetics of coronary artery disease. Circ. Res. 118, 564–578 (2016).
- Liang, Y. et al. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim. Biophys. Sin. (Shanghai) 45, 220–228 (2013).
- 55. Hedman, Å. K. *et al.* Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. *Circ. Cardiovasc. Genet.* **10**, 1–13 (2017).
- Song, Y. *et al.* DNA methylation-mediated silencing of FLT1 in parthenogenetic porcine placentas. *Placenta* 58, 86–89 (2017).
 Huang, Y. S., Zhi, Y. F. & Wang, S. R. Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine. *Pathophysiology* 16, 259–265 (2009).
- Chicoine, É. et al. Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem. Biophys. Res. Commun. 297, 765–772 (2002).
- Lohoff, F. W. et al. Methylomic profiling and replication implicates deregulation of PCSK9 in alcohol use disorder. Mol. Psychiatry https://doi.org/10.1038/mp.2017.168 (2018).
- González-Mundo, I. *et al.* DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. *Exp. Gerontol.* 136, 110951 (2020).
- 61. Cielo, D. *et al.* Combined analysis of methylation and gene expression profiles in separate compartments of small bowel mucosa identified celiac disease patients' signatures. *Sci. Rep.* **9**, 1–12 (2019).
- 62. Sung, H. Y. et al. Aberrant promoter hypomethylation of sortilin 1: A Moyamoya disease biomarker. J. Stroke 20, 350–361 (2018).
- Li, X., Lu, J., Teng, W., Zhao, C. & Ye, X. Quantitative evaluation of MMP-9 and TIMP-1 promoter methylation in chronic periodontitis. DNA Cell Biol. 37, 168–173 (2018).
- Zhou, D. et al. Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget https://doi.org/10.18632/oncotarget.5650 (2015).
- Wang, Z. et al. Identification of novel functional CpG-SNPs associated with type 2 diabetes and coronary artery disease. Mol. Genet. Genomics 295, 607–619 (2020).
- Samy, M. D., Yavorski, J. M., Mauro, J. A. & Blanck, G. Impact of SNPs on CpG Islands in the MYC and HRAS oncogenes and in a wide variety of tumor suppressor genes: A multi-cancer approach. *Cell Cycle* 15, 1572–1578 (2016).
- 67. Hawkins, N. J. *et al.* MGMT methylation is associated primarily with the germline CT SNP (rs16906252) in colorectal cancer and normal colonic mucosa. *Mod. Pathol.* 22, 1588–1599 (2009).
- Rapkins, R. W. et al. The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. *Neuro. Oncol.* 17, 1589–1598 (2015).
- Schieck, M. et al. A polymorphism in the TH2 locus control region is associated with changes in DNA methylation and gene expression. Allergy Eur. J. Allergy Clin. Immunol. 69, 1171–1180 (2014).
- Vohra, M., Sharma, A. R., Prabhu, B. N. & Rai, P. S. SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: A systematic review. *Public Health Genomics* 23, 155–170 (2021).
- 71. Dreos, R., Ambrosini, G., Groux, R., Perier, R. C. & Bucher, P. The eukaryotic promoter database in its 30th year: Focus on non-vertebrate organisms. *Nucleic Acids Res.* 45, D51–D55 (2017).
- 72. Li, L. C. & Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 18, 1427-1431 (2002).
- 73. Gardiner-Garden, M. & Frommer, M. CpG Islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).
- Gene [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004 [cited 2020 Jul 21]. Available from: https://www.ncbi.nlm.nih.gov/gene/, 2020 (2020).
- 75. Hunt, S. E. et al. Ensembl variation resources. Database (Oxford). 2018, 1-12 (2018).
- 76. Grabe, N. AliBaba2: Context specific identification of transcription factor binding sites. In Silico Biol. 2, 1–15 (2002).
- 77. Montojo, J., Zuberi, K., Rodriguez, H., Bader, G. D. & Morris, Q. GeneMANIA: Fast gene network construction and function prediction for Cytoscape. *F1000Res* **3**, 1–7 (2014).
- 78. Franz, M. et al. GeneMANIA update 2018. Nucleic Acids Res. 46, W60-W64 (2018).
- 79. Messerschmidt, D. M., Knowles, B. B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. *Genes Dev.* 28, 812–828 (2014).
- 80. Ornella Affinit et al., 2016 Modeling DNA methylation by analyzing the individual configurations of single molecules_Enhanced Reader.pdf.
- Lai, C. Y. et al. Association of tissue inhibitor of metalloproteinase-1 genotypes with lung cancer risk in Taiwan. Anticancer Res. 36, 155–160 (2016).
- Gomez-Delgado, F. et al. Apolipoprotein E genetic variants interact with Mediterranean diet to modulate postprandial hypertriglyceridemia in coronary heart disease patients: CORDIOPREV study. Eur. J. Clin. Invest. 49, 1–9 (2019).
- Gretarsdottir, S. *et al.* A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease. *PLoS Genet.* 11, 1–20 (2015).
- Li, Y. Y. et al. Matrix metalloproteinase-9 gene-1562C > T gene polymorphism and coronary artery disease in the Chinese han population: A meta-analysis of 5468 subjects. Front. Physiol. 7, 1–10 (2016).
- 85. Weng, Y. *et al.* The association between extracellular matrix metalloproteinase inducer polymorphisms and coronary heart disease: A potential way to predict disease. *DNA Cell Biol.* **39**, 244–254 (2020).
- Kral, B. G. & Becker, L. C. Genetics of Coronary Disease. Transl. Res. Coron. Artery Dis. Pathophysiol. to Treat. 81–101 (2016). https://doi.org/10.1016/B978-0-12-802385-3.00008-5.

- Rybakowski, J. K. Matrix metalloproteinase-9 (MMP9)—A mediating enzyme in cardiovascular disease, cancer, and neuropsychiatric disorders. *Cardiovasc. Psychiatry Neurol.* 2009, 1–7 (2009).
- Dayeh, T. A. *et al.* Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. *Diabetologia* 56, 1036–1046 (2013).
- Palumbo, D., Affinito, O., Monticelli, A. & Cocozza, S. DNA Methylation variability among individuals is related to CpGs cluster density and evolutionary signatures. *BMC Genomics* 19, 1–9 (2018).
- 90. Vogel, T. et al. Apolipoprotein E: A potent inhibitor of endothelial and tumor cell proliferation. J. Cell. Biochem. 54, 299–308 (1994).
- 91. Hossain, T. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 139-148 (2015).
- 92. Cross, Sarah J. Linker, Kay E. Leslie, F. M. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 100-106 (2016).
- 93. Yue, S. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer
- aggressiveness. *Cell Metab.* 19, 393–406 (2014).
 94. Ghose, S. *et al.* Investigating Coronary Artery Disease methylome through targeted bisulfite sequencing. *Gene* 721, 144107 (2019).
- 95. Wang, W. et al. HHS Public Access. 119, 1-25 (2017).
- Maslah, N., Cassinat, B., Verger, E., Kiladjian, J. J. & Velazquez, L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. *Leukemia* 31, 1661–1670 (2017).
- Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes The Wellcome Trust Case Control Consortium. Nat. Genet. 39, 857–864 (2007).
- Mittal, B., Mishra, A., Srivastava, A., Kumar, S. & Garg, N. Matrix metalloproteinases in coronary artery disease. Adv. Clin. Chem. 64, 1-72 (2014).
- 99. Wu, Z. S. *et al.* Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. *Int. J. Cancer* **122**, 2050–2056 (2008).
- 100. Olivares-Urbano, M. A. et al. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: A pilot study. J. Cell. Mol. Med. 24, 139–148 (2020).
- 101. Yukawa, N. *et al.* Impact of plasma tissue inhibitor of matrix metalloproteinase-1 on long-term survival in patients with colorectal cancer. *Oncology* **72**, 205–208 (2008).
- 102. Płudowski, P. et al. The role of EBV in thyroid disease. Endokrynol. Pol. 64, 319-327 (2013).
- Su, C. W. *et al.* Loss of TIMP3 by promoter methylation of Sp1 binding site promotes oral cancer metastasis. *Cell Death Dis.* 10, 1–17 (2019).

Acknowledgements

This work was supported by University Grants Commission (UGC), New Delhi, India: Basic Science Research (BSR) Fellowship (FNo. 4-1/2006(BSR)5-78/2007(BSR)/2013-2014/03), Indian Council of Medical Research (ICMR)-Senior Research Fellowship (FNo. 3/1/2(10)/CVD/2019-NCD-II), Osmania University-Department of Science & Technology-Promotion of University Research and Scientific Excellence (OU DST PURSE)-II Programme (C-DST-PURSE- II/23/2017).

Author contributions

N.S.: Conceptualization, Methodology, Data Curation, Formal analysis, Writing—Original Draft, Visualization; C.L.K.: Methodology, Formal analysis, Data Curation; K.P.: Formal analysis, Validation; K.K.: Methodology, Validation; R.K.: Methodology, Validation; C.P.: Bioinformatics analysis, Revision; S.R.H.: Conceptualization, Supervision and Writing.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-05198-8.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022