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Abstract: Chemical image fusion refers to the combination of chemical images from different
modalities for improved characterisation of a sample. Challenges associated with existing approaches
include: difficulties with imaging the same sample area or having identical pixels across microscopic
modalities, lack of prior knowledge of sample composition and lack of knowledge regarding
correlation between modalities for a given sample. In addition, the multivariate structure of chemical
images is often overlooked when fusion is carried out. We address these challenges by proposing a
framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities,
demonstrating the approach for image registration, fusion and resolution enhancement of chemical
images obtained with IR and Raman microscopy.
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1. Introduction

Vibrational spectroscopic techniques have become standard in a wide variety of scientific fields,
some of the most common being near-infrared (NIR), mid-infrared (MIR) and Raman spectrometry.
These techniques have been used to great effect, however traditionally researchers relied on average
spectroscopic data from a single sample point or, often in the case of materials, from the average
spectrum of a material after pulverisation. Chemical imaging takes spectroscopy beyond this limitation.
Where standard spectroscopy acquires chemical information from a single region, chemical imaging
collects chemical information over many spatial regions. These regions can be used to form a high
resolution matrix image over an area, where each element is an image pixel comprising a spectrum.
Chemical variation across the surface of a material can therefore be assessed. Such information is used
to provide an insight into the properties of foods [1,2], survey the geological and vegetal make up
of landscapes [3] or improve synthetic processes through a better understanding of their resulting
products [4].

While chemical imaging provides a marked advantage over standard spectroscopy, limitations
associated with the various spectroscopy modalities also apply to corresponding chemical imaging
techniques. For example, certain molecular features, such as asymmetric molecular vibrations are
invisible or near invisible to Raman spectroscopy. Equivalently, symmetric molecular vibrations are
invisible or near invisible to MIR spectroscopy. Additionally, the spatial resolution achievable by all
spectral modalities is restricted by the diffraction limit which differs by modality.

One method adopted for the purposes of overcoming these limitations is the fusion of different
techniques. Fusion can refer to the combination of two or more chemical image cubes to arrive at a
greater insight than the sum of their parts. Alternatively, fusion can refer to the combination of a high
spatial resolution image comprising little or no spectral information with an image with relatively
low spatial resolution but higher spectral resolution [3]. Where a common area is imaged by different
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imaging techniques, one fusion approach has been the overlaying of two or more images at a specific
absorption band such that the physical detail of the high spatial resolution image is visible with
a colour scheme denoting different chemical regions elucidated from the imaging technique with
greater spectral information [5,6]. The above examples are often called multi-model fusion techniques,
where images from different modalities are fused, however mono-modal fusion is also possible. For
example, mono-modal fusion, where images are taken using the same modality, but at different spatial
resolutions, or at different time points, can also be performed.

Clarke et al. [5] were amongst the first to consider the combination of chemical imaging techniques,
opting to experiment with FT-NIR imaging and complementary Raman point mapping. The study
was performed in the context of visualising pharmaceutical formulations. The approach involved
the imaging of a specific sample area using both techniques. The sample area was delineated with
reference markers and with careful consideration of these it was possible to obtain Raman and NIR
images of the same sample area with the same number of spatial pixels in each cube. Chemical image
fusion, a term coined by the authors, was performed by overlaying several NIR and Raman images
at wavenumbers specific to different components within the pharmaceutical blend. This study was
very effective as the techniques proved to be complementary and each technique aided in removing
ambiguities which would have been present if only one technique where used.

Multi-way chemometric approaches have also been explored for coupling chemical imaging
data from different microspectroscopic modalities. For example, co-inertia (also known as Tucker)
analysis is a multiway method that can be used to relate two data matrices with rows representing
the same image pixels. In one paper [7], Allouche et al. used multiple co-inertia analysis to combine
three hyperspectral images of maize sections with different spatial resolutions, obtained using IR,
fluorescence and Raman microspectroscopy. Prior to co-inertia analysis, the three hyperspectral images
were co-registered to brightfield images and differences in spatial resolution were removed by pixel
averaging. The initial resolution of the Raman and fluorescence images was recovered by projecting
the original images along the block or global loadings obtained. In a related paper [8], Allouche et al
coupled fluorescence and IR images of a maize cross section using an extended co-inertia approach.
Each 1 x 1 pixel in the IR data was related to a 7 x 7 pixel in the higher resolution fluorescence
data by registration to brightfield images. The co-inertia approach was extended to simultaneously
analyse a two and a three way data table, where the two way table comprised the unfolded IR image
and the three way table comprised the unfolded fluorescence image (the third way representing the
49 pixels of fluorescence data for each IR pixel). The authors demonstrated that the extended analysis
enabled preservation of the higher resolution of the fluorescence data while not affecting the spectral
interpretation of co-inertia loadings.

In a more recent study, Ewing et al. [4] obtained ATR-IR and Raman chemical image cubes of
pharmaceutical tablet samples of different sizes. The tablets comprised an API trapped within a
polymer matrix which swelled when exposed to an appropriate liquid, exposing the API particles to
the liquid. The team argued that while the solubility was known for the AP], if disproportionation
(i.e., the API ion reverting to the free acid form) occurred, the dissolution rate would change markedly
as the free acid is less soluble in a polar solvent. The experiments were conducted in a flow cell and
various pH solutions were used. The two modalities were used to image both tablets and investigate
for spatial variation, particularly searching for the presence of the APIion and free acid forms. Though
the imaging modalities were performed on different samples and no multivariate data fusion was
conducted, the results complemented one another and confirmed that different pH levels, different
amounts of disproportionation occur.

Data fusion is also useful in the field of remote sensing. For example, Licciardi et al. [3] described
the combination of hyperspectral (such as a Compact High Resolution Imaging Spectrometer (CHRIS)
sensor acquisition of 63 spectral bands in range of 400-1050 nm using) and panchromatic images (such
as a Quickbird-PAN acquisition of a black and white image generated over the wavelength range
of 405-1050 nm). The approach incorporates dimensionality reduction and indusion (induction and
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fusion). The team’s main aim was the fusion of both modalities to arrive at an image with the high
spatial resolution of panchromatic imaging and the chemical information of chemical imaging. The
proposed fusion approach involved performing non-linear principle component analysis (NLPCA)
on the chemical image cube for dimensionality reduction purposes, followed by down-scaling of the
panchromatic image using a filter to fit the size of the NLPCs. Histogram-matching was then performed
between the NLPCs and the down-sized panchromatic image. The NLPCs were up-scaled as was
the histogram-matched panchromatic image. Histogram-matching was then performed between the
up-scaled NLPCs and the original panchromatic image. The difference between the histogram-matched
up-scaled panchromatic image and the histogram-matched original panchromatic image was found
and this difference was added to the up-scaled NLPCs. The original spectral bands were reconstructed
through decoding. Visual quality assessments of the resultant image were then conducted. The spectra
were also altered in the indusion process and the root mean square error (RMSE) was calculated
between the produced spectra and the original spectra and while some issues were reported for
features that were visible in the pan chromatic image but not in the chemical image cube, the results
appear to be quite favourable.

Fusion has also been used in non-vibrational spectroscopic imaging modalities for material
characterisation. For example, Artyushkova et al. [6] describes a method of fusion of X-ray
photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) images of polymer blends. AFM
has nanometer spatial resolution while XPS provides spectral information but low spatial information.
The fusion technique requires the de-resolution of the AFM image such that the resulting image has
the same spatial resolution as the XPS. The images were registered to each other using automatic
image registration (AIR). This translates, rotates and scales the pixels appropriately. The mapping
can then be checked and confirmed. When the necessary translation, rotation and scaling is known,
the original AFM image can then be used and the chemical detail of the XPS image overlaid and
presented as colour changes. This results in an image with the high spatial resolution of AFM and
the chemical information of XPS. Van de Plas et al. [9] describes the use of data fusion through the
combination of imaging mass spectrometry (IMS) and high resolution light microscopy. The imaging
techniques were combined to take advantage of the high spatial resolution of light microscopy and
the chemical information of lower resolution IMS. The team aimed to combine ion intensity readings
with photon based variables by modelling the distribution of each throughout the area of the images.
This required the use of partial least squares regression (PLSR), which predicted ion concentrations
at different regions of brain tissue. It is reported that the microscopy image (the spatially distributed
photon variables) could predict ion distribution with a reasonable degree of accuracy for several ion
mass/charge ratios. In addition, the team reported that looking at modalities in tandem was useful in
confirming signals that would otherwise have been considered instrument noise.

Challenges associated with data fusion methods should also be noted. A first such challenge
may be any destructive effect that one imaging technique has on a sample, particularly as this could
affect subsequent readings on other modalities. For example, mass spectrometry chemical imaging
necessarily removes small amounts of sample in order to conduct analysis, which will affect a sample to
some extent, however small. Further, Raman spectroscopy, while not generally considered a destructive
technique, does require the focusing of a laser on a sample and can therefore lead to small amounts
of sample evaporation/sublimation or provide the activation energy required for a new reaction to
take place, including but not limited to sample combustion in oxygen. One solution may be to order
imaging modalities with increasing destructiveness so as to reduce sampling artefacts. In addition,
when an experiment involves imaging over a time series for a dynamic sample, the experimenter
must decide on a compromise, choosing to image of same the sample at different times, or image
different but similar samples at the same time. Both approaches unfortunately reduce experimental
certainty. Further challenges include: potential difficulties with imaging the same sample area across
microscopic modalities, lack of prior knowledge of sample composition and or availability of pure
component spectra.
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Our literature survey indicates that the multivariate nature of chemical image data is often
neglected in data fusion (e.g., [4,5]). Multivariate chemical fusion techniques differ from standard
fusion in that the imaging techniques used are not considered in mathematic isolation. Multivariate
chemical fusion techniques therefore have at least two very significant advantages over standard fusion
techniques. The first is the reduction of experimenter bias in the designation of signal correlations
between features of different imaging techniques. This is because a sole reliance on visual interpretation
is no longer required. Further, correlations between imaging techniques which are not intuitively
obvious to an experimenter visually may be found with multivariate chemical fusion. Therefore,
multivariate chemical fusion approaches increase certainty by serving to reduce both false positives
and false negatives in relation to inter-modality correlations.

In this paper we provide a framework for multivariate chemical image (CI) fusion to enable: cross
modality image registration; improved classification performance; investigation of cross modality
correlations; prediction of one modality from another and resolution enhancement.

2. Multivariate CI Registration

Multivariate image registration was achieved in five steps as described below and shown
schematically in Figure 1.

Low resolution High resolution
Cl cube Cl cube
H1 H2
1. PCA 1. PCA
PCyy PCyp
2. Threshold 2. Threshold
PCip,
mask
3. Rotate,
flip, resize
PCy A PCyp
. 4. Register N
Affine

transformation

5. Apply to each i
slice of H2 i

High resolution
modality
registered Cl cube

Figure 1. Schematic showing framework for multivariate chemical image cube registration. Starting
with a low resolution modality (H1) and a higher resolution modality (H2), the higher resolution image
is rotated, resampled and transformed resulting in order to register it to match the spatial resolution of
the lower resolution image.
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1.  Starting with two chemical image cubes, one obtained using a lower resolution modality (H1)
and the other obtained using a higher resolution modality (H2), principal component analysis
(PCA) was applied to each chemical image cube individually. The resultant PC score images
were visually examined and compared between modes. One PC score image, corresponding to
common salient features of the sample, was selected for each modality (PCp; & PCyp).

2. The PC score images selected in step 1 were thresholded, based on their histograms, to create
a binary mask exposing the common salient features.

3. The higher resolution PC mask image was rotated and flipped to match the orientation of the
lower resolution one. This was followed by down-sampling of the higher resolution image to the
approximate size of the lower resolution image, resulting in a PC score mask image for the 2nd
modality (PCpp;) with similar orientation and size to that of the 1st modality (PCpy). Images were
down-sampled using the “imresize” function of the Matlab image processing toolbox [10]. This
function works by resizing a two dimensional image to a target size using bicubic interpolation.

4. An affine transformation to register the down-sampled image to the lower resolution image was
optimised using a regular step gradient descent method. Image registration parameters were
obtained from the binary masks created in step 3 and optimized using the “imregtform” function
of the Matlab image processing toolbox [10]. This function takes two input images of the same
size: one is regarded as fixed, this is the reference image, and the other is regarded as moving, this
is the image that will be transformed to match the spatial arrangement of the fixed image. The
transformation is defined by optimising a criterion, in this case study the mean square difference
between the fixed and transformed image was minimised. The output of this function is an
affine transformation which can then be applied to individual slices of the chemical image that
requires registration.

5. Each slice of the higher resolution chemical image cube (H2) was then rotated, flipped, resized
(according to the procedure defined in step 3) and the affine transformation optimised in step 4
was applied, resulting in a new registered chemical image cube where each pixel matches that of
the lower resolution one.

3. Multivariate CI Fusion

Seven methods of data fusion are presented here, as described below and shown schematically
in Figure 2:

1.  Low-level fusion: spatially registered image cubes were concatenated to make a fused chemical
image cube. Multivariate analysis (i.e., pixel classification using partial least squares discriminant
analysis (PLS-DA—further details are given in the data analysis section) was applied to this
chemical image cube.

2. Mid-level fusion: outputs from data reduction (i.e., PCA) were fused, followed by
pixel classification.

3. High-level fusion: outputs from classification applied to each cube separately were fused.

4.  Co-inertia analysis: unfolded, registered cubes were subjected to co-inertia analysis, as described
in [7]. This method generates global co-inertia scores and loadings from concatenated unfolded
registered chemical images, sequentially deflated by the contribution of each chemical image
(or “block”) to the global co-inertia scores and loadings. This enables analysis of the contribution
of each data block to the overall covariance in the global dataset described by each co-inertia
component and examination of the correlation between each block and global component. Further
details on the metrics extracted from the co-inertia analysis are given in the data analysis section.

5. Correlation analysis: the Pearson correlation coefficient [11] between spectra from the spatially
registered data was calculated to reveal spectral correlations between modalities.
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6.  Prediction: multivariate regression models were built to predict spectra from one modality from
the other. The registered data was divided into training, calibration and test data and PLSR
models were developed to predict intensity at a given spectral variable. Further details on the
PLSR models are given in the data analysis section.

7. Resolution enhancement: Using the predictive models developed in method 6, IR chemical image
cubes were predicted from high resolution Raman chemical image cubes. The predicted images
were evaluated by comparison with the actual high resolution IR image.

1. Low level fusion

H1 H2,e ‘ H1

2. Mid level fusion

RS X
& —a &

3. High level fusion

H1 H2,eq )

Class map Class map Fused class map
4. Co-inertia analysis —
O U4,
M W] i
Global
Unfolded Unfolded scores Block
scores
5. Correlation
b/ )
H1
H2 AT
V)
HL | | H2e ) "2
Correlation matrix
Unfolded Unfolded
6. Prediction
b/ )
H1 H2 9 H1

% |
H1 . |H2e ‘ H2

Prediction model
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7. Resolution Enhancement

Oya 9w O o
%]
H2
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Figure 2. Schematic showing framework of multivariate chemical image cube fusion methods
investigated. Starting with a low resolution modality chemical image cube (H1) and a registered higher
resolution modality chemical image cube (H2reg), the different levels of image fusion (low, medium
and high) are represented. Co-inertia analysis, correlation and prediction for resolution enhacement
are also shown schematically.



Molecules 2016, 21, 870 7 of 18

4. Results & Discussion

4.1. Multivariate Image Registration

Prior to multivariate chemical image fusion, it is necessary to ensure that the pixels represented
by each technique cover the same spatial area of the sample. This can be achieved by multivariate
image registration, as described in Section 2. The results for multivariate image registration, following
the five steps shown in Figure 1, are described below.

4.1.1. Selection of Target Images for Image Registration

Principal component analysis (PCA) was applied to each chemical image cube individually. PC
component images were inspected and compared between modalities as shown in Figure 3 (for image
set 1) and Figure S1 (for image set 2). For image set 1, the main salient feature used for registration
was the outline feature, which is seen most prominently in IR PC 1 and in Raman PC 2 as a bright
loop. Therefore IR PC 1 and Raman PC 2 score images were selected as inputs for image registration.
PC component images for image set 2 are shown in Figure S1; in this dataset, PC 1 images from both
modalities were chosen for registration.

PC3

Raman

Figure 3. PCA applied to chemical image cubes from different modalities (image set 1): First five IR
and Raman PC score images are shown. The main salient feature used for registration was the loop
feature, which is seen in IR PC 1 and in Raman PC 2 as a bright loop. All images were scaled to the
range mean *+ 4 standard deviations.

4.1.2. Conversion of Target Images into Mask Images

The selected PC score images were converted into binary masks by histogram based thresholding,
resulting in two mask images, as overlaid in Figure 4a and Figure S2a for image sets 1 and 2 respectively.
Overlaying the two images shows the difference in size, resolution and orientation of the images due
to inherent image acquisition differences between the two modalities. In the case of image set 3 (the
set USAF resolution target images) grayscale rather than thresholded PC images were used as targets,
since thresholding introduced errors into the mask images (see Figure S8a).

4.1.3. Rotation of Mask Images

Image set 1: The higher resolution Raman mask image was rotated and flipped to match the
orientation of the lower resolution IR mask image. This was followed by down-sampling of the
Raman image to the size of the lower resolution IR mask (from 787 x 774 pixels to 196 x 190 pixels).
Down-sampling of the higher resolution image (rather than up-sampling of the lower resolution image)
was carried out to better represent the same areas imaged by both techniques. The effect of these
processes is shown in Figure 4b,c, where the IR and transformed (rotated, flipped and resized) Raman
mask images are overlaid. The masks now start to look more similar than before, however the salient
loop feature does not match in both images, since the pixel size of the lower resolution image was not
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a whole number multiple of that of the higher resolution one (25 pm versus 6.2 um). Image sets 2 and 3:
Similar procedures for image sets 2 and 3 are shown in the Supplementary Material (Figures 52 and S8).
Image set 2 did not require rotating or flipping since the NIR and Vis-NIR reflectance images were of
the same orientation.

(a) (b) (c) (d)
Original IR & R Masks  After rotating & flipping R After resizing R

T~ 'h\'\- :.‘

Figure 4. Multivariate image registration for image set 1. Gray pixels show mis-matching pixels, white
pixels show matching pixels. (a) Original IR and Raman mask images overlaid; (b) IR and Raman mask
images overlaid after rotating and flipping Raman mask; (c) IR and Raman mask images overlaid after
rotating, flipping and down-sampling the Raman mask; (d) IR and Raman mask images overlaid after
rotating, flipping, down-sampling and applying affine transformation to the Raman mask.

4.1.4. Registration of Target Images

Image set 1: After rotating, flipping and down-sampling, the Raman mask was registered to the
IR mask by optimisation of an affine transformation to map the pixel positions in the Raman mask to
those in the IR mask. The resultant transformed mask is overlaid with the IR mask in Figure 4d. It can
be seen that the outline feature now matches up well (white pixels in Figure 4d). However, some pixels
present in the IR mask that are not found in the transformed Raman mask (gray pixels in Figure 4c)
are evident. These non-matching pixels correspond to features that are not common to IR PC 1 and
Raman PC 2 score images. Image sets 2 and 3: The results of applying similar procedures to image
sets 2 and 3 are shown in the supplementary material (Figures S2 and S8).

4.1.5. Multivariate Chemical Image Registration

Each slice of the original high resolution chemical image was subjected to the rotation, flipping,
resampling and transformation steps defined by the analysis of the mask images, resulting in a new
registered chemical image cube where each pixel position matched that of the lower resolution chemical
image cube.

4.2. Multivariate Data Fusion

4.2.1. Multivariate Data Fusion for Pixel Classification

After multivariate registration of chemical images, three levels of data fusion (low, mid and high,
see also Figure 2 and Section 3), were investigated, as described below. The levels of fusion were
compared in terms of the ability of the data set to discriminate between pixel classes in the dataset.
A calibration set of spectra for PLS-DA model building was obtained from half of each image cube and
the developed calibration model was applied to the remainder, resulting in class prediction maps, as
shown in Figure 5 (for image set 1) and Figure S3 (for image set 2). For comparison, the same method
was separately applied to individual chemical image cubes. Classification model metrics (number
of latent variables and % correct classification) are shown in Table 1 (for image set 1) and Table S1
(for image set 2).
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Table 1. Classification performance of PLS-DA pixel classification applied to separate IR, separate
Raman, low-, mid- and high-level fused IR-Raman data for image set 1 in terms of % correct class
and number of latent variables (#LV) used in each model. Corresponding pixel classification maps are
shown in Figure 6.

Dataset IR only R only Low Mid High
% Correct Class 91.10% 93.70% 75.80% 96.80% 86.90%
#LV in PLS-DA 3 4 7 6 7
Actual IR only Ronly Low Mid High

Maps
pixels

Figure 5. PLS-DA pixel classification for models developed on separate IR, separate Raman, low-,

mid- and high-level fused IR-Raman data for image set 1. Actual target classification map is shown in
leftmost upper panel. Classification maps for Class 1-3 (red = Class 1, green = Class 2, blue = Class 3)
resulting from PLS-DA modelling shown in upper panels. Misclassified pixels for each model shown
as white pixels in lower panel. Further model details are shown in Table 1.

T - 3 S S ————— 7 ¥

97

%Correct classification
© © ©
8 & & 8
T T T T
| | |

©

N
T
1

o1 | | | | | | | | |

% Variance Explained
I

8 10 12
Number of Principal Components

Figure 6. Effect of number of IR and Raman principal components used in mid-level fusion on %
correct classification for image set 1 (top panel). Percentage variance explained by each number of PCs
shown in lower panel.

4.2.2. Low-Level Fusion

To achieve low level fusion for image set 1, the spatially registered chemical image cubes were
concatenated along the wavenumber/Raman shift dimension (see Figure 2, part 1), resulting in a fused
IR-Raman chemical image cube. Prior to fusion, each of the IR and Raman cubes was auto-scaled
by subtracting the mean and dividing by the standard deviation of each column of the unfolded
chemical image cube, followed by block and maximum scaling. Autoscaling and maximum scaling
were necessary to prevent the Raman spectra from dominating in the subsequent multivariate analysis,
as the range of intensities measured for the Raman data was much larger than that for the IR data,
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while block scaling was necessary to prevent the IR data, which had a larger number of spectral
variables than the Raman data, from dominating. The classification map obtained using low level
fused data of image set 1 (Figure 5) resulted in lower correctly classified pixels as compared with the
prediction maps obtained using IR or Raman data alone (75.8% versus 91.1% and 93.7% respectively).
However, the classification map obtained using low level fused data of image set 2 (Figure S3) resulted
in higher correctly classified pixels as compared with the prediction maps obtained using NIR or
Vis-NIR data alone (94.3% versus 90.9% and 93% respectively).

4.2.3. Mid-Level Fusion

Before mid-level fusion, PCA was applied separately to each chemical image cube and the
resulting PC scores were concatenated. This dataset was then used for building PLS-DA classification
models. The influence of the number of PC scores selected for each modality on the subsequent
classification performance is shown in Figure 6. From 10-20 PCs, changes in classification performance
were minimal; therefore, for image set 1, the first ten PC score images from each modality (representing
94% and 75% variance respectively) were used for mid-level fusion. These images were fused
by concatenation (see Figure 2, part 2) and PLS-DA was applied to the resulting datacube. The
classification map obtained using mid-level fused data (Figure 5) resulted in more correctly classified
pixels as compared with the prediction maps obtained using IR or Raman data alone or low level fused
data (96.8% versus 91.1%, 93.7% and 75.8% respectively). For image set 2 (see Figure S3 and Table S1),
mid-level fusion also resulted in more correctly classified pixels as compared with the prediction maps
obtained using NIR, Vis-NIR or low level fused data (95.1% versus 90.9%, 93% and 94.3% respectively).
Mid-level fusion generally performed better than low level fusion, probably due to the inherent noise
filtering effects of PCA.

4.2.4. High-Level Fusion

In order to achieve high level fusion, the classification maps resulting from PLS-DA applied
separately to each modality were merged by consensus—i.e., pixels classified as belonging to the same
class in each class prediction map were assigned to that class in the high-level fused map, while pixels
classified as belonging to different classes were classified as unknown. The consensus map suffers from
the presence of several unclassified pixels, corresponding to those pixels where different classes were
predicted from IR and Raman data. Consequently, for image set 1 the high level fused data resulted in
the lowest classification accuracy when compared to IR only, Raman only, low and mid-level fused
data (91.4% versus 91.1%, 93.7%, 75.8% and 96.8% respectively). Similar trends were observed for
image set 2 (see Table S1).

4.2.5. Co-Inertia Analysis

Co-inertia analysis is a useful tool in chemical image fusion to evaluate the contribution of each
chemical image cube (or “block”) to the common structure in the fused dataset, enabling inspection of
the level of similarities within each block for a given global co-inertia component. Co-inertia metrics
can be used to evaluate the portion of the covariance structure related to each block separately and
the common structure from each chemical image. The global and block score images for co-inertia
analysis are shown in Figure 7 (for image set 1) and Figure S4 (for image set 2). The similarity between
each block and global component can be quantified by calculating the contribution of each block to the
global scores and loadings, see Table 2 (for image set 1) and Table S2 (for image set 2). For example,
consider the first co-inertia component of image set 1: the IR block loading contributes to 59% of the
global loading, while the Raman block loading contributes 41%. The IR block score contributes 31% to
the global score, while the Raman block score contributes 22%. Thus the total common contribution of
the IR and Raman blocks to the global component is about 53%. The common contribution of each
block to the 1st global component can also be evaluated using the correlation measurement, which is
0.9 for the IR block and 0.8 for the Raman block. This can be also seen on visual inspection of global
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and block scores shown in Figure 7: the global score for component 1 shares features of both the IR
and Raman block scores. Conversely, the second global component is dominated by the Raman block,
which can be seen by visual inspection of the scores in Figure 7 and the correlation values (0.98 for
the Raman block and 0.3 for the IR block) given in Table 2. This analysis can be extended to higher
order co-inertia components. Co-inertia analysis thus provides a simple yet powerful approach to
investigating correlated and complementary information in a set of chemical images.

Component 1 Component 2 Component 3 Component 4

Global Gryre;

N N

DN

Block IR

-/} \“\ g 3
Block R ¢ { g

S J b §

™ P e e

Figure 7. Co-inertia global and block (IR = infrared, R = Raman) score images for 1st four co-inertia
components of image set 1.

Table 2. Co-inertia analysis: contribution of block to global loadings and components and correlation
between block and global scores for image set 1.

Component 1 2 3 4 5 6

Contribution of IR block loadings

to global loadings (%)

Contribution of R block loadings

to global loadings (%)

Contribution of IR block components

58.96 25.41 46.34 79.32 76.41 3.55

41.04 74.59 53.66 20.68 23.59 96.45

o 31.06 1.93 12.84 34.09 30.45 0.02
to global components (%)
Contribution of R block components 2998 401 39.14 379 201 60.67
to global components (%)
Correlation between IR block scores 0.889 0.286 0.677 0.967 0.976 0.03
and global scores
Correlation between R block scores 0.813 0.987 0.942 0.389 0283 1

and global scores

4.2.6. Correlation Analysis

Image set 1: After unfolding the IR and registered Raman chemical image cubes, the Pearson
correlation coefficient between each wavenumber variable in the IR chemical image cube and each
Raman shift variable in the registered chemical image cube was calculated. The absolute values of the
resultant correlations are displayed as a correlation map in Figure 8a, where the IR wavenumbers are
represented along the y-axis, Raman wavenumber shifts are represented along the x-axis and bright
pixels indicate regions of high correlation. Correlation maps such as those shown in Figure 8a are
a simple and useful method for locating highly correlated variables across different modalities. For
example, IR wavenumbers and Raman shifts with correlation coefficients greater than 0.85 are shown as
red dots in Figure 8b. The IR wavenumbers with correlations greater than 0.85 were: 3047-3055 cm !,
3402-3417 cm~1, 3425-3448 cm ! and 3460-3464 cm 1, while the Raman shifts with correlations greater

than 0.85 were: 2928-2932 cm ™. It is possible to inspect the correlation between any wavenumber and
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all Raman shifts (or vice versa), by plotting slices of the correlation map. For instance, in Figure 8b
(lower panel), the absolute value of the Pearson correlation coefficient between each Raman shift and
the IR peak at 3444 cm™! is shown. It can be seen that the Raman shifts with highest correlations
correspond to the peaks at 2928 cm~! and 2932 cm 1.

M] 0.8 Mean IR spectrum
0.01 /\ .
107 0 _va\//\ /\ ) f&‘—qu/\ﬁww\kw\/——‘——-A
IR
-0.01 L L 1 1 L
10.6 2500 3000 3500 4000 4500 5000
Wavenumber(cm'1)
Mean R spectrum
5 0.5 5 T T T
0 _\,__\,\A#Mﬁﬂ/\/\& /N\ 4
0.4 O\
-5 Il 1 I L |
08 2500 3000 3500 4000 4500 5000
’ Raman Shift (cm™")
; correlation between Raman and 3444 cm™ IR
0.2 T T T T T
0.5
o ,\/‘J\A/\'VA/\/\
0 \ 1 1 1
2500 3000 3500 4000 4500 5000

Raman Shift (cm'ﬂ)

Raman

Figure 8. Correlation analysis: (a) correlation map showing correlation between all IR wavenumber and
Raman shifts; (b) top panel: mean IR spectrum, red dots indicating IR wavenumbers with correlation
coefficients > 0.8, middle panel: mean Raman (R) spectrum, red dots indicating Raman shifts with
correlation coefficients > 0.8; lower panel: correlation between all Raman shifts and the IR peak
at 3444 cm™!. This corresponds to a horizontal slice of the correlation map at the row corresponding
to 3444 cm~ L.

Image set 2: Correlation maps for image set 2 are shown in Figure S5, with regions of high
correlation shown in white. The correlation between NIR wavelength 1384 nm and all Vis-NIR
wavelengths is also shown in Figure S5.

4.3. Cross Modality Prediction

4.3.1. Prediction at Low Resolution

In the previous section, it was shown that some spectral variables are highly correlated between
modalities for image sets 1 and 2. This indicates the possibility of predicting one modality from the
other. We demonstrate this by applying PLS regression to predict chemical images at specific spectral
variables (i.e., wavenumbers for images set 1 and wavelengths for image set 2). For image set 1, we
chose to predict the 2932 cm ™! Raman shift since, as shown in the previous section, this shift was highly
correlated to the IR data. The predicted Raman image at 2932 cm~! and its corresponding histogram
are shown in Figure 9. It is evident that the predicted image corresponds well to the actual Raman
image at 2932 cm~!. When predicting IR from Raman spectra, we chose to predict the 3444 cm™!
wavenumber IR image since, as shown in the previous section, this shift was highly correlated to the
Raman data. The predicted Raman image at 3444 cm ! and its corresponding histogram are shown in
Figure 10. It is evident from these that the predicted image corresponds well to the actual IR image
at 3444 cm ™!,
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Figure 9. Raman image at 2932 cm~!: left hand side shows image (and corresponding histogram)

predicted by PLS regression model applied to IR data; right hand side shows actual down-sampled

Raman (R) image (and corresponding histogram) at 2932 cm 1.
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Figure 10. Prediction of IR image at 3444 cm~! for image set 1: left hand side shows image (and
corresponding histogram) predicted by PLS regression model applied to Raman data; right hand side

shows actual IR image (and corresponding histogram) at 3444 cm~!.

The extension of this concept to predicting entire chemical image cubes from one modality
to another is trivial, although care should be taken in interpreting predicted images at
wavenumbers/shifts where correlation is low. In order to evaluate this, the entire chemical image
cube of each modality was predicted from the other and the resultant mean spectra of the predicted
and actual IR and Raman cubes are plotted in Figure 11. The relative error of prediction at each
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wavenumber variable was also calculated as plotted in Figure 11. The relative error could be used to
define error tolerances (e.g., <2%) for prediction and to determine poorly predicted spectral variables.
This information can also be used in conjunction with the correlation maps developed in the previous
section: i.e., spectral variables with low correlation among modalities correspond to variables with
high relative error.
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2000 2500 3000 3500 4 4000 4500 5000
Wavenumber (cm™)

o
T
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Figure 11. Error estimation for prediction of each wavenumber in image set 1. Top two panels
show (upper panel) mean actual and predicted spectrum and (lower panel) % relative error at each
wavenumber for prediction of IR from Raman chemical image data. Bottom two panels show (upper
panel) mean actual and predicted spectrum and (lower panel) % relative error at each wavenumber for
prediction of Raman from IR chemical image data.

Cross modality prediction images for image sets 2 and 3 are shown in the supplementary material,
Figures S6, S7 and S9. The prediction maps look very similar to the actual single channel images.
However, as it can be seen from the prediction maps for image set 2, noise artefacts in the calibration
images can affect the prediction maps (see Figure S6).

4.3.2. Resolution Enhancement

A further extension of the concept of predicting one modality from another, described in the
previous section, is the appealing proposition of being able to predict high spatial resolution maps
using a modality with inherently higher spatial resolution [9]. Raman imaging, for example, is capable
of inherently higher spatial resolution than IR imaging. Using the predictive models developed in
Section 4.3.1, high spatial resolution IR chemical image cubes were predicted from the original high
spatial resolution Raman chemical image cube. The predicted image was evaluated by comparison
with the actual high spatial resolution IR image. Applying the predictive PLSR models directly
on the original data led to the introduction of noise in the predicted high resolution image. This
is because the down-sampling step in the image registration process resulted in smoothing of the
Raman spectra (see Supplementary Materials Figure S11). In order to de-noise the original Raman
spectra, a PCA compression step, where PCA is applied to the original datacube and the first ten
PCs were used to reconstruct the cube, was carried out. The resultant PCA de-noised spectra (see
Supplementary Materials Figure S11) were used as inputs to the PLSR prediction model developed on
the down-sampled data, resulting in the prediction map shown in Figure 12. When compared to the
actual high resolution (HR) IR image, it is clear that the level of noise in that image, due to instrumental
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noise related to the linear array in the IR imaging instrument, prevents the resolution of smaller objects.
However, the predicted high resolution image allows the resolving of several smaller objects which
were not distinguishable from each other in the low resolution images (see red arrows in Figure 12).

actual LR IR image at 3444 cm™ predicted LR IR image at 3444 cm™”

predicted HR IR image at 3444 cm™

-

»

Figure 12. Resolution enhancement of IR image at 3444 cm~!: upper left shows low resolution
(LR: pixel size = 25 pm) image; upper right shows low resolution IR image predicted by down-sampled
Raman spectra; lower left shows high resolution (HR: pixel size = 6.2 um) IR image predicted by PCA
de-noised Raman spectra; lower right hand side shows actual HR IR image at 3444 cm~!. Red arrows
indicate objects resolvable in the IR predicted image at 3444 cm 1.

Similarly, high resolution prediction maps for image set 3 are shown in Figure S10. Although
similar features in the resolution target are resolved in both the predicted and actual image, comparison
of the image histograms is affected by noise in the predicted image (bright dots corresponding to bad
pixels in the HR Raman image) and noise in the actual HR image (lines introduced by the linear array).

5. Experimental Section
5.1. Materials and Methods

5.1.1. IR Instrumentation

IR images were acquired using a Nicolet iN10 MX Imaging system by Thermo Scientific (Madison,
WI, USA). The detector used was an LN2 Cooled MCTA linear array detector, which was liquid
nitrogen cooled. High resolution images were obtained using the zoom feature of the system.

5.1.2. Raman Instrumentation

Raman images were acquired using an InVia Micro-Raman spectroscopy system (Renishaw,
Wotton-under-Edge, Gloucestershire, UK) with a 10x objective and 532 nm laser. The detector used
was a NIR enhanced Deep Depletion CCD array (1024 x 256 pixels), which was Peltier cooled to —70 °C.

5.1.3. NIR Instrumentation

NIR chemical images were recorded using a line-mapping NIR hyperspectral imaging system (DV
Optics, Padua, Italy), working in the range 950-1650 nm, where reflectance was measured every 7 nm
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(further details of the instrument can be found in [1]). The pixel size obtained using this instrument
was approximately 320 x 320 pm.

5.1.4. Vis-NIR Instrumentation

Vis-NIR chemical images were recorded using a line-mapping hyperspectral imaging system,
working in the range 450-950 nm, where reflectance was measured every 5 nm (further details of the
instrument can be found in [12]). The pixel size obtained using this instrument was approximately
170 x 170 pm.

5.2. Image Sets

5.2.1. Image Set 1

This image set consisted of IR and Raman images of a polymer blend sample of 50:50 PLA:PHB,
prepared by drop casting as described in [13]. A circular marker was drawn on the centre of the sample
and a spatial region around this marker was imaged using the IR microscope in transmission mode at
low (25 pm) and high resolution (6.2 um). A similar region was imaged using the Raman microscope
at 10x magnification (corresponding to pixel sizes of 6.2 x 6.5 pm).

5.2.2. Image Set 2

This image set consisted of NIR and Vis-NIR images of a mixture of polymer fragments
(low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and
polystyrene (PS)). The images have two sides, the left side consisting of a piece of each polymer type
and the right side consisting of a mixture of seven pieces of each polymer type. Similar regions were
imaged by the NIR instrument (pixel size approximately 320 x 320 um) and the Vis-NIR instrument
(pixel size approximately 170 x 170 um).

5.2.3. Image Set 3

This image set consisted of IR and Raman images of group 5 of the 2” x 2” Positive, 1951 USAF
Hi-Resolution Target (Edmund Optics, Ltd., Barrington, NJ, USA). The IR image was obtained in
transmission mode at low (25 um) and high resolution (6.2 um). A similar region was imaged using
the Raman microscope at 10 x magnification (corresponding to pixel sizes of 6.25 x 6.25 um).

5.3. Data Analysis

All data analysis was carried out using Matlab (release R2014b, The MathWorks, Inc., Natick,
MA, USA) incorporating functions from the Image Processing and Statistics toolboxes and additional
functions written in-house. Example data (Image set 2) and associated Matlab scripts are available on
our research group’s website [14].

5.3.1. Data Pre-Processing

Chemical image cubes were subjected to bad pixel detection prior to analysis using the method
described in [15]. Spectra were subjected to second derivative Savitsky-Golay pre-treatment (window
size: 15, polynomial order: 3) to reduce effects due to uneven illumination and/or sample morphology.
For image set 1 spectra from each modality were auto, block and maximum-scaled prior to fusion. For
image set 2 block scaling was not required as each data block had the same number of spectral variables.

5.3.2. Co-Inertia Analysis

Co-inertia analysis was carried out as described in [7]. The contribution of each data block to the
global scores was evaluated using the metrics described in Table 3.
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Table 3. Metrics derived from co-inertia analysis (u = global loading, s = global score, k = block
subscript, ¢ = component superscript, Xy = kth data block (i.e., unfolded chemical image)).

100 x "
u(f)

100 x cov? (5§(Ck) 5 )
2
Z,’f:] var (S)<(Ck))
Pearson linear correlation coefficient
between block and global scores

Contribution of block loadings to global loadings (%)

Contribution of block components to global components

Correlation between IR block scores and global scores

5.4. PLS-DA Model Building

PLS-DA models were built to discriminate between the different classes in image sets 1 and 2.
For each image set, the images were split into two halves: one half for model building and the other
half for prediction. The first half of the image was further split into calibration and validation sets.
N-PLS-DA models were built; the number of latent variables was decided on the global percentage
correct classification and class membership was designated based on maximum probability. The
functions for building N PLS-DA models and applying them to chemical images (Npls_da_N.m and
Npls_da_N_apply_Im.m) can be found within the downloadable files in [14].

5.5. PLSR Model Building

PLSR models were developed as follows to predict IR spectra from Raman spectra and vice versa.
The registered chemical image cube data was divided into calibration, training and test datasets and
PLSR models were developed to predict IR or Raman chemical image intensity at a given wavenumber
or Raman shift. The number of latent variables to include in each model was estimated using the
method described in [16]. The functions for building PLSR models (PLS_output2.m) can be found
within the downloadable files on [14].

6. Conclusions

In this paper we have presented a new framework for data fusion of chemical images, using
the multivariate nature of this data to enable cross modality image registration, improved pixel level
classification and improved resolution through the development of multivariate prediction models.
The framework proposed is generic in that it can be applied to fuse chemical or hyperspectral data from
any modality. In the example datasets studied, sufficient complementary and correlated information
was available across IR and Raman modalities to demonstrate the benefits of multivariate chemical
image fusion. However, some limitations of the proposed approach should be noted. Firstly, in order
to perform successful multivariate chemical image registration using the proposed approach, it is a
requirement that some salient features be present in the principal component score images of each
modality. If two techniques are uncorrelated, it is unlikely that this requirement will be met. However,
this could be overcome by the addition of landmarks, or use of edge features. Should this not be
feasible, it is possible to use the approach of Allouche et al. [7] where each image is registered to
a reference brightfield image. Secondly, in order for pixel classification to be improved by multivariate
chemical image fusion, it is generally required that each modality contain some complementary
information. The amount of complementary information between each modality can be evaluated
with co-inertia analysis. An exception to this requirement would be in cases where the multivariate
fusion process results in denoising of the respective modalities which may also improve classification.
Finally, in order to achieve improved spatial resolution via multivariate prediction of one modality
from another, it is necessary that a significant correlation exists across the modalities investigated.
Adherence to the requirements stated above will generally be sample and modality dependent.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
21/7/870/s1.
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