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Abstract: Decades of research have produced no effective method to prevent, delay the onset, or slow
the progression of Alzheimer’s disease (AD). In contrast to these failures, acetylcholinesterase
(AChE, EC 3.1.1.7) inhibitors slow the clinical progression of the disease and randomized,
placebo-controlled trials in prodromal and mild to moderate AD patients have shown AChE
inhibitor anti-neurodegenerative benefits in the cortex, hippocampus, and basal forebrain.
CNS neurodegeneration and atrophy are now recognized as biomarkers of AD according to the
National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria and recent evidence shows
that these markers are among the earliest signs of prodromal AD, before the appearance of amyloid.
The current AChE inhibitors (donepezil, rivastigmine, and galantamine) have short-acting mechanisms
of action that result in dose-limiting toxicity and inadequate efficacy. Irreversible AChE inhibitors,
with a long-acting mechanism of action, are inherently CNS selective and can more than double
CNS AChE inhibition possible with short-acting inhibitors. Irreversible AChE inhibitors open the
door to high-level CNS AChE inhibition and improved anti-neurodegenerative benefits that may
be an important part of future treatments to more effectively prevent, delay the onset, or slow the
progression of AD.

Keywords: Alzheimer’s disease; acetylcholinesterase inhibitor; acetylcholinesterase; butyrylcholinesterase;
atrophy; donepezil; rivastigmine; galantamine; metrifonate; methanesulfonyl fluoride

1. Introduction

Alzheimer’s disease (AD) is a severe progressive neurodegenerative disease. Decades of research,
hundreds of clinical trials and billions of dollars seeking successful treatment or prevention have
been guided by the “amyloid cascade” hypothesis [1], but this effort has produced no interventions
that effectively prevent, delay the onset, slow the progression, or arrest AD [2–4]. In view of
these failures, there is an urgent and unmet need to identify new strategies and focus on other
AD-related neuropathological changes, especially those that occur in the earliest stages of the disease,
before more advanced irreparable brain damage [5–7]. The purpose of this review is to explore the
anti-neurodegenerative benefits of acetylcholinesterase (AChE, EC 3.1.1.7) and to suggest irreversible
CNS-selective AChE inhibition for improved intervention in AD-related neurodegeneration.

2. CNS Neurodegeneration and Atrophy as Major Biomarkers of AD Progression

AD has been traditionally defined on the basis of three classical neuropathological changes in
the brains of AD patients. AD was first characterized in the first decade of the last century [8] by the
accumulation of extracellular aggregated β-amyloid (senile plaque) and intracellular aggregation of
hyperphosphorylated tau (neurofibrillary tangles). A third pathophysiological marker of AD is a severe
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loss of neurons in the midbrain cholinergic system that provides the major cholinergic projections to
the cortex and hippocampus [9].

Updated biomarkers for AD, the National Institute on Aging-Alzheimer’s Association (NIA-AA)
criteria, include not only measures of β-amyloid and tauopathy, but also include markers for
AD-associated CNS neurodegeneration and atrophy [10]. In the context of other traditional diagnostic
criteria such as cognitive decline, amyloidosis, and tauopathy, CNS neurodegeneration and atrophy
correlate strongly with symptoms and risk of cognitive decline and, thus, improve in vivo pathologic
staging of the disease [11–15].

Investigations of neuronal injury and neurodegeneration, in particular, have led to better surveillance
for preclinical signs of AD and identification of the earliest stages of the disease. For example, at the first
signs of subtle cognitive decline [16,17], findings of neurodegeneration are 2.5 times more common than
amyloidosis [16]. In addition, using neurodegeneration as an early biomarker for AD, cortical atrophy
follows a temporal pattern that coincides with cognitive decline [16,18].

3. AChE Inhibitors and Anticholinergics Affect Neurodegeneration in AD

Degeneration of basal forebrain neurons causes a loss of cholinergic tone in the basal forebrain
cholinergic system, especially projections to the cortex and hippocampus, which is responsible for the
severe cognitive losses characteristic of AD [19–23]. The magnocellular neurons of the basal forebrain
are among the earliest to undergo severe neurodegeneration in AD [9]. Atrophy of these neurons occurs
during normal aging and early in the progression of AD [23,24]. In vivo longitudinal imaging studies
indicate that degeneration of the basal forebrain in prodromal AD precedes and predicts entorhinal
pathology and memory impairment [25]. Changes in basal forebrain volume is also a reliable indicator
of cortical spread of AD-induced neurodegeneration, which supports the contention that basal forebrain
neurodegeneration is an upstream triggering event in the development of AD [26]. Atrophy of the
basal forebrain, in particular, also predicts cortical amyloid burden [27]. Degeneration of the basal
forebrain in preclinical, but cognitively normal suspected prodromal AD, is associated with increased
microglial inflammation and amyloid and tau accumulation in vivo at the earliest stages of the disease,
which suggests that the loss of central cholinergic tone from the basal forebrain may enable microglial
inflammation induced by amyloid and tau accumulation [28]. The cholinergic neurons of the basal
forebrain are also among the earliest to show tauopathy, the oligomeric constituents of neurofibrillary
tangles in AD [29–32]. Atrophy of the basal forebrain, in particular, predicts the development of AD
in the asymptomatic elderly [33]. Evidence now suggests that the cholinergic cell bodies of the basal
forebrain are not completely lost in AD, but that many persist in an atrophied state in which they have
lost their cholinergic phenotype [20]. Thus, the collapse of basal forebrain neurons, including loss of
their projection fibers and the subsequent absence of their synaptic acetylcholine efflux and cholinergic
tone in the cortex and hippocampus, may be a germinal event in the development of AD [20–24,27,29].

The key role of cholinergic tone is confirmed by animal experiments in which basal forebrain
lesions (an animal model of AD) or by treatment with anticholinergics (blocking acetylcholine
receptors) triggers the formation of β-amyloid in transgenic mice [34,35], rats [36], guinea pigs [37],
and rabbits [38]. These animal models suggest that all or most normal (non-transgenic) mammalian
brains have an incipient age-related capacity to produce amyloid like that which occurs spontaneously
in aged primates [39]. Furthermore, the extent of amyloid production occurs on a continuum that is
substantially skewed upward toward older animals, those with basal forebrain cholinergic lesions,
and those with transgenic with human amyloid-related genes [34–39]. The importance of AChE
inhibitors, which restore cholinergic function by amplifying the effect of synaptic acetylcholine,
is shown by the fact that they are prophylactic against some of these changes [38,40].
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In humans, the long term use of anticholinergics triggers the accumulation of both plaques and
tangles as seen on postmortem examination [41]. Anticholinergics also accelerate the progression from
normal cognition to more advanced stages of mild cognitive impairment and conversion into AD-like
dementia in elderly persons [42–45]. In addition, AChE inhibition, an independent effect separate from
memantine, slows the clinical progression of AD [46–52].

The anti-neurodegenerative benefits of AChE inhibition on CNS atrophy, a direct biomarker
of AD pathophysiology, are more convincing. For example, in a retrospective analysis patients
with mild cognitive impairment, rivastigmine, which inhibits both AChE and butyrylcholinesterase
(BChE, EC 3.1.1.8) [53], reduces whole brain atrophy, hippocampal atrophy, and white matter loss [54].
In another study, 20 weeks of treatment with rivastigmine protected against AD-associated white
matter loss, an effect that was not observed with donepezil and galantamine, more AChE-selective
inhibitors [53]. Rivastigmine-associated protection of white matter is attributed to BChE inhibition [55]
and the role of cholinergic signaling, especially involving BChE and its presence in white matter [56–58],
but rivastigmine is also a potent inhibitor of AChE [53] and such an attribution deserves further
study. More specific to AChE, however, randomized, placebo-controlled trials show that short-term
donepezil-induced AChE inhibition (one year) in prodromal AD patients slows gray matter atrophy
in the hippocampus [59], cortex [60], and basal forebrain [61]. Donepezil-induced AChE inhibition
(six months) in patients who have advanced to mild or moderate AD also slows hippocampal
atrophy [62]. The anti-neurodegenerative benefits of AChE inhibition on the basal forebrain and its
projection areas (hippocampus and cortex) in AD are clear.

The mechanism(s) by which AChE inhibitors produce these disease-modifying benefits are not
clear. One hypothesis is that the AChE inhibitors act by enhancing neurotrophic factors, especially
nerve growth factor (NGF), which affect key AD-associated pathophysiological processes in the
basal forebrain, cortex, and hippocampus [20,63–66]. The effects of NGF and its possible role in
AD, the neurotrophic hypothesis of AD [67,68], and the extensive supporting evidence, have been
reviewed in detail elsewhere [20,64]. Briefly, the AD-associated loss of basal forebrain cholinergic
neurons, or their cholinergic phenotype, results in a loss of acetylcholine-dependent stimulation of
the production and release of NGF from the basal forebrain target tissues (hippocampus and cortex).
With declining acetylcholine stimulation, there is a resulting deficit of mature NGF for uptake into the
presynaptic terminals of the cholinergic projection axons and inadequate NGF undergoing microtubule
retrograde transport back to the basal forebrain cholinergic cell bodies. Without adequate NGF trophic
effects, the basal forebrain cholinergic neurons atrophy or lose their cholinergic phenotype [20]. In this
scenario, AChE inhibitors amplify acetylcholine-dependent stimulation and release of NGF and,
thereby, increase the survival of the basal forebrain cholinergic system, an anti-neurodegenerative
effect [20,64]. The role of the basal forebrain cholinergic system, neurotrophic factors, and alternative
hypotheses such as tauopathy and inflammation are not mutually exclusive but contribute converging
insights into the pathogenesis of AD [65]. Regardless of the mechanism of AChE inhibitor-induced
anti-neurodegenerative benefit, there is a call for more effective CNS cholinergic stimulation to improve
disease-modifying benefits in AD therapy [20,69].

In summary, increasing cholinergic tone (AChE inhibition) or deceasing cholinergic tone
(anticholinergics) produce disease-modifying effects by either slowing or accelerating, respectively,
the clinical and pathophysiological progression of AD. In view of the decades of failures of other
disease-modifying strategies and the critical need for effective treatments, AChE inhibitors offer
an unparalleled opportunity for delaying the onset, slowing the disease, reducing disability and
preserving the autonomy of patients at risk for AD.
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4. Failures of Current AChE Inhibitors

The rationale for the use of AChE inhibitors is to stop the breakdown of synaptic acetylcholine,
amplify and extend its impact in the basal forebrain cholinergic system, and to enhance the cholinergic
and cognitive functions which deteriorate in normal aging and AD [19–23,70–73]. While the use
of AChE inhibitors has a clear rational basis, their impact on cognitive functions, quality of life,
global clinical states, and medicoeconomic benefits are marginal to nonexistent and have fallen
short of expectations [74–78]. Even though the currently available AChE inhibitors (donepezil,
rivastigmine, galantamine) have produced the most robust anti-neurodegenerative benefits to
date [54–62], their effects are small and are of more theoretical interest than clinical importance [79,80].
The current AChE inhibitors are far from adequate to meet the demand for highly effective AD
interventions [81] that are urgently needed to improve cognitive functions and/or take advantage of
the recently recognized additional anti-neurodegenerative benefits [54–62].

The main limitation of the current AChE inhibitors is the unavoidable gastrointestinal toxicity that
limits their use to doses that are too low to be effective [69]. Direct PET measurements of the maximum
in vivo cortical AChE inhibition that can be tolerated in AD patients undergoing donepezil treatment
is estimated at ~19% [82], ~27% [83], ~35% [84], and from 28% to 39%, depending on the cortical
area [85]. Similarly, in vivo cortical AChE inhibition during rivastigmine and galantamine treatment
is estimated at ~28% to 37% [85] and 30% to 40% [86], respectively. This level of AChE inhibition,
as found in clinical use, is less than the minimum of ~50% AChE inhibition required for effective AD
therapy [69,87–89]. In view of these data, it is not surprising that AChE inhibitors produce mainly
statistical improvements in cognitive function, but certainly not the powerful clinical improvements
that were originally expected [79–81]. On the other hand, AChE-induced anti-neurodegenerative
benefits are unexpected under such severely limiting circumstances as low levels of inhibition in
(25–35%), short-term trials (6 months to one year), and with only a few hundred patients in each
experiment [59–62].

It is reasonable to speculate that a broad range of improvement in AChE therapy, high-level AChE
inhibition above 50%, could substantially improve anti-neurodegenerative outcomes, but only if the
long-time barrier to dose-limiting gastrointestinal toxicity can be overcome [69].

5. Mechanisms of Action of Key AChE Inhibitors

The mechanisms by which AChE inhibitors block the catalytic action of the enzyme fall into three
major categories: competitive inhibition, pseudo-irreversible inhibitions, and irreversible inhibition.
The most important AChE inhibitors used for the treatment of AD are shown in Table 1.

Table 1. AChE Inhibitors.

Inhibitor Mechanism of Action Additional Notes *

Donepezil Competitive/Noncompetitive
Galantamine Competitive Upregulates nicotinic receptors
Rivastigmine Pseudo-Irreversible Also inhibits BChE
Metrifonate Pseudo-Irreversible Induces peripheral neuropathy

Methanesulfonyl Fluoride Irreversible High CNS Selectivity

* References to additional notes are found in text.

A schematic representation of how acetylcholine and the key AChE inhibitors interact with the
catalytic action of the enzyme is shown in Figure 1.
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5.1. Mechanisms of Action of Short-Acting AChE Inhibitors—Limited Efficacy

Details of the mechanisms of action of the current AChE inhibitors (donepezil, rivastigmine,
and galantamine) have been reviewed in detail elsewhere [79,89]. Briefly, as shown in Table 1,
the mechanisms of action of the available short-acting reversible AChE inhibitors fall into two
categories: competitive or pseudo-irreversible inhibition.

5.1.1. Competitive AChE Inhibition: Donepezil and Galantamine

Competitive inhibition is dependent upon the concentration of the inhibitor in the microenvironment
of the enzyme in the synapse and the degree to which the inhibitor occupies the catalytic site. It is
readily reversible with declining in vivo inhibitor concentration, and, therefore, the duration of the
inhibition by donepezil and galantamine is dependent on the rate of inhibitor elimination [79,89].
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Figure 1. Panel (A) shows the normal ephemeral (microseconds) covalent acetyl-enzyme complex
that is formed as an intermediate step in the hydrolysis of acetylcholine (shown). Panel (B) shows
a schematic of a competitive inhibitor binding reversibly (spanning) the catalytic site representing
donepezil or galantamine (note that the competitive inhibitor does NOT form a covalent bond with the
serine sidechain OH required for acetylcholine hydrolysis). Panel (C) shows a longer-lasting covalent
bond (signified by heavier red bars) formed between pseudo-irreversible inhibitors (spontaneously
hydrolyzed with a half-time of hours) and the enzyme. The schematic box in Panel (C) represents
the corresponding carbamoyl- or phosphoryl-enzyme covalent binding, respectively, for the case of
rivastigmine, metrifonate, or DDVP, wherein the specific molecular structure of each pseudo-irreversible
inhibitor intermediate not shown. Panel (D) shows an example of the irreversible sulfonyl-enzyme
covalent complex (no spontaneous hydrolysis, no recovery) that permanently excludes acetylcholine
binding and hydrolysis. The specific sulfonyl-enzyme covalent complex shown in Panel (D) is that
formed during methanesulfonyl fluoride inhibition.

Donepezil (FDA 1996, Aricept®) is a mixed competitive/noncompetitive inhibitor that binds to
and orients over the catalytic gorge as well as spans a peripheral binding site which both directly
and indirectly blocks catalytic action [90,91]. Donepezil disappears from blood with an elimination
half-time of 76 h [88,89].

Galantamine (FDA 2001, Reminyl®) is a strictly a competitive inhibitor of AChE [92] that has
an elimination half-time of 5–7 h [93]. It was likely the AChE inhibitor antidote in Homer’s Moly
(Galanthus nivalis) that helped Odysseus rescue his crew from Circe’s malignant anticholinergic posset
(Datura stramonium), which probably induced the central anticholinergic syndrome (stramonium
poisoning), thousands of years ago [94]. Besides inhibiting AChE, galantamine is also an allosteric
modulator of nicotinic acetylcholine receptors [95,96], which may lend it some clinical advantages [97].
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5.1.2. Pseudo-Irreversible Inhibition: Rivastigmine and Metrifonate

Rivastigmine (FDA 2000, Exelon®) is classified as a pseudo-irreversible inhibitor because it reacts
with the critical active site serine to form a covalent carbamoyl-AChE complex that precludes its catalysis
of acetylcholine (Figure 1), but the inhibition is short-lived. The duration of rivastigmine-induced
inhibition depends on the stability of that bond in the inactive carbamoyl-AChE complex [98].
Although the free drug molecule of rivastigmine is eliminated from the blood with a half-time of about
2.5 h, the covalent bond persists much longer, slowly undergoing spontaneous hydrolysis [98,99] so
that rivastigmine-induced AChE inhibition persists for a period of ~8.5 h [88,89,100]. In addition,
unlike donepezil and galantamine which are AChE-selective, rivastigmine also inhibits BChE with a
duration of 3.5 h [89]. Inhibition of BChE has been proposed as an advantage depending on patient
characteristics and genotype [101–103], especially for subcortical dementias [104], but BChE inhibition
may also affect a range of non-neural functions and toxicities [105,106].

Metrifonate (BAY-A-9826, ProMem, 1997), an organophosphate, was introduced as an AChE
inhibitor for the treatment of AD [107,108]. It has been described as a long-lasting cholinesterase
inhibitor [99]. Metrifonate, introduced in humans as an acute treatment for schistosomiasis [109],
undergoes in vivo spontaneous non-enzymatic rearrangement to 2,2-dicholorvinyldimethyl phosphate
(DDVP, dichlorvos) [110,111] with a half-time of ~6 h at pH 7.0 [111,112]. Metrifonate and DDVP both
inhibit BChE and AChE [113–115]. Most of the cholinesterase inhibition after in vivo administration
is due to DDVP [111]. However, the phosphonyl-enzyme covalent bond between DDVP and the
catalytic site of CNS AChE (Figure 1) in vivo undergoes spontaneous hydrolysis that results in a
reactivated enzyme with a half-time of ~3–4 h [114,116]. Due to the ready hydrolysis of the covalent
bond in vivo and resulting enzyme reactivation, metrifonate is most correctly characterized as a
pseudo-irreversible inhibitor. Like other short-acting inhibitors, including rivastigmine, it showed
little efficacy in treating dementia [107,108]. However, DDVP under its various names is well
known to cause organophosphate-induced delayed neuropathy, a late-appearing toxicity that is
not related to cholinesterase inhibition, [117–121] and is also a potent inhibitor of cytochrome
oxidase [122]. Metrifonate was abandoned as a treatment for AD because it produces severe muscular
and life-threatening respiratory paralysis in some AD patients, a sign of organophosphate-induced
delayed neuropathy [108,120].

5.1.3. The Failure of Competitive and Pseudo-Irreversible Inhibitors

The fundamental and, so far, insurmountable problem with the current AChE inhibitors in
either the clinical management or disease-modifying effects in AD is that there is no discoverable
difference between the molecular architecture of CNS and peripheral AChE catalytic sites that has led to
successfully identifying an inhibitor for CNS enzyme that does not also inhibit the peripheral enzyme.
The result of this failure is that potent inhibition of CNS AChE invariably results in overstimulation of
essential cholinomimetic mechanisms in peripheral tissues, especially gastrointestinal control which is
highly sensitive to AChE-induced overstimulation. Overstimulation of the gastrointestinal tract causes
intolerable dose-limiting nausea, vomiting, and diarrhea [87–89] and limits CNS AChE inhibition
to the ineffective levels [82–86]. The current AChE inhibitors approved for the treatment of AD
are not adequate for meaningful relief from AD-induced suffering or for useful medicoeconomic
benefits [74–78].

Both clinical efficacy and adverse events induced by AChE inhibitors are dose-dependent [123],
which indicates that high-level CNS AChE inhibition (above 50%) [69] will likely improve efficacy if
the problem of adverse events can be overcome [69,124]. Increased CNS AChE inhibition, above what
is currently available, will also improve the “CSF Cholinergic Index”, an in vivo physiological measure
of an improved CNS ratio of AChE inhibition compared to increased choline acetyltransferase in
AD patients [125]. However, high-level AChE inhibition (above the currently available inadequate
clinical doses) is blocked by ubiquitous gastrointestinal toxicity produced by currently available AChE
inhibitors [87–89]. High-level human CNS AChE inhibition (above 50%) in AD patients has only been
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available in one study that showed promising cognitive enhancement [126]. High-level CNS AChE
inhibition in the treatment of AD is an important goal that deserves further study [69]. The single most
important objective for the full realization of AChE inhibitor-induced cognitive improvements and
anti-neurodegenerative benefits is obtaining effective CNS-selectivity [69,126,127]. The short-term
competitive and pseudo-irreversible inhibitors have not been able to meet this fundamental requirement.

5.2. Mechanism of Action of Irreversible Inhibitors—CNS-Selectivity

5.2.1. Advantages of Irreversible AChE Inhibition

Irreversible inhibition differs from pseudo-irreversible inhibition in the stability of the covalent
bond in the inhibitor-enzyme complex. In the case of pseudo-irreversible inhibition, the covalent bond
in the inhibitor-enzyme complex is sufficiently weak so that it undergoes spontaneous hydrolysis,
which results in complete reactivation of the enzyme to its full original capacity. In the case of truly
irreversible inhibition, however, the covalent inhibitor-enzyme complex is sufficiently strong to be
refractory to spontaneous hydrolysis and it permanently inactivates the enzyme molecule. The only
way enzyme activity can be restored after irreversible inhibition is through de novo new synthesis of the
enzyme. Thus, the duration of irreversible AChE inhibition depends on the rate at which new enzyme
is being manufactured, the turnover rate, a characteristic of each tissue [127]. The only clinically useful
difference between CNS and peripheral AChE to date is the discovery that CNS AChE is replaced at
a much slower rate (t1/2 ~12 days) than in the peripheral tissues such as the smooth muscle of the
gastrointestinal tract, cardiac muscle, and skeletal muscles (t1/2 as short as 1 day). This was recognized
as an important tissue-specific difference that might be used, for the first time in the history of AD
treatment, to produce CNS-selective AChE inhibition [127].

Figure 2 shows the magnitude of selectivity of an irreversible inhibitor toward CNS AChE inhibition
that can be expected from very slow de novo enzyme replacement in the CNS (~12 days) versus
fast replacement in peripheral tissues (~1 day). Figure 2 models drug administration given daily for
21 days to approximate a clinically relevant dose of an irreversible AChE inhibitor. These computations,
explained in detail elsewhere [69], show that high AChE inhibition (~65%) is expected to accumulate
in the CNS because of the slow recovery of activity between doses versus the low expected AChE
inhibition (~20%) in peripheral tissues where much of the activity is replaced between doses. The large
difference between the rate of de novo AChE replacement in the CNS and peripheral tissues is a key
difference that can be exploited to produce highly selective CNS AChE inhibition.

In summary, Figures 2 and 3 show that an AChE inhibitor with an irreversible mechanism of
action given repeatedly over a period of time, similar to a clinical protocol in AD treatment [126],
can produce a level of AChE inhibition that is at least double the inadequate 25–35% CNS AChE
inhibition observed with the short-acting inhibitors [82–86].
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Figure 2. A computational model of the expected accumulated AChE inhibition in the CNS (upper solid
line) versus peripheral tissues (lower dotted line) during three weeks of daily doses of an irreversible
inhibitor (e.g., methanesulfonyl fluoride, MSF), computed as producing an equal 10% inhibition of
currently active AChE in both CNS and peripheral tissues with each dose. The saw-tooth appearance
of the lines shows the increment of inhibition (upward points) added with each dose. The downward
slope between doses is the decrease in inhibition produced by new synthesis of the enzyme in the
dose-to-dose interval. MSF disappears rapidly from blood, within a few hours, producing the pulsatile
inhibition shown above. These pharmacological calculations (repeated dosing with recovery between
doses) predict the accumulated effects occurring over 21 days [128]. The separation between the
levels of CNS versus peripheral tissue accumulated AChE inhibition caused by differences in enzyme
recovery rates, as shown above, does not occur with short-acting competitive or pseudo-irreversible
inhibitors [69]. (Modified from Journal of Alzheimer’s Disease, 55, Cholinesterase Inhibitor Therapy in
Alzheimer’s Disease: The Limits and Tolerability of Irreversible CNS-Selective Acetylcholinesterase,
1285–1294 (2017), with permission of IOS Press.The publication is available at IOS Press through
http://dx.doi:10.3233/JAD-160733).The validity of the pharmacodynamics shown in Figure 2 was tested
in an experiment in which rats were treated with methanesulfonyl fluoride (MSF), an irreversible
AChE inhibitor, in accordance with the 21 day protocol modeled in Figure 2. In this experiment,
which is explained in detail elsewhere [128], rats were sacrificed at the end of 21 days of treatment
with MSF. As modeled by the computations, CNS AChE was inhibited much more (~75%) than AChE
in peripheral tissues (<25% AChE), all without observable signs of toxicity (Figure 3). Seventy-five
percent CNS AChE inhibition is at the upper end of the expected therapeutic window for AD and
<25% is well below the beginning of toxicity from peripheral tissues [69,87–89]. Similarly, rats aged
24 months were pretreated with MSF in a computationally based 4 week protocol designed to produce
~50% CNS AChE inhibition, actually showed in 56% inhibition ex vivo, and such MSF pretreatment
enhanced memory function in the aged animals to that equal to young animals [129]. The ability to
produce highly selective CNS AChE inhibition without peripheral toxicity has been further confirmed
in monkeys (Macaca fascicularis) treated with escalating doses of MSF over 3 months, ending with ten
weeks of continuous MSF treatment at 5 times the human clinical dose. Cortical biopsies confirmed
~80% and ~45% cortical AChE and BChE inhibition, respectively, with no gastrointestinal toxicity,
no neuropathy, nor any other troublesome effects [69].

5.2.2. Sulfonyl Fluorides as AD Relevant Irreversible Inhibitors

Sulfonyl fluorides, including methanesulfonyl fluoride, have been known as irreversible AChE
inhibitors since 1954 [130] with a well-understood and solidly irreversible mechanism of action that
has been used as a molecular probe of the catalytic site of AChE since the early 1960s [131,132].
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Figure 3. Accumulated AChE inhibition in four rat tissues after three weeks of repeated doses
of 0.3 mg/kg MSF (IM) given three times per week to approximate the smaller daily dose shown
in Figure 2. The animals were sacrificed 24 h after the last injection and smooth muscle (ileum),
skeletal muscle (pectoral), cardiac muscle (heart), and whole brain were assayed for AChE inhibition,
compared to untreated controls. CNS is significantly more inhibited than peripheral tissues (** p < 0.01),
but peripheral tissues are not different from each other. Error bars show SEM [128]. (From British Journal
of Clinical Pharmacology, 75, A Randomized Phase 1 Study of Methanesulfonyl Fluoride, an Irreversible
Cholinesterase Inhibitor, for the Treatment of Alzheimer’s Disease, 1231–1239 (2013), with permission
Wiley Press).

Figure 4 shows the direct comparison in CNS AChE inhibition estimated in vivo in Alzheimer’s
patients undergoing therapy.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 18 
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rivastigmine, and galantamine) to an irreversible inhibitior (methanesulfonyl fluoride). The reversible
AChE inhibitors, because of peripheral toxicity, cannot be tolerated by patients at doses that produce
more than about 25%–35% AChE inhibition in the brain [82–86]. In contrast, an irreversible AChE
inhibitor, because of inherent selectivity for inhibiting brain AChE and the absence of peripheral toxicity,
can be administered at doses that produce 66% brain AChE inhibition [69,126], a level that is within
the therapeutic window [87–89] and is associated with strong cognitive improvement [126].



Int. J. Mol. Sci. 2020, 21, 3438 10 of 18

The robust difference between CNS and peripheral tissue AChE inhibition produced by an
irreversible inhibitor depends entirely on the difference between the rate at which AChE is newly
synthesized in the CNS as compared to peripheral tissues. High-level AChE inhibition can be produced
and maintained in the CNS without gastrointestinal toxicity, but only if an irreversible inhibitor is
used [69,126].

The sulfonyl fluorides, like carbamates (e.g., rivastigmine) and organophosphates [133],
react covalently with the essential serine oxygen in the catalytic site of AChE to block the enzyme
catalytic mechanism (Figure 1) [113,131,132]. The sulfonyl fluorides, specifically including MSF, do not
inhibit neuropathy target enzyme, the hypothesized cause of organophosphate-induced delayed
neuropathy [134]. Unlike the pseudo-irreversible inhibitors like rivastigmine and metrifonate, however,
the sulfonyl-enzyme covalent complex is exceptionally stable and does not undergo spontaneous
hydrolysis [131,132], nor can the enzyme be reactivated by strong oxime nucleophilic attack on the
covalent bond [135]. Because there is no spontaneous reactivation of the enzyme, the irreversible
sulfonyl-enzyme covalent complex was the first tool used to discover that the rate of de novo
replacement of CNS AChE activity is more than 10× slower than AChE replacement in peripheral
tissues in vivo [127]. Further study of the sulfonyl fluorides indicated that MSF, the smallest and most
reactive of the sulfonyl fluorides, was ~100×more biologically active than the larger compounds [136],
and the best candidate for the treatment of AD [137].

MSF has uncommon pharmacokinetics. Even though MSF-induced inhibition of CNS AChE
disappears with a half-time of ~12 days, the time required for new synthesis, the MSF drug molecule
itself is unstable in an aqueous environment such as human blood and undergoes inactivation by
in vivo spontaneous hydrolysis to form methanesulfonic acid, an inactive compound, with a half-time
of 2.6 h [128,133]. Therefore, MSF administered on a daily schedule like that simulated in Figure 2
produces a pulsatile increment in AChE inhibition that is followed by a drug-free period of ~16 h per
day during which new synthesis of uninhibited replacement AChE occurs [69].

The use of MSF for the treatment of AD introduced a special problem. Insofar as MSF is highly
selective for the CNS and is free from peripheral toxicity, the optimum dose for patients cannot
be determined by increasing the dose until peripheral toxicity is observed, the procedure used for
the short-acting AChE inhibitors [87–89]. Therefore, the first use of MSF in humans [126] required
dose-estimation from the pharmacodynamics calculations shown in Figure 2 [128]. As predicted from
the pharmacodynamics calculations and animal experiments (Figures 2 and 3) [69,128], 8 weeks of oral
MSF given three times per week to mild to moderate AD patients correctly produced an estimated
~66% CNS AChE inhibition [126], a level of CNS AChE inhibition that is at the upper end of the useful
therapeutic window [87–89] and which resulted in strong cognitive improvement (~6 points on the
ADAS-cog). Furthermore, the MSF-induced cognitive improvement persisted unabated through an
additional 8 weeks of placebo [126].

After 8 weeks of placebo treatment, about 5 half-times for the de novo replacement of MSF-inhibited
enzyme [69], only ~4% inhibition would remain. Therefore, the duration of strong cognitive
improvement over 8 weeks, without further MSF treatment, suggests that MSF produced some
long-term benefit that outlasted the direct effects of AChE inhibition. This contention is also
supported by an experiment in which MSF treatment also preserves cholinergic neurons and choline
acetyltransferase immunoreactivity in the basal forebrain of ischemic rats [138]. These data suggest
that MSF-induced AChE inhibition has long-term disease-modifying benefits, perhaps by enhancing
acetylcholine-dependent stimulation of NGF production and release and associated basal forebrain
survival processes [20,63–68].

The high level of MSF-induced CNS AChE inhibition should be equaled by any truly irreversible
inhibitor. The CNS selectivity of irreversible AChE inhibitors is due to the slow turnover rate of AChE
in the CNS, not a property of the inhibitor molecule beyond the fact that it must form a sufficiently
stable inhibitor-enzyme inactive complex that does not undergo spontaneous hydrolysis.
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6. Discussion

AChE inhibitors address one of the core deficits universally observed in AD, the extensive loss
of the basal forebrain cholinergic system and a loss of CNS cholinergic tone that is associated with
cognitive loss, suffering and severe medicoeconomic costs. AChE inhibitors have a unique position in
the armamentarium of AD in that they offer two different benefits: (1) they directly increase the impact
of basal forebrain synaptic acetylcholine on the target tissues associated with cognitive functions;
and, (2) they have a less well understood long-term anti-neurodegenerative benefits which include
slowing the progression of CNS atrophy and slowing the progression of AD through the clinical
stages of dementia. The mechanism(s) for these long-term benefits may be the result of increasing
acetylcholine-dependent stimulation of neurotrophic factors [63,64,66], but that determination will
require further study.

The anti-neurodegenerative benefits of AChE inhibitors are unparalleled by any other proposed
disease-modifying interventions tested to date. The anti-neurodegenerative benefits are evident
throughout a wide range of disease advancement from prodromal [54,59–61] up through mild to
moderate AD [62]. However, AChE inhibitors are expected to have the greatest anti-neurodegenerative
impact at the earliest stages of the disease when there is still the maximum possible intact basal forebrain
cholinergic system. AChE inhibitor therapy would best start at the earliest appearance of subtle
cognitive impairment [15,16,81], a point at which signs of neurodegeneration are the earliest and most
common biomarkers of AD and that often precede and predict the accumulation of amyloid [16–18].
By extension, it is tempting to speculate that AChE inhibitor therapy could be prophylactic in elderly
persons at risk for AD [125,139].

7. Conclusions

AChE inhibitors are not likely to be stand-alone treatments, but are likely to be an important
part of any future multifaceted drug treatment regimen designed to address different parts of the
disease. However, the basal forebrain cholinergic system and acetylcholine are at the nexus of
converging well-understood pathophysiological processes in AD, especially neurotrophic-, tau- and
inflammation-based hypotheses [20,28,65,140–142]. Further development and improvement of
CNS-selective AChE inhibition is a direction that deserves further study, especially in view of the
anti-neurodegenerative benefits of AChE inhibition and the absence of other successful interventions.
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FDA United States Food and Drug Administration
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