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Tunable three-way topological 
energy-splitter
Mehul P. Makwana1,2* & Gregory Chaplain   1

Strategically combining four structured domains creates the first ever three-way topological energy-
splitter; remarkably, this is only possible using a square, or rectangular, lattice, and not the graphene-
like structures more commonly used in valleytronics. To achieve this effect, the two mirror symmetries, 
present within all fully-symmetric square structures, are broken; this leads to two nondistinct interfaces 
upon which valley-Hall states reside. These interfaces are related to each other via the time-reversal 
operator and it is this subtlety that allows us to ignite the third outgoing lead. The geometrical 
construction of our structured medium allows for the three-way splitter to be adiabatically converted 
into a wave steerer around sharp bends. Due to the tunability of the energies directionality by 
geometry, our results have far-reaching implications for applications such as beam-splitters, switches 
and filters across wave physics.

A fundamental understanding of the manipulation and channeling of wave energy underpins advances in device 
design in acoustics and optics1–3. For instance, beam-splitters, that split an incident beam of light in two, are 
extensively used for experiments and devices in quantum computing, astrophysics, relativity theory and other 
areas of physics4,5. This desire to guide waves, split and redirect them, for broadband frequencies, in a lossless and 
robust manner, extends well beyond optical devices and into electromagnetism, vibration control and acoustic 
switches, amongst other fields6–8. Fortunately, the advent of topological insulators in quantum mechanics9,10, and 
their translation into classical systems, has led to waveguides that are more broadband and robust than previous 
designs11–15 and ultimately to robust networks16–20; however, the vast majority of the topological energy-splitters 
are based upon graphene-like hexagonal structures and hence restricted to a two-way partitioning of energy. 
Herein we rectify this with an intelligently engineered three-way topological energy-splitter, the geometrical 
design of which is based upon the square lattice21,22.

Time-reversal symmetric (TRS) topological guides leverage the discrete valley degrees of freedom that arise 
from degenerate extrema in Fourier space. When constructing topological guides, graphene-like materials are the 
prime candidate due to their well-defined ′KK  valleys; these valleys are distinguished by their opposite chirality 
and related by TRS. The intervalley scattering is heavily suppressed23–26 by the large Fourier separation between 
the two valleys, and each valley becomes an efficient information carrier. These valley modes are attracting grow-
ing attention, in part due to their simplicity of construction, leading to the emergent field of valleytronics10–15. The 
primary benefits of these topologically nontrivial modes over, cavity and topologically trivial interfacial modes26, 
is the additional topological protection afforded by the chiral flux either side of the zero-line modes (ZLMs) and 
geometrical tunability26 allowing a bend to be adiabatically converted into a splitter (and vice-versa).

The prevalence of graphene-like structures has primarily limited valleytronic devices to two-way 
energy-splitters; this is motivated by the conservation of chirality at the ′KK  valleys16–20,27–39. A three-way and a 
four-way partitioning of energy away from a nodal region was shown in40 and26, respectively, however the latter 
was dependent upon the tunneling mechanism whilst the former was for a multilayer system. Tunneling would 
introduce an additional dependency upon the system; namely, the decay length perpendicular to the direction of 
propagation. Hence, the transmission along the outgoing leads would be heavily contingent upon the location of 
the mode within the topologically nontrivial band-gap; therefore an alternative method whereby the energy is 
partitioned away from a well-defined nodal point as opposed to a nodal region is highly desirable. Importantly, 
this is only possible using a square or rectangular lattice; the three-way energy splitting is dependent upon the 
equivalence of the interfaces (modulo time-reversal symmetry) that is only achievable using the four-fold sym-
metric cellular structure. The geometrical tunability, the topological robustness and the three-way partitioning of 
energy away from a well-defined nodal point are three crucial advantages of the square energy-splitter (see Fig. 1) 
over competing designs.
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We begin in Sec. 2 by explicitly recasting the continuum plate model into the language of quantum mechanics, 
utilising a Hamiltonian description, while retaining elements of the continuum language to bridge across the 
quantum and elastic plate communities. Despite us utilising the structured elastic plate equation, our theories 
are system independent, hence are transposable to other classical systems. We examine a square cellular struc-
ture containing only a single mirror symmetry in Sec. 3; we demonstrate how this restricts a medium, com-
prised of these cells, to solely yield straight valley-Hall guides i.e. the energy cannot be navigated around a bend. 
Contrastingly, the structure examined in Sec. 4 contains two mirror symmetries which in turn allows for ZLMs 
to couple around a bend as well as partition three-ways away from a nodal point. A few concluding remarks are 
drawn together in Sec. 5.

Results
Formulation.  The group theoretic and topological concepts foundational to our approach hold irrespective 
of any specific two-dimensional scalar wave system. We choose to illustrate them here using a structured thin 
elastic Kirchhoff- Love (K-L) plate41 for which many results for point scatterers are explicitly available42; the 
geometrical ideas themselves carry across to photonics, phononics and plasmonics. Displacement Bloch eigen-
states ψ| 〉κn  satisfy the (non-dimensionalised) K-L equation,
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for Bloch-wavevector κ, n denoting the eigenmodes and ω κn,  the non-dimensionalised frequency; reaction forces 
at the point constraints, F x( ), introduce dependence upon the direct lattice. The most straightforward constraints, 
sufficient for our purposes, are point mass-loading F x( ) with the reaction forces proportional to the displacement 
via an effective impedance coefficient. Here l labels each elementary cell that repeats periodically to create the 
infinite physical plate crystal, and each cell contains = …p P1  constraints. In an infinite medium the displace-
ments are Bloch eigenfunctions

ψ ψ κ= 〈 | 〉 = ⋅ 〈 | 〉κ κ κi ux x x x( ) exp( ) , (2)n n n

where | 〉κun  is a periodic eigenstate. The displacements satisfy the following completeness and orthogonality 
relations:

Figure 1.  Three-way topological splitter (ω = .6 5356) — (a,b) The canonical splitter geometry of four 
structured quadrants. Different orientation of scatterers in the orange and blue regions. Source is indicated by 
circle at left edge. (c) Zoom-in of nodal region cells. (d) Displacement field, illustrating the splitting of energy 
three ways, panels on right illustrate the opposite chirality at the interfaces.
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where κ κ κ∆ ′ = ′ − . Due to the completeness of the periodic eigensolution, we can expand | 〉κun  in the complete 
orthogonal basis set κu x{ ( )}j 0

 where κ0 is fixed,
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where κ κ κ∆ = − 0. After substituting (4), into the governing Eq. (1), we explicitly obtain,
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up to first-order in κ|∆ |. This expansion will be used in the subsequent section, alongside symmetry considera-
tions, to engineer the Dirac cones. A categorisation of planar structures that yield non-symmetry induced Dirac 
cones was shown in43.

C2v cellular structure.  In this section we examine the cellular structure shown in Fig. 2(a). Spatially, this 
structure solely has σv reflectional symmetry; however, in Fourier space, it has C2v symmetry, due to the presence 
of time-reversal symmetry. In subsection 3.1, we utilise the expansion (5) and group theoretical considerations 
to demonstrate how an accidental Dirac cone is engineered. The effects of σv symmetry breaking, on the bulk 
bandstructure, are discussed in subsection 3.2. Subsection 3.3 demonstrates how the strategic stacking of geomet-
rically distinct media results in valley-Hall edge states10,15. A ZLM connected to a valley-Hall edge state is shown 
in subsection 3.4 alongside a justification for why this particular C2v model does not allow for propagation around 
corners. Since the valley-Hall state is a weak topological state protected solely by symmetry, care must be taken to 
prohibit backscattering hence knowledge of the long-scale envelope is especially useful for finite length interfaces 
as it can used to minimise the backscattering. An asymptotic method, more commonly known as high-frequency 

Figure 2.  (a) Cellular structure shown; uniform mass values of 1, lattice constant of 2, centroid to vertex mass 
distance of 0.45. Pre-perturbation structure has σv symmetry, post-perturbation structure breaks σv symmetry 
via an angular perturbation of the inclusion set. (b) Shows the irreducible Brillouin zone (IBZ, shaded region) 
within the Brillouin zone (BZ). (c) Dispersion curves C v2  case (when ω ω>A B1 1

 at N) — Parameter values are 
different to those in Fig. 2; σv symmetry present within physical space cell. Parameter values: distance between 
centroid and vertex mass = 0.45, lattice constant = 2, vertex mass value = 1, non-vertex mass value = 0.5. The 
coloured bands are associated with the SSE. In this instance, A1 curve lies above B1 curve at N, hence there is no 
band crossing along NX.
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homogenisation (HFH) allows for the characterisation of this long-scale envelope (see Methods); this is applied 
to a C2v ZLM in subsection 3.4.

Engineering an accidental Dirac cone.  Band coupling at high-symmetry point for C2v structure. The point group 
symmetry of the structure, shown in Fig. 2(a), is =ΓG C v2 ; this is also the point group symmetry at N, =G CN v2  
(Table 1). The C2v point group arises from a combination of spatial (reflectional) and time-reversal symmetries; 
the latter relates κ κ→ − . The group theoretical arguments used throughout this subsection, are reminiscent of 
those found in21 although in our calculations we have applied an actual asymptotic scheme whereby we have 
judiciously chosen a small parameter with a distinguished limit.

The irreducible representations (IRs) at N are one-dimensional hence there is no symmetry induced degener-
acy. Despite this, we shall demonstrate in this subsection how two of the IRs can be tuned such that an accidental 
degeneracy (that is not symmetry repelled) forms. The four solid bands in Fig. 2(c) (bands numbered 3–6 inclu-
sive) are associated with the eigensolutions, shown in Fig. 3, these match the basis function symmetries of the the 
C2v group (Table 1); hence this indicates that bands 3–6 are symmetry induced and the sequential ordering of 
them (lowest to highest) is deduced numerically, via the eigensolutions, as: B A B A{ , , , }2 1 1 2 .

It is expected, from the dispersion curves (Fig. 2(c)) that the two bands that form the accidental degeneracy, 
namely A1, B1, have a strong influence on each other whilst the other two symmetry induced bands, B2, A2, will 
have a limited effect on the local curvature or slope of the A1, B1 bands44; the effect, by the bands that lie outside 
of bands 3–6, on the A1, B1 bands, is expected to be negligible; to see these points mathematically we initially 
separate out the eigenket expansion Eq. (4) into two sets of bands; namely, the symmetry set eigensolutions (SSE), 
bands 3–6, and those that lie outside the SSE,
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Classes →
IR ↓ E C2 σv σh Basis functions

A1 +1 +1 +1 +1 x y,2 2

A2 +1 +1 −1 −1 xy

B1 +1 −1 +1 −1 x, xy 2

B2 +1 −1 −1 +1 y, x y2

Table 1.  C2v character table.

Figure 3.  Eigensolutions, at N, for C v2  case with σv symmetry. Panel (a), IR: B2, Basis: y. Panel (b), IR: B1, Basis: 
x. Panel (c), IR: A1, Basis: x y,2 2. Panel (d), IR: A2, Basis: xy.
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where we have neglected terms which couple states outside the SSE to other states outside the SSE. If we let 
= ∈n l SSE and κ κ κ= + ∆0  then the frequency term on the left-hand side is expanded to yield,
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Hence, from this expansion it is easy to see that the second summation in (11), that couples states within the 
SSE to those outside, falls into second-order hence the effective first-order equation is,
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where ω ω ω∆ = −κ κl l l 0
 and ∈l SSE. Notably, the higher-order corrections, that encompass the coupling 

between bands within the SSE to those outside, provide the band curvature details away from a locally linear 
point. In this instance, Eq. (13) is a 4 × 4 matrix eigenvalue problem, where the Hamiltonian, with components 
Hlj, is Hermitian. If, for a particular κ0, the first-order term is zero we would have to proceed to second-order; 
here additional terms would come from the fourth-ordered derivative, the ω κl  expansion and band coupling 
between outside SSE and inside SSE bands.

Compatibility relations and band tunability along NX. Bands tend to vary continuously except possibly at 
accidental degeneracies where modal inversion may occur which in turn leads to a discontinuity of the intersect-
ing surfaces. Hence, the eigenfunctions continuously transform as you progress along a continuous IBZ path of 
simple eigenvalues. The associated IRs, that describe the transformation properties of the eigenfunctions, them-
selves smoothly transition into IRs that belong to the point groups along N Γ or NX.

In physical space the cellular structure only has σv spatial symmetry, this is equivalent to σh symmetry in 
Fourier space, Fig. 4(b). Recall the definition of a point group symmetry, i.e. any symmetry operator ∈ ΓR̂ G  that 
satisfies, κ κ=R̂ Gmod , where G is a reciprocal lattice basis vector; this implies that κ ∈ NX solely has the mir-
ror symmetry operator, σh within its point group. Similarly, for a κ ∈ ΓN , only the vertical mirror symmetry 
operator, σ ∈ Cv v2 , satisfies the point group criterion. The symmetries of the eigenfunctions, for a κ belonging to 
either of the paths, NX and NΓ, are shown within the basis functions column of the σv,h Table 2. If we solely con-
sider the two strongly coupled bands, represented by the IRs A1 and B1, then the associated eigenfunctions tran-
sitional behaviour, away from N, is described by the σv h,  character table. Due to the continuity of the bands the 
A B,1 1 IRs belonging to the C2v table will transform into the IRs, of the σv h,  table, as we move away from N; the 
relationships between different IRs are more commonly referred to as compatibility relations44,45. Initially, we 
consider symmetry σh, the eigenstates at N and along NX satisfy the following,

ψ ψ ψ ψ| 〉 = ±| 〉 | 〉 = ±| 〉.σ σ
ˆ ˆP P, (14)A B A B A B A B, , , ,h h1 1 1 1

Hence, the bands A B( , )1 1  (at N) are compatible with A B( , ) (along NX). Physically, this transition is also evi-
dent from the eigensolutions; as →B B1  the eigensolution may also satisfy oddness relative to the x-axis (see 
Fig. 3). Similarly, at N and along NΓ, the eigenstates transform under σv as,

ψ ψ ψ ψ| 〉 = ±| 〉 | 〉 = +| 〉.σ σ
ˆ ˆP P, (15)A B A B A B A B, , , ,v v1 1 1 1

This implies that the bands A B( , )1 1  (at N) are compatible with A A( , ) (along NΓ). These compatibility relations 
are summarised pictorially in the unfurled IBZ path (Fig. 4(c)). Importantly, note that, in deriving Eq. (13) we 
have only assumed that κ0 belongs to a particular symmetry set band (surfaces 3–6) (the band at κ0 must be con-
tinuously connected to the same band at N). Therefore, the compatibility relations allow us to choose any expan-
sion point along the the path ΓNX where the eigenfunction basis set, Eq. (4), transforms accordingly i.e. 
ψ ψ| 〉 → | 〉A A1

.
In order to solve the 2-band eigenvalue problem, Eq. (13), we compute the determinant of the truncated 

matrix,

https://doi.org/10.1038/s41598-019-55485-0


6Scientific Reports |         (2019) 9:18939  | https://doi.org/10.1038/s41598-019-55485-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

ω ∆ κ ψ ψ

κ ψ ψ ω ω

− ω Λ ∆ 〈 |∂ + ∂ ∂ | 〉

∆ 〈 |∂ + ∂ ∂ | 〉 − ∆ Λ
=⁎

2

2
0,A A A x A x x y B

x A x x y B B B B

3 2

3 2

where parity considerations44,45 allows for simplification of the Hermitian matrix; the eigensolutions are evaluated 
at κ0. Solving the eigenvalue problem yields the following result,

ω ω κ ψ ψ∆ Λ = ±∆ 〈 |∂ + ∂ ∂ | 〉2 , (16)A B A B A B x A x x y B, , ,
3 2

where the ± corresponds to the A B,  bands, respectively. This result implies that the A B,  bands have an identical 
slope, albeit with opposite gradients; hence, if, at N an instance can be found where ω ω>B A1 1

 then the bands will 
invariably cross along the path NX. The parametric variation afforded to us, and encompassed in the variable ΛA B, , 
merely increases or decreases the slope thereby increasing or decreasing the distance between N and the Dirac 
point. Note that the Dirac cone occurs along the spatial symmetry path, σh, of the structure due to the opposite 
parities of the A B,  bands; band repulsion occurs along the NΓ path22 thereby resulting in a partial band gap along 
NΓ. If ω ω>B A1 1

, then the partial gap along NΓ isolates the Dirac cone along a portion of the IBZ path, ΓNX.
The distance between the Dirac and high-symmetry point is highly relevant for the transmission properties of 

the topological guide26 stated that the transmission is better for short wave envelopes, as opposed to long wave 

Figure 4.  Physical and Fourier space cells — (a) Cellular structure in physical space. (b) IBZ (shaded region) 
shown within BZ. Presence of σv symmetry in physical space translates into σh symmetry in Fourier space, this 
explains the symmetrical placement of the Dirac cones (blue circles) either side of σh. (c) Unfurled IBZ path. 
Symmetries and IRs, along the paths Γ → →N X, are shown. Panel (d) Effect of parametric tuning on A B,  
bands — When B curve lies about the A curve, the parameters denoted by ΛA B,  can be altered to change the 
intersection location. For our model, the number of masses, their location (σv symmetry preserved) and their 
mass values can all be varied. Panel (e) Dispersion curves C v2  case (when ω ω>B A1 1

 at N) — Parameter values 
same as those in Fig. 2; σv symmetry present within physical space cell. In this instance, B1 curve lies above A1 
curve at N, hence there is band crossing along NX.

Classes →
IR ↓ σh σv Basis functions

A1 +1 +1 x y xy, ,2 2

B1 −1 +1 x xy, 2

Classes →
IR ↓ E σv,h Basis functions

A +1 +1 x y xy, ,2 2

B +1 −1 x y x y xy, , ,2 2

Table 2.  σv,h character table and selected portion of C2v character table.
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envelopes, hence, for transmission post the nodal region, it is desirable to increase the distance between the Dirac 
cone and N. The latter is true due to the connection between the bulk and projected bandstructures46; the bulk BZ 
is reduced to a one-dimensional BZ because the only relevant wavevector component for a straight guide is the 
one parallel to the ZLM. All wavevectors are projected onto the ΓM line in Fourier space, hence if the distance 
between N and the Dirac cone is increased then the Fourier separation between oppositely propagating modes, 
along the topological guide, would be increased. A mechanism to do this would be by altering the system param-
eters; Fig. 4(d,e) and Eq. (16) demonstrate that the slopes of the A and B bands can be increased or decreased by 
the system parameters thereby altering the position of the band intersection.

Breaking σv symmetry.  From the previous subsection we know that when the σv symmetry is preserved an 
accidental Dirac degeneracy can be created; the bands coalescing along NX in Fig. 5(b) are parametrically engi-
neered to do so. An important nuance is that the Dirac points are solely located along the two high-symmetry 
lines (HSLs), parallel to σh, and not along the perpendicular HSLs (see Fig. 4(b)); this is critical when it comes to 
energy-splitting. The σv symmetry is lost in Fourier space when the internal set of inclusions is rotated and this 
breaks open the Dirac point to create a band-gap, Fig. 5(c). The locally quadratic curves, in the vicinity of the for-
mer Dirac cones, are commonly referred to as “valleys” and they carry nonzero valley Chern numbers (Fig. 5(a)) 
which in turn leads to the generation of valley-Hall edge modes47,48. The valley Chern number (Cv) is formally 
defined as follows,

∫

∑

π
ψ ψ κ

π
ψ ψ

π
κ κ ϕ

π

= ∇ × 〈 |∇ | 〉

= 〈 |∇ | 〉 ⋅

= ∇ ⋅ =

κ κ κ

γ

κ κ

γ

κ

∮

∮ ⁎

C i d

i d

i A A d

l

l

1
2

2

2
( ) ( )

2
,

(17)

v
S

n n

n n

j
nj nj

x

x

where the surface and line integrals are computed in the vicinity of the valleys, ϕ denotes the Berry phase and the 
Kohn-Luttinger coefficients, κA ( )nj , are derived from a variation of Eq. (13) that contains the perturbation 
terms15. Both, Cv and ϕ are dependent upon the perturbation strength and hence are not quantized quantities. 
Despite this, a topological integer, Csgn( )v , exists that yields a bulk-boundary correspondence valid for specific 
interfaces49. These interfaces must ensure that regions of opposite Csgn( )v  are not projected onto the same point 
in Fourier space; hence for the C2v case, from Fig. 5(a), it is evident that an interface associated with the ΓM direc-
tion will lead to well-defined topological integers. In the next subsection, we shall show how, the locations of 
nonzero Cv, dictates how the geometrically distinct media are stacked.

C2v adjoining ribbons.  Attaching two topological media, with opposite Csgn( )v  yields broadband chiral edge 
states10. This is achieved by placing one gapped medium, above its σv reflected twin; in essence, the stacking in 
Fourier space results in regions of opposite Csgn( )v  overlaying each other, this local disparity ensures the presence 
of valley-Hall edge modes. The two distinct orderings of the media create two distinct interfaces, as seen in 
Fig. 6(a) one of which supports only the even modes and the other only the odd modes. This evenness and odd-
ness of the edge modes is inherited from the even and odd bulk modes, Fig. 3. The gapless curves are a symptom 
of the topologically nontrivial nature of the edge states; this is akin to the valley-Hall modes seen for the zigzag 
interface within hexagonal structures.

The simplicity of this construction, the apriori knowledge of how to tessellate the two media to produce these 
broadband edge states, and the added robustness26 are the main benefits of these topological valley-Hall modes. 
The additional functionality of having a three-way topological splitter (Fig. 1) comes with a caveat: The Fourier 
separation between the valleys controls the intervalley scattering and the smaller separation in the square lattice, 

Figure 5.  (a) IBZ (shaded region) within the Brillouin zone (BZ); circles indicate Dirac cone locations pre-
perturbation, whilst ± denotes the signum of the post-perturbation Cv. Dirac cones solely along single set of 
parallel HSLs, not both. Dispersion curves for the C v2  case. Panel (b) pre-perturbation curves, when structure in 
Fig. 2(a) possesses σv symmetry. Rotation of inclusion set in Fig. 2(a) removes σv symmetry and yields the post-
perturbation curves shown in panel (c).
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Fig. 6(a), vis-a-vis that for graphene-like structures26 leads to increased scattering. This can be mitigated as the 
Fourier separation can be artificially increased by parametrically increasing the distance between the Dirac cone 
and N in Fig. 5(b) thereby acting to increase the robustness of the edge states against shorter-range defects.

C2v ZLM and absence of post-bend propagation.  The property of the C2v case that prohibits propagation around 
the bend is the absence of well-defined valleys with nonzero Cv, along the vertical HSLs of the BZ, see Fig. 5(a). 
Hence, there is no arrangement that can be placed to the right of either stacking in Fig. 6(a) to obtain a ZLM 
perpendicular to the blue-orange interface, Fig. 6(b). The ZLM, Fig. 6(c), has a long-scale periodic envelope that 
can be captured using an effective medium theory50 (see Methods). Knowledge of the long-scale envelope is espe-
cially useful for these finite length interfaces as it can used to minimise the backscattering as one has, in effect, a 
Fabry-Pérot resonator.

To summarise, for this C2v case, there are ZLMs along straight interfaces, however the energy cannot navigate 
around a π/2 bend because there is no post-bend mode to couple with.

C4v cellular structure.  We now extend the concepts illustrated in Sec. 3 to a cellular structure that possesses 
C4v point group symmetry at Γ (see Fig. 7(a)). Due to this structure possessing two perpendicular mirror symme-
tries, as opposed to one, there exists regions of nonzero Cv along both edges of the square BZ, subsection 4.1 
(Fig. 7(b)); this will be shown to yield propagation around a corner (subsection 4.2) aswell as a three-way splitting 
of energy (subsection 4.3). An extensive comparison between the square structures, discussed within this article, 
and the earlier valleytronics models based upon graphene-like structures16–20,26–39 will be pictorially shown at the 
end of subsection 4.3.

Breaking σv,h symmetries.  The C4v case, Fig. 7(a), is reminiscent of the C2v case but now with the addition of σh 
symmetry in physical space. This reflectional symmetry yields additional Dirac cones along, a parallel set of HSLs, 
perpendicular to those connected with the σv symmetry (Fig. 7(b)). This is evident, for the unperturbed C4v case, 
in its dispersion curves, Fig. 7(c); note that we have plotted around the C2v IBZ to clearly illustrate the correspond-
ence between the two sets of dispersion curves, Figs. 4(b) and 7(c). The additional Dirac cone, for the C4v case, 
along XM is due to the additional σh reflectional symmetry in physical space. Rotating the inclusion set (Fig. 7(a)) 
results in the breaking of both σh,v symmetries thereby opening up a band-gap (Fig. 7(d)). Importantly, an identi-
cal band-gap is present whether we’re plotting along the C v2  or C v4  IBZ’s.

Figure 6.  (a) Interfacial dispersion curves and ZLMs — Top: maroon curve arises when blue medium stacked 
over orange (left-sided ribbons), whilst navy curves, when orange over blue (right-sided ribbons). Left: even-
parity ZLM, ω = .9 00. Right: odd-parity ZLM, ω = .8 60. (b) Odd-parity mode along blue over orange interface; 
importantly, there is no arrangement for the grey cells that ensures a vertical mode. As there are no well-defined 
valleys of nonzero Cv along the vertical edges of the BZ in Fig. 5, energy cannot be steered around a π/2 bend. (c) 
Dipolar source placed at leftmost edge, excites odd-parity ZLM. The periodicity of the long-scale envelope is 
clearly evident; outline around envelope derived from HFH (Methods). Backscattering can be minimised via 
parametric variation (by decreasing the wavelength of the energy-carrying envelope).
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In the subsequent section, we demonstrate how the additional reflectional symmetry enables mode coupling 
from the pre-bend to post-bend ZLM thereby allowing for energy navigation around a corner.

Propagation around a bend.  A crucial property that allows for wave steering for the C v4  case is the presence of 
Dirac cones along both edges of the BZ. Another important property is that, like the C v2  case, both, even and odd 
edge modes exist, however they are now present along the same interface as opposed to different interfaces. The 
orthogonality of these opposite-parity modes ensures that they do not couple along the same edge. The presence 
of both parity modes along the same interface (for the C v4  case) arises from the relationship between the orange 
over blue stacking and its reverse (Fig. 8(a,b)). Specifically, it is clearly evident from Fig. 8(a,b) that a right propa-
gating mode for one stacking is a left propagating mode on the other and vice versa. This special property is also 
what allows for the three-way splitting of energy (see subsection 4.3).

We now move onto deriving an edge mode for the C v4  case. Due to there being only a single unique interface, 
we choose to use a Fourier-Hermite spectral method51, that purely finds the decaying solution along a single 
interface, as opposed to simultaneously along both; the latter occurs when the PWE method is used in 

Figure 7.  Dispersion curves C v4  case — (a) Cellular structure shown; maroon mass value of 1, blue mass value 
of 2, lattice constant of 2, centroid to vertex mass distance of 0.70. Pre-perturbation structure has σv and σh 
symmetries, both of these symmetries are broken in the post-perturbation structure. (b) Shows IBZ (shaded 
region) within the BZ; circles indicate Dirac cone locations pre-perturbation, whilst ± denotes Csgn( )v , post-
perturbation. Unlike the C v2  case (Fig. 4(b)), Dirac cones now present along both sets of parallel HSLs. (c) Pre-
perturbation dispersion curves. We have opted to plot around the IBZ of the C v2  case (Fig. 2(b)) in order to 
explicitly show the Dirac cone that arises from the added σh symmetry. (d) Post-perturbation dispersion curves. 
If we were to plot along the C v4  IBZ an identical band-gap, in location and width, would be present.

Figure 8.  Interface comparison between C v4  case (a,b) and graphene-like structure (c,d) — representative 
hexagonal structure taken from26. Evidently, the two hexagonal zigzag interfaces that host ZLMs are distinct 
whilst, the two square interfaces, are identical under TRS. Even and odd-parity edge modes exist along the same 
interface for the C v4  case and different interfaces for the graphene-like structures and C v2  cases (Fig. 6(a)). This 
latter point is what allows for coupling between the pre-bend and post-bend modes, Fig. 10, for the C v4  case but 
not the C v2 . Crucially, this property is also what yields three-way splitting for the C v4  case, Fig. 1, but not for the 
graphene-like structures.
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conjunction with two-dimensional periodic Bloch conditions. Hence, from Fig. 9, we clearly see that, for a variant 
of the C v4  case, the orange over blue (Fig. 9(a)) or blue over orange (Fig. 9(b)) stacking yields an even-parity 
decaying mode. More specifically, the orange over blue stacking gives solutions to the right of Γ whilst the blue 
over orange yields solutions to the left of Γ; this implies that the two stackings host the same mode and are TRS 
pairs of each other. Note that a parametric variant of the C v4  case was used to ensure faster convergence of the 
Fourier-Hermite spectral method. The local curvature, and thereby the characterisation of the envelope, is 
obtained for modes in the vicinity of Γ (see asymptotics in the bottom panels of Fig. 9). Similar to the earlier C v2  
structure the edge states that arise are topologically nontrivial and gapless22.

Transmission around a bend. The perturbed C v4  system has valleys of nonzero Cv along all HSLs of the BZ 
(Fig. 7(b)). This allows for the strategic arrangement of four structured media such that valleys of opposite Csgn( )v  
overlay each other along, both, horizontal and vertical interfaces, Fig. 10(a). This strategic arrangement necessi-
tates the existence of broadband ZLMs along both of these interfaces simultaneously; therefore, unlike the C v2  
case, energy is navigable around bends.

The four-cell arrangement shown in Fig. 10(a) encompasses the design of the nodal region (and by extending 
it outwards, the entire region) for the π/2 wave steerer and three-way energy-splitter. If the bottom-right inclusion 
set is rotated clockwise then a wave incident along the leftmost interface will follow the red arrows around the π/2 
bend. The indistinguishable, pre- and post-bend interfaces, ensure that, as the energy traverses the turning point, 
an even-parity mode will couple into itself. An example of, topological wave steering around a bend, is shown in 
Fig. 10(b–d). Notably, the π/2 wave steerers observed within hexagonal structures require coupling between a 
zigzag mode with an armchair mode. The latter termination hosts topologically trivial edge states due to the over-
laying regions of identical Csgn( )v  resulting in gapped states. Contrastingly, the structure shown in Fig. 10(a) 
allows for topologically nontrivial π/2 wave steering.

Similar to the C v2  ZLM, the short-scale oscillations are discernible from the long-scale modulation. The 
importance of this long-scale modulation is numerically elucidated in the subsequent section.

Relevance of envelope to transmission around a bend. The characterisation of the energy-carrying envelope 
is important, as the tuning of it can lead to higher transmission along finite length interfaces. This principle is 
elucidated by examining the wave-steering example, Fig. 10(e,f); using finite element integration the intensity of 
the wave-field in each arm of such a steerer is calculated. The ratio of these intensities is the measure of the trans-
mission of the wave steerer (Fig. 10(f)); this quantity can be seen to oscillate rapidly across the band-gap. This 
is similar to the behaviour of conventional Fabry-Pérot resonators, where for maximal transmission an integer 
number of wavelengths must be completely contained in each lead. Thus the length of the interfaces is of impor-
tance for optimising the transmission. This effect is clearly seen by the contrast in transmission between Fig. 10(e) 
and (b–d). Despite the paradigm utilising the valley-Hall topological phase, the robustness and bandwidth of the 
effect can be further increased, by parametic variation, introducing a TRS-breaking active component, nonline-
arity and/or resonators within the nodal region.

Topological 3-way splitter.  We now move onto the construction of the three-way energy-splitter; rotating the 
bottom-right inclusion set anti-clockwise, in Fig. 10(a); results in four partitions of geometrically distinct media. 
A wave incoming, from the leftmost interface, will now follow, both, the red and green arrows thereby splitting 

Figure 9.  C4v even-parity interfacial mode — Left and right columns, panels (a,b), pertain to the orange over 
blue and blue over orange stackings, respectively. Top panels show eigensolutions obtained from Fourier-
Hermite method. Bottom panels show that the even-parity interfacial curve, for both stackings, are identical, 
HFH asymptotics51 also shown (dashed lines).
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the energy three-ways. The resulting scattering solution, for a monopolar source, is shown in Fig. 1; the topologi-
cal nature of the modes is demonstrated by the chiral fluxes. The three-way splitter can be tuned to a wave steerer 
by rotating the cellular structures in lower-right quadrant.

For a mode to couple, from one lead to another, the chirality of the modes must match16–20,26–39. For the square 
C v4  case this condition is satisfied due to the relationship between the interfaces Fig. 8(a,b); an incident even mode 
couples to itself along the three exit leads, Figs. 1 and 11(a). The κ excited for the upper and lower leads (Fig. 1) 
matches the left lead interface (orange over blue), hence an incident even mode at valley K will couple to itself 
along the upper and lower leads.

Importantly, the right-sided interface (blue over orange) is the reverse of the left-sided interface, hence a right 
propagating mode on the right-sided interface is identical to a left propagating mode on the left-sided interface. 
Mathematically, the latter implies that κ κ= −L R where κL R,  are the wavevectors along the left and right-sided 
interfaces respectively. Due to the chiral relationship between the interfaces the κL and κR modes conveniently 
have matching chirality. This allows for the seamless coupling between the left-sided and right-sided modes how-
ever there remains a phase difference to account for. In order for the left-sided mode to couple with the right-sided 
mode a phase must be acquired as the incident wave passes through the nodal point; this is similar to how an 
incident wave acquires a phase when it passes through a gratings coupler52. This phase difference between the 
modes implies that κ κ+ = 0L R  thereby resulting in a zero imaginary component along the rightward lead, 
Fig. 11(b). Despite this phase difference, the chiral relationship between the two interfaces, Fig. 8(a,b), ensures 
that there is conservation of chirality (a necessary condition for topological mode coupling) throughout this 
four-region structured domain. The relationship between the interfaces is crucial in allowing the third lead to be 
triggered. This provides further evidence for why only two-way splitting has thus far been obtained for 
TRS-breaking topological systems53–56.

Comparing our design with that of a similar hexagonal network, see16–20,26–39 and Fig. 11(c), we note that the 
chirality and/or phase velocity mismatch results in energy being redirected solely along the two vertical partitions 

Figure 10.  Wave-steering and energy-splitting — (a) By extending this nodal region outwards the entire 
structured domain for both effects is obtained. If the bottom-right quadrants inclusion set is rotated rightwards 
then a left-sided incident ZLM would follow the red arrows around the bend; leading to the modal pattern in 
the right panel. If the same set of inclusions is rotated leftwards, then energy is partitioned three-ways away 
from the nodal point, yielding the three-way energy-splitter, Fig. 1. (b) Example of topological wave steering. 
Similar to C v2  ZLM, Fig. 6(b), long-scale modulation is distinguishable from the short-scale oscillations. Wave 
steering examples — (a,b) Panels show different examples of high-transmission wave steering. Notably, in each 
of these cases the long-scale envelope is discernible, and more importantly, the wavelengths of these envelopes is 
entirely contained within the first lead thereby allowing for near-perfect transmission around the bend. (c) 
Shows an instance where the the incident ZLM impacts the turning point with maximum amplitude, resulting 
in significant backscattering. Right-sided panel shows the highly variable transmission of this long-wavelength 
wave steerer. Transmission is calculated from the ratio of the intensities contained within the two boxes (shown 
in the upper-left panel). The overlap of the boxes introduces a small numerical error that can yield unphysical 
transmissions (e.g. ω = .6 465).
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(Fig. 11(c)). Additionally there is no such relationship between the blue over orange and orange over blue zigzag 
interfaces, see Fig. 8(c,d). This conservation of chirality and phase velocity, as well as the two distinct interfaces, 
restricts the hexagonal structures to two-way energy-splitting16–20,27–39. A comprehensive pictorial comparison 
between the C v2 , C v4  cases described herein and the, more common, topologically nontrivial and trivial hexagonal 
examples described in26 is shown in Fig. 12.

Discussion
We have demonstrated how to geometrically engineer the first-ever broadband three-way energy-splitter. This 
novel paradigm adds a degree of freedom unavailable to all current designs; namely, the hexagonal valley-Hall 
energy-splitters16–20,27–39 and the two-way cavity guide beam-splitters57–67. This design is reliant upon the 
time-reversal relationship between the interfaces and hence serves as a paradigm for all scalar wave systems: plas-
monics, photonics, acoustics, as well as, for vectorial systems such as plane-strain elasticity, surface acoustic waves 
and Maxwell equation systems. The additional degree of freedom afforded by this three-way energy-splitter, along 
with latest advancements in topological physics, will inevitably lead to a myriad of highly tunable, broadband and 
efficient crystalline networks.

Methods
Dispersion curves and scattering solutions.  The dispersion curves throughout the article were obtained 
using a combination of standard spectral methods as well as the Galerkin method. The standard scheme utilised 
an adaptation of the plane-wave expansion method to determine the eigenstates50. Specifically, a doubly periodic 
Fourier series expansion is employed by applying Floquet-Bloch conditions on opposite sides of the unit cell, 
resulting in a generalised eigenvalue problem, that is solved for the non-dimensionalised eigenstates presented 
throughout.

The dispersive behaviour of the edge states is obtained in a similar manner whereby we consider a stretched 
unit cell centred on the interface between the two media. Floquet-Bloch conditions are applied to both edges of 
the ribbon and the height of the ribbon is taken such that it is much greater than the decay length of the localised 
edge states. The relatively slower decay of the C v4  edge mode (Fig. 9) required an alternative method; namely, a 
Galerkin method where the rate of the decay is built into the expansion of the wavefield through scaled orthonor-
mal Hermite functions51.

The scattering solutions for point forcings are obtained through the solution of a system of linear equations by 
standard methods42,68. When a forcing is applied we utilise a Green’s function approach where the total wavefield 
is given for P scatterers by

∑ψ ψ ω= + | − | .κ κ
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p n p
1

Using the well-known Green’s function42, ω ρ ω ω ρ ω ρ= −κ κ κ κg i H H i( , ) ( /8 )[ ( ) ( )]n n n n
2

0 0 , the unknown reac-
tion terms Fm ( = …m P1 ) come from the linear system

∑ω ψ ω=








+ | − |







.κ κ

=
( )F M F gx x x( ) ,

(19)
m m n s m

p

P

p n m p
2

1

Figure 11.  Real (a) and imaginary (b) components of the displacement field shown in Fig. 1. Notably in panel 
(a), the monopolar source triggers an even-parity ZLM along the left-sided interface; this mode couples into 
identical parity modes along all three outgoing leads. The absence of excitation along the right-hand lead, in 
panel (b), indicates that there is a phase difference between this lead and the other three excited leads. Panel (c) 
Two-way energy-splitting for hexagonal structure and three-way energy-splitting for C v4  case — The 
suppression of intervalley scattering restricts graphene-like structures to two-way splitting of energy. The 
incoming ZLM, that has group velocity >v 0g  and wavevector +κ, is unable to couple to the post-nodal region 
ZLM, κ> −v 0,g , due to their differing valley indices.
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Characterising energy-carrying envelope and relevance to robustness.  The efficacy of transmit-
ting energy around a bend, coupling modes between different leads within a network or even transmission 
through a straight ZLM is contingent upon the displacement of the mode at the turning, nodal or end point. 
Knowledge of the long-scale envelope is especially useful for these finite length interfaces as it can used to mini-
mise the backscattering as one has, in effect, a Fabry-Pérot resonator. Examples of the characterisation of the 
energy-carrying envelope, using high-frequency homogenisation (HFH)50, for the C v2  and C v4  cases are shown. In 
addition to this, the interfacial dispersion curves for a variation of the C v4  case are derived using a Fourier-Hermite 
spectral method51.

Figure 12.  Comparison table between different geometrically engineered states. A topologically nontrivial and 
trivial example are given for the hexagonal structure26; the two square cases are those included within this 
article: C v2 , C v4 .
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To fully characterise the long-scale periodic behaviour of topological edge states along a crystal interface we 
utilise HFH, applying the methodology directly in reciprocal space51, to further bolster the plane wave expan-
sion (PWE) method that was used to obtain the dispersion curves. This technique is a multiple scale asymptotic 
method, that (for non-degenerate curves with locally quadratic curvature) results in the following homogenised 
PDE,

ω− =T f f 0, (20)ij X X0, 2
2

0i j

where f0 is the long-scale envelope defined on the coordinate system X X( , )i j ; whilst the Tij coefficients fully encap-
sulates the short-scale behaviour (similar analysis can be carried over to any scalar and vectorial system51,69–73. 
The tensor coefficients Tij are geometrically dependant and, from the simple solution of the homogenised PDE, 
determine the envelope wavelength for a given frequency. These coefficients are determined entirely from inte-
grated quantities of the wave-field in physical space. To avoid the need for regularisation (higher order correc-
tions) we work in reciprocal space and calculate the Tij’s directly, using the PWE method. Our eigenvalue problem 
is recast into matrix form,

κ ω κ− =A B W[ ( ) ( )] 0, (21)2

with the matrices A B,  encoding the geometry and forcing of the mass loading.
Expanding in the vicinity of a high symmetry point leads to the following ansatz;
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with a similar expansion for κB( ). Applying suitable solvability conditions and imposing Bloch conditions on the 
microscale results in the following tensor coefficients Tij,
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where ω0 and W0 are the solutions obtained from the PWE method, and … +[ ]  denotes the pseudoinverse. The 
explicit characterisation of the envelope is shown in Fig. 6(c).
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