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Background and purpose: Biochemical recurrence after prostatectomy is commonly treated with salvage
radiotherapy (SRT). In this prospective observational study we investigated the PSA decay rate, deter-
mined by predefined serial PSA measurements during SRT, as a predictor for treatment outcome.
Materials and methods: Between 2013 and 2016, 214 patients were included in the study. The prescribed
dose to the prostate bed was 70 Gy in 35 fractions (7 weeks) without hormonal treatment. PSA was mea-
sured weekly during SRT. Assuming first order kinetics, a PSA decay-rate constant (k) was calculated for
196 eligible patients. The ability of k to predict disease progression was compared with known clinical
prediction parameters using Cox regression, logistic regression and ROC analyses. Disease progression
was defined as continuously rising PSA after SRT, PSA increase by �0.2 ng/ml above nadir after SRT, hor-
monal treatment or clinical progression.
Results: After a median follow up of 4.7 years the estimated failure-free survival at 5 years was 56%. The
PSA decay-rate constant (k) was found to be the strongest predictor of disease progression in both uni-
and multivariable analyses.
Conclusion: The addition of k to established clinical variables significantly improves the possibility to pre-
dict treatment outcome after SRT and could be used to personalize future therapies.

� 2020 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

A successful surgical treatment for localized prostate cancer
(PC) should result in an undetectable prostate-specific antigen
(PSA) value. Still, around 20–40% of the patients experience a bio-
chemical recurrence (BCR) [1], usually defined as a second confir-
matory PSA measurement above 0.2 ng/mL [2]. The treatment of
choice for BCR is salvage radiotherapy (SRT) [3,4], commonly
66–70 Gy in 33–35 fractions to the prostate bed [5–7]. Recent
evidence from randomized studies shows that the outcome can
be improved with irradiation of pelvic lymph nodes [8] and
hormonal therapy [9,10].
About half of the patients treated with SRT are in complete bio-
chemical remission 3–5 years after treatment [11]. SRT failure can
either occur locally (due to a target miss, radiation resistant cancer
or insufficient dose), or because of nodal or distant metastases.
Multiple pre-treatment clinical factors can predict outcome of
SRT [1,12–17]. These predictive factors are e.g. included in a nomo-
gram developed by Stephenson et al. [18] which calculates the
probability to stay free from disease progression six years after
SRT. This information can be used for selecting patients for SRT.
Previous retrospective studies have shown an association between
PSA change during SRT and long term outcome [19,20].

The identification of robust parameters based on each patient’s
instant response to treatment, rather than using pre-treatment fac-
tors only, can be used to more effectively identify a group of
patients with high risk of recurrence that are more likely to benefit
from treatment escalation. This so called ”enrichment” strategy is
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well established in medical oncology trials to avoid dilution of
treatment effects [21,22]. Monitoring PSA change in more detail
during SRT could be a potential candidate in an ‘‘enrichment”
approach for this treatment. Patients who do not experience a
PSA response during early SRT could for example be candidates
for addition of pelvic lymph node irradiation. Whether PSA change
during radiotherapy improves the predictive performance of previ-
ously recognized clinical pre-treatment parameters, as e.g.
included in the nomogram described by Stephenson et al., is not
well studied.

The aim of the present study was to evaluate the predictive
value of PSA response during SRT and to study its impact on treat-
ment outcome in relation to previously established prediction
parameters with the long term aim to implement it in an enrich-
ment trial set-up.
Table 1
Baseline clinical characteristics and treatment details (n = 196).

PSA prior to prostatectomy, PSAsurg (ng/mL)
Median (IQR) 8.5 (5.8–14.0)

PSA at start of SRT, PSA0 (ng/mL)
Median (IQR) 0.23 (0.16–0.37)
PSA doubling time post op, Tdoubling (months) (n = 186)a
2. Materials and methods

2.1. Patients

This prospective observational study included 214 patients
between February 2013 and January 2016. Men with BCR after rad-
ical prostatectomy for PC who were referred for SRT and signed a
written informed consent were eligible for study inclusion. One
patient withdrew his consent, twelve had either PSA0 < 0.1 ng/mL
or fewer than three PSA measurements during the first five treat-
ment weeks (making calculations of the PSA constant k not feasi-
ble) and five were excluded due to pN+ status, leaving 196
eligible patients for analysis. The definition of BCR was up to the
discretion of the referring urologist. No diagnostic imaging was
requested for entering the study according to Swedish national
guidelines for SRT. Men with known distant metastases and/or
with previous or on-going hormonal treatment were excluded.
The study was approved by the Regional Ethical Review Board in
Lund (reference number: 2013/2).
Median (IQR) 8 (5–17)
Time between surgery and SRT, Tsurg-SRT (months)
Median (IQR) 33 (15–59)

Gleason score in prostatectomy specimen, GS
6 19 (10%)
7 144 (73%)
8 9 (5%)
9 24 (12%)

Gleason score in prostatectomy specimen, GS
�3 + 4 102 (52%)
�4 + 3 94 (48%)

Surgical margins, Surgmarg
Negative 102 (52%)
Positive 94 (48%)

pT stage
T2 90 (46%)
T3a 74 (38%)
T3b 32 (16%)

Extracapsular extension, Extracaps
2.2. Salvage RT

All patients were planned for and received 70 Gy, defined as the
mean dose to the planning target volume (Dmean,PTV) in 35 fractions
to the prostate bed. Dose specification, target volumes and organs
at risk (rectum, femoral heads and urinary bladder) were defined
according to recommendations by the International Commission
on Radiation Units and Measurements ICRU [23–25]. Target guide-

lines from the RTOG were used for reference: (http://www.rtog.

org/CoreLab/ContouringAtlases/ProstatePostOp.aspx). The Plan-
ning Target Volume (PTV) was obtained by adding a 10 mmmargin
to the Clinical Target Volume (CTV). Dose-volume constraints were
according to local guidelines. External photon beam therapy with
either 3D-Conformal Radiotherapy (3D-CRT) or Intensity-
Modulated Radiotherapy (IMRT)/Volumetric Modulated Arc Ther-
apy (VMAT) techniques was used.
No 90 (46%)
Yes 106 (54%)

Seminal vesicle invasion, Semves
No 164 (84%)
Yes 32 (16%)

pN stage, N
N0 196 (100%)
N1 0 (0%)

PSA remains elevated (�0.1) after surgery, PSAelevated

No 162 (83%)
Yes 34 (17%)

PSA decay constant during SRT, k1w–5w (5wks�1)
Median (IQR) 0.473 (0.055–0.961)
2.3. PSA measurements and follow-up

PSA was measured at start of SRT (PSA0) and thereafter once
weekly during the SRT course (PSA1w–7w). PSA was then recorded
according to a predefined schedule at 3, 6, 12, 18 and 24 months
after end of SRT, and thereafter once a year. All measurements of
PSA0 and PSA1w–7w were performed at the same laboratory.

Disease progression was defined as a PSA increase by �0.2 ng/
ml above PSA nadir after SRT (or from end-of-radiotherapy in case
of continuously rising PSA), initiation of hormonal treatment or
clinical progression.
2.4. Statistics

The PSA change during SRT was assumed to follow a mono-
exponential function with time. The PSA decay-rate constant (k)
was calculated for each patient using linear regression of ln(PSA)
vs. time. To test the influence of the number of PSA-
measurements on the estimate of kwe determined it for incremen-
tal number of PSA-measurements starting with using only the first
three weeks of treatment, PSA1w–3w for derivation of k1w–3w, up to
all seven weeks of SRT, PSA1w–7w yielding k1w–7w. PSA0 was not
included in the calculation of k to omit the effect of a recognized
transient rise in PSA commonly occurring during the first week
of SRT. Progression-free survival was estimated with Kaplan-
Meier analysis. To evaluate the value of k in comparison with the
pre-treatment clinical variables we performed univariable and
multivariable Cox regression analyses. The clinical covariates were
those included in the Stephenson nomogram, i.e. PSA prior to
prostatectomy (PSAsurg), PSA at start of SRT (PSA0), PSA doubling
time (Tdoubling), time between prostatectomy and SRT (Tsurg-SRT),
Gleason score (GS) in the prostatectomy pathology report (di-
chotomized into �3 + 4 and �4 + 3), surgical margins (Surgmarg),
extracapsular cancer extension (Extracaps), seminal vesicle inva-
sion (Semves) and PSA remaining elevated (>0.1 ng/mL) after sur-
gery (PSAelevated). Logarithmic transformations of PSA0, Tdoubling
and Tsurg-SRT were used due to their skewed distributions. The best
multivariable model was determined with the Akaike information
criterion (AIC) to avoid overfitting.
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In addition, uni- and multivariable logistic regression analyses
of disease progression within three years (the minimum follow-
up time) were done with the same set of covariates. The multivari-
able logistic regression analyses were performed with and without
k to estimate its impact in predicting disease progression and the
best models were selected as described above for the Cox regres-
sion. The area (AUC) under the receiver operating characteristics
(ROC) curve was also used to illustrate the predictive value of k.
DeLong’s test for two correlated ROC curves were used for analys-
ing the difference between their AUCs.

Further, we ordered data by increasing k and subsequently
grouped them into quartiles. The observed outcome in each ‘‘k-
group” was then compared with the outcome calculated by the

Stephenson nomogram using the web form on https://www.

mskcc.org/nomograms/prostate/salvage_radiation_therapy.
Statistical calculations were carried out using the R software (R

Foundation for Statistical Computing, Vienna, Austria, www.R-pro-
ject.org). P-values < 0.05 were considered statistically significant.
3. Results

Clinical baseline characteristics are presented in Table 1. The
median follow-up time from end of SRT was 4.7 years (IQR
167 137 119 91 46
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Fig. 1. Progression-free survival for a) the entire patient cohort; b) the cohort divided in
(5 weeks�1) corresponding to a specificity of 85% (sensitivity 61%), and d) at k1w–5w = 0
sensitivity/specificity values are from the ROC analysis of k1w–5w alone according to Fig.
4.2–5.4). The number of progression-free patients during the com-
plete follow-up period was 111 (57%). The Kaplan-Meier estimated
failure-free survival at 5 years was 56% (95% CI 49–64) as pre-
sented in Fig. 1a.

There was a strong positive correlation between Tdoubling and
Tsurg-SRT (Spearman’s q = 0.66, p < 0.0001). To avoid problems with
co-linearity and the fact that the former could not be calculated for
ten patients, Tdoubling was excluded in the search for the best
multivariable models.

Cox and logistic regressions were performed with k based on
calculations for all time intervals (PSA1w–3w to PSA1w–7w). The best
multivariable models (based on the AIC) were obtained for k esti-
mated from PSA1w–5w, i.e. k1w–5w. The numerical results presented
are therefore calculated with k1w–5w for illustration of the model
performance. As shown in Table 2, k1w–5w is by far the strongest
predictor of disease progression in the univariable analyses as
reflected in the likelihood ratio test (i.e. the difference in �2 log
likelihood between the null model and the full model). This is true
independently of the time interval used for calculations of
k (k1w–3w to k1w–7w). The second strongest predictor is PSA0. There
was only a small, not statistically significant, correlation between
k1w–5w and PSA0 (q = �0.13, p = 0.08).

The impact of k1w–5w as a strong predictor for disease progres-
sion remained in the multivariable calculations (Table 2). This is
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also demonstrated in the ROC analyses as depicted in Fig. 2. The
AUC for only k1w–5w in the model is similar to the AUC for the mul-
tivariable model including the clinical pre-treatment variables,
AUC = 0.815 and AUC = 0.812. However, the AUC for the multivari-
able model including all clinical pre-treatment variables and
k1w–5w (AUC = 0.890) is significantly larger than both the former,
p = 0.002 and p = 0.001, respectively. Corresponding results for
k1w–3w, k1w–4w, k1w–6w and k1w–7w are illustrated in supplementary
Fig. 1 for k only and in supplementary Fig. 2 for the full model
including the clinical variables. Similar area under the ROC curve
values were obtained for the models determined for different k
intervals exceeding three weeks (k1w–4w–k1w–7w) while the model
with k1w–3w did significantly worse.

Fig. 3 shows the results from the analysis with k1w–5w grouped
in quartiles. With increasing k1w–5w a clear difference is seen in the
observed number of patients free from disease at three years as
compared with the estimated number of progression-free patients

at six years using the Stephenson nomogram (https://www.mskcc.

org/nomograms/prostate/salvage_radiation_therapy).
Examples of progression-free survival for the patient cohort

divided in different k1w–5w groups are presented in Fig. 1b–d; in
k1w–5w quartiles (b), in two groups divided at a cut-off value of
k1w–5w = 0.175 (5 weeks�1) corresponding to a specificity of 85%
(sensitivity 61%) (c), and at k1w–5w = 0.600 (5 weeks�1) correspond-
ing to a sensitivity of 85% (specificity 62%) where the sensitivity/
specificity figures are from the ROC analysis of k1w–5w alone (Fig. 2).
4. Discussion

The present prospective clinical observational trial showed that
the PSA response during SRT, expressed as the PSA decay constant
(k), is strongly predictive of treatment outcome. When tested in
conjunction with the variables of the Stephenson nomogram, the
PSA decay–rate constant (k) was found to be the strongest individ-
ual predictive factor for disease progression. The proficiency of the
prediction power of k is reflected by the statistically significant
increase in area under the ROC curve when included in addition
Fig. 2. ROC analyses with disease progression at three years as classification
variable for the PSA-decay constant k1w–5w alone and for the pre-treatment clinical
covariates, with and without k1w–5w included.

https://www.mskcc.org/nomograms/prostate/salvage_radiation_therapy
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Fig. 3. Number of patients without disease progression by increasing PSA decay
during SRT. The PSA-decay constant (k1w–5w) is divided in quartiles, each group
containing approximately the same number of patients (46 in groups one and three,
47 in two and four). The ”Nomogram” columns represent the estimated number of
patients free from disease progression at six years calculated with the Stephenson
nomogram using the web form on https://www.mskcc.org/nomograms/prostate/
salvage_radiation_therapy while the ”Observed” columns show the actual number
of patients free from disease progression at three years.
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to the other clinical variables from the nomogram (Fig. 2). This is
further demonstrated in the graph with the number of patients
without disease progression for sorted k intervals as compared to
expected according to the nomogram (Fig. 3).

This is to our knowledge the first prospective trial reporting on
the association between PSA decay during radiotherapy and treat-
ment outcome. The relationship between early PSA change and
treatment outcome has previously been indicated in retrospective
studies [19,20]. These studies demonstrated that the quotient
between PSA levels at fifth week of SRT (PSA5w/PSA0 < 1) predicts
failure-free survival [19] and a drop of at least 0.2 ng/ml in PSA
value at any time during SRT was associated with decreased likeli-
hood of disease progression [20]. The PSA quotient at fifth week of
SRT did also correlate to treatment outcome in our study although
with a significantly inferior AUC as compared to k1w–5w (data not
shown). The prospective nature of our investigation, with repeated
PSA measurements at predefined time intervals, therefore makes
our results a powerful addition to existing evidence.

Detailed information on the PSA decay early during treatment
as presented in this study could be used for treatment monitoring
and optimisation. Recent randomized trials have shown signifi-
cantly improved outcome by adding hormonal and pelvic lymph
node treatment to SRT [8–10]. These treatment modalities are,
however, associated with side effects affecting quality of life. PSA
response early during SRT may be used to personalize the treat-
ment approach by identifying those patients that are highly likely
to be cured with SRT only already during treatment and sparing
them from these additional treatments. By using this enrichment
approach, nodal irradiation and/or hormonal therapy could be ini-
tiated selectively during SRT for non-responders, instead of upfront
for all patients, to maximize treatment efficiency. Our results gave
the best model for k1w–5w but as shown in supplementary Figs. 1
and 2 other PSA measurement intervals exceeding three weeks
(k1w–4w–k1w–7w) could work similarly to guide treatment decisions.

No diagnostic imaging was requested for study inclusion. This
was in line with Swedish national guidelines for SRT. The introduc-
tion of new imaging modalities has occurred rapidly since, with
prostate-specific membrane antigen - positron emission tomogra-
phy - computed tomography (PSMA-PET-CT) being one of the most
promising examples. In a recent review, PSMA-PET demonstrated
detection rates as high as around 33% and 45% for baseline PSA
intervals of 0.0–0.19 ng/ml and 0.20–0.49 ng/ml, respectively
[26]. Other studies have shown that PSMA-PET has the potential
to affect treatment decision in up to almost one third of the cases
[27]. This is however most often not confirmed histologically and
further studies are needed to outline the true diagnostic accuracy
and clinical benefit of PSMA-PET at low PSA levels. Our proposed
method of predicting outcome with PSA response can be used in
combination with novel imaging methods to support the accuracy
of the diagnostic findings made prior to SRT as well as guiding
treatment for patients without radiological findings

There are a number limitations to our work. The results are
based on a relatively small number of patients from a single centre
study and the results have to be confirmed in future prospective
clinical trials. However the results presented here are based on
an unselected consecutively included patient cohort from a
prospective, ethics review board approved clinical trial with a pre-
defined treatment and analysis schedule which limits the risk of
bias.

5. Conclusions

In conclusion, we found that the PSA decay–rate constant (k) is
the single strongest predictive factor for disease progression after
prostate cancer SRT. k significantly improves the possibility to pre-
dict treatment outcome which could be used to personalize SRT.
Longer term follow-up and verification in future trials is needed
to confirm our observations. We are already testing this concept
in a prospective phase II trial to validate our results, where we in
combination with advanced imaging methods select patients for
enhanced treatment based on PSA response during SRT (PROPER
(NCT02699424) – started inclusion early 2016).
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