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Application of Genomics Tools to Animal Breeding 
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Abstract: The main goal in animal breeding is to select individuals that have high breeding values for traits of interest as 
parents to produce the next generation and to do so as quickly as possible. To date, most programs rely on statistical 
analysis of large data bases with phenotypes on breeding populations by linear mixed model methodology to estimate 
breeding values on selection candidates. However, there is a long history of research on the use of genetic markers to 
identify quantitative trait loci and their use in marker-assisted selection but with limited implementation in practical 
breeding programs. The advent of high-density SNP genotyping, combined with novel statistical methods for the use of 
this data to estimate breeding values, has resulted in the recent extensive application of genomic or whole-genome 
selection in dairy cattle and research to implement genomic selection in other livestock species is underway. The high-
density SNP data also provides opportunities to detect QTL and to encover the genetic architecture of quantitative traits, 
in terms of the distribution of the size of genetic effects that contribute to trait differences in a population. Results show 
that this genetic architecture differs between traits but that for most traits, over 50% of the genetic variation resides in 
genomic regions with small effects that are of the order of magnitude that is expected under a highly polygenic model of 
inheritance. 
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INTRODUCTION 

 Genetic improvement in domesticated animal populations 
that are used for agricultural production mainly involves 
selection of males and females that, when mated, are 
expected to produce progeny that perform better than the 
average of the current generation. Performance usually 
includes a combination of multiple characteristics, or traits, 
most of which are quantitative in nature. Quantitative traits 
are controlled by multiple to many genes (>100 to perhaps 
thousands), along with environment [1] and, in the case of 
livestock include traits such as milk yield, fat yield, protein 
yield and longevity in dairy cattle, and growth rate, fatness 
and feed intake in beef cattle and pigs. The main criteria that 
are used to identify individuals to be used for breeding are 
estimates of their breeding values for the traits of interest. 
The breeding value of an individual is defined as the sum of 
the additive effects of all loci that contribute to the trait 
(quantitative trait loci or QTL), deviated from the population 
mean [1]. Under some assumptions, this is equivalent to two 
times the expected phenotype of progeny deviated from the 
population mean [1], which is what animal breeders aim to 
improve. The factor two stems from the fact that progeny 
receive half of their alleles from their father and half from 
their mother. To date, extensive data bases of recorded 
phenotypes for traits of interest, or for traits that are 
genetically correlated to traits of interest, have been used as 
the main source of information to estimate the breeding 
value of selection candidates. To this end, sophisticated  
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statistical methods based on best linear unbiased prediction 
(BLUP) mixed linear model methodology [2,3] have been 
implemented. These methods capitalize on information 
contained in the recorded phenotypes of not only the 
individual itself but also that of its relatives, in order to 
maximize the accuracy of the resulting estimated breeding 
value (EBV). Here, accuracy is defined as the correlation 
between the true and estimated breeding value and is one of 
the main determinants of the rate of genetic improvement 
that can be achieved in a breeding program per unit of time. 
Other determinants are the selection intensity, which is 
related to the proportion of individuals that are selected to be 
parents), and the age at which breeders are selected and 
reproduce, which defines the generation interval. The 
expected rate of improvement per unit of time is proportional 
to accuracy and selection intensity and inversely 
proportional to the generation interval [1]. 
 Statistical models and selection theory used in animal 
breeding are based on the so-called infinitesimal genetic 
model of quantitative genetics [1]. The infinitesimal model 
assumes the trait is affected by a large (infinite) number of 
unlinked genes with very small and additive effects. 
Simulation studies have, however, shown that, at least in the 
short term, results from these models are rather robust to the 
true genetic architecture of traits [4]. As a result, specific 
knowledge of the genetic architecture is not essential for 
these phenotype-based methods to be effective. 
 Although selection programs based on EBV estimated 
from phenotype have been very successful, they also face a 
number of limitations. These primarily relate to the ability to 
routinely record phenotypes on selection candidates and/or 
their close relatives in a timely manner, such that accurate 
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selection decisions can be made at an early age, the latter to 
reduce generation intervals. Cost of phenotype recording 
also plays an important role here. Unfortunately, some traits 
of interest are only recorded late in life (e.g. longevity), only 
on one sex (e.g. milk yield in dairy cattle), require animals to 
be sacrificed (e.g. meat quality), or require animals to be 
exposed to conditions that would hamper the ability to 
market or export their germplasm (e.g. disease resistance). 
These phenotyping constraints limit the amount of genetic 
progress that can be made. In order to overcome these 
limitations, animal breeders have a long history of 
investigating opportunities to get early measurements on 
selection candidates that can be used to increase the accuracy 
of EBV at a young age. Initial work focused on indicator 
traits, physiological measurements and blood markers. One 
of the early successes and applications was the use of blood 
groups as a genetic marker to select for disease resistance in 
chickens [5]. An example of a physiological measure is 
serum IGF-1 measured at an early age in cattle and pigs as 
an indicator of efficient growth [6]. In general, however, the 
use of such indicator traits, and especially physiological 
indicator traits measured in blood, has been limited. 
 Against this background, the purpose here is to review 
the impact that molecular genetics has had and is having on 
genetic improvement programs in livestock, in particular the 
recent availability of high-density SNP genotyping panels. In 
addition, the knowledge that this is providing on the genetic 
architecture of traits of interest will be addressed, along with 
implications and opportunities for the future. 

THE FIRST ERA OF MOLECULAR GENETICS 

 Starting in the 1970’s, the advent of the era of molecular 
genetics provided new opportunities to enhance breeding 
programs in livestock by allowing the use of DNA markers 
to identify genes or genomic regions that control traits of 
interest. The obvious first application of these methods was 
to discover the genetic basis and develop genetic tests for 
single gene defects. For quantitative traits, these advances 
promised the identification of QTL and the development of 
DNA tests that could be done on all selection candidates at 
an early age to help inform selection decision through 
marker-assisted selection (MAS), i.e. selection on a 
combination of information derived from genetic markers 
associated with QTL and the traditional phenotypic 
information [7,8,9]. To this end, large numbers of candidate 
gene and QTL mapping studies were conducted [10,11]. This 
resulted in the discovery of substantial numbers of QTL and 
marker-phenotype associations and some causative 
mutations [12]. The implementation of this information in 
breeding programs, was however limited for various reasons 
[12], but primarily because, 1) most QTL studies were 
conducted in experimental crosses to create extensive 
linkage disequilibrium, rather than in the populations that are 
used for genetic improvement, 2) most effects discovered 
tended to explain only a limited amount of genetic variation 
for the trait, 3) many QTL and associations could not be 
replicated, and 4) the still high cost of routine genotyping of 
selection candidates for even a handful of genetic markers. 
There are, however, some notable exceptions of the 
discovery of genes or markers with large effects that were 

repeatable and that were implemented in practical breeding 
programs [12]. 

THE PRESENT ERA OF MOLECULAR GENETICS 

Use of High-Density SNP Genotyping for Whole-Genome 
Selection 

 For most livestock species, commercial platforms are 
currently available that allow the genotyping of an individual 
for tens of thousands of SNP across the genome at a 
reasonable cost (<$150 per individual, depending on 
volume). The first such high-density SNP genotyping 
platform available in livestock was the 50k Bovine Illumina 
SNP panel [13]. To date, tens of thousands of dairy and beef 
bulls and cows have been genotyped using this platform. 
Similar SNP panels of 40 to 65 thousand SNP are now 
available for other livestock species, including pigs, poultry, 
sheep, and horse. Recently, panels with over 700k SNP have 
become available in cattle and such higher density panels are 
also under development in other species.  
 In dairy cattle, the main use of high-density SNP 
genotyping has been to implement genomic or whole-
genome selection [14,15,16,17]. Genomic selection involves 
estimation of the effect of each SNP on the high-density 
panel using models that fit all SNP simultaneously, with 
their effects treated as random variables. Several Bayesian 
approaches have been developed to implement this statistical 
estimation using Monte Carlo Markov Chain (MCMC) 
methodology [18,19]. Methods differ in the prior 
assumptions that are made about the distribution of SNP 
effects and include Bayesian variable selection methods, in 
which only a proportion of the SNP is fitted in each iteration 
of the MCMC chain, with the remaining SNP assumed to 
have zero effects. This proportion of SNP with non-zero 
effects can either be set as a prior or estimated from the data 
[19]. Once estimates of the effect of each SNP are obtained, 
they can be used to estimate the breeding value of selection 
candidates based on their SNP genotypes across the genome.  
 Alternatively, the high-density SNP genotypes can be 
used to construct a so-called genomic relationship matrix 
among all individuals in the population and use it instead of 
the traditional pedigree-based relationship matrix in the 
BLUP mixed model procedures that are routinely used to 
estimate breeding values in livestock [2]. This procedure, 
known as GBLUP, has been shown to be equivalent to the 
Bayesian SNP effect estimation method in which the prior 
distribution of SNP effects assumes that the genetic variation 
for the trait is equally distributed across all SNP on the 
panel, similar to the infinitesimal model of quantitative 
genetics [20]. Thus, in contrast to the phenotype-based 
models for prediction of breeding values, methods that 
utilize genomic data do depend on having some knowledge 
of the genetic architecture of traits [21,22]. Alternatively, 
non- or semi-parametric methods have been advocated for 
use in genomic selection [23,24]. Methods to combine data 
on genotyped individuals with phenotypic data on 
individuals that have not been genotyped have been 
developed also [25]. 
 Estimation of breeding values using high-density SNP 
data has been implemented in dairy cattle breeding programs 
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in several countries and research to implement genomic 
selection in other livestock species is underway [17]. In dairy 
cattle, this has resulted a substantial increase in the accuracy 
of EBV at a young age (increases of 35% on average and up 
to 50%, depending on the trait and size of the data set used 
for training) [26]. The availability of genome-enhanced 
breeding values (GEBV) at a young age is having a major 
impact on breeding programs in dairy cattle, in particular by 
allowing young bulls to be selected for breeding prior to the 
availability of extensive progeny data. This is expected to 
substantially increase (up to double) the rate of genetic 
improvement by reducing generation intervals [27] and by 
enhancing opportunities to select for traits with low 
heritability, e.g. fertility. Reduction or removal of the need 
for progeny testing, also has the potential to substantially 
reduce the cost of breeding programs in dairy cattle [28]. 
 Implementation of genomic selection in other livestock 
species is still under development. In contrast to dairy cattle, 
breeding programs in other species offer fewer opportunities 
to increase rates of genetic improvement by reducing 
generation intervals, as selection is typically already at an 
early age. In addition, the large training data sets of 
genotyped individuals with accurate phenotypic data (e.g. 
progeny-test information) that are needed to obtain GEBV 
with sufficient accuracy are more difficult to attain in these 
species. Equations have been developed to predict the 
accuracy of GEBV as a function of the number of genotyped 
individuals, the accuracy of the phenotypic information 
available on them, and the genetic architecture of the trait 
[29,30,31]. These equations predict a requirement for 
training data sets of at least several thousand genotyped 
individuals with accurate phenotypes to obtain reasonable 
accuracy of GEBV, with greater numbers needed for traits 
that have a more polygenic genetic architecture and if 
genotyped individuals have less accurate phenotypic data 
available on them. 

Use of High-Density SNP Genotyping for Genome-Wide 
Association Studies 

 The large amounts of high-density SNP data that are 
being generated for implementation of whole-genome 
selection can also be used for genome-wide association 
studies (GWAS) to identify genetic markers or genomic 
regions associated with traits based on population-wide 
linkage disequilibrium (LD). Several studies have capitalized 
on this to analyze the genetic architecture of traits of interest 
in animal agriculture [32]. For GWAS, several alternate 
statistical methods have been used. Most studies have used 
single SNP models in which each SNP is fitted separately as 
a fixed effect, ideally in a BLUP animal model to properly 
account for the family structure of the data by fitting a 
polygenic effect with pedigree-based relationships 
[33,34,35]. A problem of single-SNP models is that they rely 
on the pair-wise LD of a QTL with individual SNP. Single 
SNP models can also lead to excessive false positives if 
population structure is not properly accounted for [36]. 
Hayes et al. [36] used mixed linear model methodology to 
estimate the proportion of genetic variance associated with 
each genomic region of 50 SNP from the Bovine 50k 
Illumina SNP chip for three quantitative traits in dairy cattle. 
Fitting each region separately, their model simultaneously 

used two genomic relationship matrices, one based on 50 
SNP in the region and one based on the rest of the genome, 
to separate genetic variance contributed by the region from 
variance contributed by the rest of the genome. 
 The Bayesian methods that have been developed for 
genomic selection have also been used for GWAS. In 
particular the Bayesian variable selection methods have been 
shown to be effective for GWAS in simulated [38,39] and 
real data [40,41]. Several criteria have been used to identify 
important SNP or genomic regions using these methods, 
including the proportion of iterations of the MCMC chain 
that a given SNP or a set of SNP in a genomic region were 
given non-zero effects, or the proportion of variance that is 
explained by a given SNP or by a region of the genome 
[39,40,41]. An advantage of the genomic selection methods 
over the single SNP models is that all SNP are fitted 
simultaneously. This allows capture of all information if 
multiple SNP are in LD with a QTL and also implicitly 
accounts for any population structure that is present in the 
data, reducing false positives. In addition, by fitting SNP 
effects as random rather than fixed, estimates are shrunk 
towards zero depending on the amount of information that is 
contained in the data and the priors that are specified. A yet 
unresolved question is the impact of the choice of priors. 
Also, satisfactory criteria to identify important SNP or 
genomic regions have not been fully developed for these 
methods. For example, Fan et al. [40] and Onteru et al. [41] 
used bootstrapping of genomic regions of interest to derive 
confidence intervals but the theoretical basis of this approach 
has not been fully established and it is computationally 
demanding. A recent addition to the software GenSel that 
implements genomic selection models [42] has been the use 
of samples from the MCMC chain to derive posterior 
distributions of parameters of interest and to use these to 
identify 1 Mb windows on the genome which contributed 
more variance than expected under a pure polygenic model 
in, e.g. 90% of samples of the converged MCMC chain. 
Initial results from the application of this method to layer 
chicken data are presented later. The power and impact of 
alternative window sizes and thresholds have, however, not 
been evaluated for this method.  

WHAT HAVE WE LEARNED? 

 Early QTL mapping studies in livestock, utilizing breed 
crosses or within-family analyses, identified many QTL 
regions that were estimated to explain a substantial 
proportion of phenotypic variance for the trait, depending on 
the power of the study, with estimated effects greater than 
0.2 to 0.3 phenotypic SD, and some with large effects (> 0.5 
phenotypic SD) [42]. However, only a limited proportion of 
these have been validated in independent studies and even 
fewer have resulted in genetic tests that have been 
implemented in breeding programs. Until recently, the 
majority of genetic tests that were used in industry resulted 
from candidate gene studies and in some cases from genetic 
tests where the causative mutation was identified [12]. 
 Several studies have attempted a meta-analysis of QTL 
mapping results to study the genetic architecture of 
quantitative traits in livestock, accounting for the inherent 
overestimation of significant effects [44] and reporting bias, 
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i.e. the inability of studies of limited size to identify QTL 
with smaller effects and the reporting of only significant 
effects [43,45]. Distributions of QTL effects were generally 
found to be leptocurtic, with many QTL of small and a few 
QTL of large (>0.2 or 0.3 phenotypic standard deviations) 
effect. Results from these studies are, however, sensitive to 
the distributional assumptions that are made to account for 
the absence of non-significant QTL effects in the analyses. 
Weller et al. [46] estimated the distribution of effects using 
estimates at 73 markers across the genome in each of 11 
half-sib families without screening for significance. They 
found that distributions differed substantially between traits, 
with some traits (female fertility) having few small effects. 
 Data from high-density SNP genotyping platforms offer 
new opportunities to study the genetic architecture of 
quantitative traits, as described previously. One source of 
information is the comparison of the predictive ability of 
alternate models used for whole-genome selection. Most 
simulation studies have found that Bayesian variable 
selection models that assume a large proportion of SNP to 
have non-zero effect provide better predictions than models 
that assume genetic variance is distributed equally across all 
SNP (GBLUP) [14,47,48]. In these studies, the trait is 
typically simulated based on at most several hundred QTL 
with heterogeneous effects. In contrast, most applications of 
genomic selection models to real data have found that the 
GBLUP models have very similar predictive ability than the 
Bayesian variable selection models, except for traits for 
which there are known genes of large effect, such as fat% in 
dairy cattle [15,16]. This could be interpreted as evidence 
that the traits are controlled by a very large number of genes 
of small effect. Evaluation of these models in real data is, 
however, typically based on their ability to predict the 
phenotype of progeny of individuals that are included in the 
training data. It is well known that such predictions rely 
heavily on capturing both within and between family 
relationships [47,48]. In contrast to the historic LD that was 
the initial premise of genomic selection [14], capturing such 
effects does not require close linkage between markers and 
QTL but they can be captured by SNP that are some distance 
from the QTL and even by SNP across the genome. 
 More direct information on the genetic architecture of 
quantitative traits from high-density SNP data comes from 
analysis of the distribution of the genetic variance 
contributed by genomic regions. Hayes et al. [37] used 50k 
SNP data from dairy cattle to estimate this distribution for 
fat%, the proportion of black coat color, and overall type, 

using windows of 50 SNP. They found that, for all three 
traits, many segments (up to 96% for % black) explained less 
than 0.1% of genetic variance, which is the variance 
expected under a model with equal distribution across the 
genome. But jointly, these segments explained half of the 
variance for overall type and proportion black. For all three 
traits, there were tens of segments that explained 0.1–4.7% 
of the genetic variance and for the proportion of black and 
fat% a few segments that explained as much as 37.5% of 
genetic variance. Several of these coincided with the location 
of known major genes for these traits. They concluded that, 
although there are some regions with larger effects, they 
jointly explain less than 25 to 50% of the genetic variance, 
depending on the trait. The remaining variance is present in 
regions spread across the genome. 
 In a recent analysis to investigate the genetic architecture 
of traits in layer chickens, we used phenotypic records for 
egg weight, egg production, and puncture score, a measure 
of shell strength, on 1,563 chickens from a commercial layer 
line that were genotyped for 24,430 segregating SNP across 
the genome. Bayesian variable selection model Bayes-C-π 
[19], as implemented in the GenSel software [42], was used. 
In this model the proportion of SNP with zero effect (π) is 
estimated and the effects of SNP with non-zero effects are 
assumed to have equal variance a priori. The genome was 
divided into approximately 1000 windows of 1 Mb and the 
posterior genetic variance of each window was estimated 
from samples of the MCMC chain. Results are summarized 
in Table 1. Estimates of heritability derived from the marker 
data were lower than heritabilities estimated using pedigree 
relationships. Thus, some portion of the genetic variance, up 
to 1/3 for puncture score, was not accounted for by the SNP. 
Estimates of π indicated that a large proportion of SNPs had 
zero effects, over 95% for puncture score and 99% for egg 
weight and egg production. For egg weight and egg 
production, less than 5 and 10% of the genome, respectively, 
was needed to capture over 50% of the marker-based 
variance, with the rest located in windows with small effects 
across the genome. For puncture score, the largest effects 
were smaller and over 32% of the genome was needed to 
capture over 50% of variance. These results generally agree 
with those of Hayes et al. [37], in that 1) genetic architecture 
differs between traits, 2) depending on the trait, genes with 
large effects are present, but 3) over 50% of the genetic 
variance resides in a large number of genomic regions spread 
across the genome with effect sizes consistent with a highly 
polygenic model of inheritance, approaching the 
infinitesimal model of quantitative genetics.  

Table 1. Estimates of Genetic Architecture Obtained from Genome-Wide Association Analysis of High-Density SNP Data for 
Three Traits in a Layer Chicken Line Using Bayesian Variable Selection Model Bayes-C-π 

 Egg weight Egg production Puncture score 

Pedigree-based heritability 0.74 0.39 0.29 

Marker-based heritability 0.54 0.32 0.19 

% SNP with zero effect (π) 99.2 99.0 95.6 

% genome to capture 50% of marker-based variance 4.2 9.9 32.5 

% variance of largest window 18.8 3.5 0.8 
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THE FUTURE  

 The use of high-density SNP genotypes in whole-genome 
selection does not require detailed knowledge of the genetic 
architecture of traits, as methods that assume all SNP 
contribute equal variance have similar accuracy as the 
Bayesian variable selection models that use different priors. 
This is expected to change as SNP density increases, even to 
the point of having full sequence on large numbers of 
individuals. This was demonstrated in simulation studies by 
Meuwissen and Goddard [49], in which they showed that the 
advantage of predictions obtained from the Bayesian 
variable selection model Bayes-B increased relative to those 
from GBLUP with an increase in SNP density, as Bayes-B 
was able to identify SNP that are in tight LD with the QTL 
and assign other SNP zero effects. When the causative 
mutations were included in the available genotypes, as 
would be expected with availability of full sequence, 
accuracies however only increased slightly compared to a 
SNP panel with very high density but no causative 
mutations. This also implies that, with sufficient data, 
methods such as Bayes-B will be able to fine map the 
causative mutations. This can lead to additional advances in 
management and treatment based on knowledge of genetic 
mechanisms that underlie important traits. 
 Current models for genomic selection and GWAS 
primarily fit additive models but Bayesian variable selection 
models that fit dominance [50] and even epistatic effects 
[51] are available or possible. While computationally more 
demanding, the potential advantage of these additions for 
predicting breeding values may be limited if, as argued by 
Hill et al. [52], most genetic variance for complex traits can 
be captured by additive genetic variance. Nevertheless, the 
use of these models may provide more insight into the 
genetic architecture of quantitative traits. Also, if genotyping 
data spans many generations and multiple populations, 
models that include dominance and epistatic effects may 
become more important to accurately model the diverse 
genetic backgrounds that may be represented. Accumulating 
the required large data sets with high-density SNP data, up to 
sequence, at a reasonable cost requires intensive and clever 
use of genotype imputation [53,54], such that most 
individuals can be genotyped using more cost-effective low-
density SNP platforms. 

CONCLUSIONS 

 Recent developments in molecular and genotyping 
technology, combined with advances in statistical 
methodology for the use of this data in prediction of 
breeding values, has led to development and successful 
implementation of whole-genome selection methods in dairy 
cattle. Implementation in other livestock species is underway 
but is limited by the large training data sets with genotyped 
and phenotyped animals that are needed. Whole-genome 
selection models accommodate the highly polygenic genetic 
architecture of most traits of interest in livestock. Statistical 
methods used for prediction in whole-genome selection can 
also be used to identify genomic regions associated with 
traits and to investigate the genetic architecture of 
quantitative traits. Results to date show that most traits of 
interest are indeed highly polygenic. 
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