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Abstract: Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis.
Therefore, there is an important need to find more potent drugs that could deliver an improved
therapeutic approach. In the current study we searched for selective and effective caffeic acid
derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic
activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line,
by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect.
To improve the therapeutic efficacy of such active compounds, we developed a formulation where
caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine
and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic
physical parameters (such as size, zeta potential, stability at 4 ◦C and morphology), hemolytic
and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be
stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM,
towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could
represent a promising alternative to currently available treatment options.

Keywords: pancreatic ductal adenocarcinoma; pancreatic cancer; caffeic acid; caffeic acid derivatives;
anticancer; cytotoxicity; liposomes

1. Introduction

Pancreatic cancer (PC) is one of the most lethal malignancies. In the most recent reports, it ranks
seventh in the world and fourth in Europe amongst the leading causes of cancer-related deaths [1,2].
Of PCs 90% constitute pancreatic ductal adenocarcinoma (PDAC), which is one of the most aggressive
cancers of the digestive system [3]. A general trend toward an increase of incidence and mortality rates
has meant that PDAC is projected to advance as the third leading cause of cancer-related deaths in
the USA by 2030 [4]. Despite substantial research efforts and therapeutic improvements, the 5-year
survival rate for PC patients remains at 2–9%, while the median survival rate is about 6 months after
diagnosis [1]. The reasons behind such bad statistics include the fact that diagnosis is often made
at late stages of the disease (due to its long asymptomatic progression) when surgical approaches
are not feasible anymore, rapid cancer development and metastasis to other tissues and resistance to
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conventional approved drugs [5]. PC treatment options are limited and depend on the cancer stage.
Due to a late diagnosis, only 15–20% of patients are amenable for surgery. Therefore, conventional
systemic cytotoxic treatments, such as chemotherapy and radiotherapy, are the only therapeutic options
for the majority of patients. Currently, chemotherapy is mainly based on the use of gemcitabine,
albumin-bound paclitaxel (nab-paclitaxel, abraxane) or a multidrug therapy involving a combination
of chemotherapeutic agents in the FOLFIRINOX regimen (FOL—folinic acid, 5-FU—5-fluorouracil,
RIN—irinotecan and OX—oxaliplatin). However, such therapy does not bring satisfactory results and,
moreover, it causes undesirable side effects [6–9]. In view of this fact, there is a need to find compounds
that are safe and efficacious treatments for advanced pancreatic cancer patients.

Numerous agents isolated from plant materials have been tested on many cancer cell lines.
Recent research suggests that caffeic acid (CA; 3,4-dihydroxy cinnamic acid) may be a potentially
active anticancer substance [10,11]. CA is a phenolic compound synthesized through secondary
metabolism by all plant species, but has been primarily identified in coffee. It is present in many
foods, particularly fruits, vegetables, wine, tea and herbs, such as thyme and oregano, and is widely
consumed in the human diet [12,13]. It has been confirmed that CA, along with its natural and synthetic
derivatives, possesses a variety of pharmacological properties [14], in addition to antibacterial [15–17],
antiviral [18,19], antimalarial [20,21], anti-inflammatory [22,23], antidiabetic [24], cardioprotective [25]
and neuroprotective [26] properties, it has also shown anticancer activity [27–29], including activity
against pancreatic cancer cells [30,31]. Moreover, it has been reported that CA and its derivates interact
synergistically with conventional cytotoxic agents, for example, 5-fluorouracil [32], cisplatin [33],
docetaxel and paclitaxel [34]. Various biological studies that have been carried out over the years have
revealed that the molecular mechanisms underlying CA anticancer effect are connected with decreasing
cell proliferation (antiproliferative effect), increasing intracellular reactive oxygen species (ROS) levels,
changing mitochondrial membrane potential, lipid peroxidation and induction of apoptosis [28,35,36].
CA has strong antioxidant activity [13,37] but, under certain conditions, such as the presence of
transition metal ions, also shows prooxidant properties [38,39]. CA has the ability to cap endogenous
metal ions, for instance, DNA-related copper ions (Cu II). The copper-redox reaction releases reactive
oxygen, which causes DNA damage (oxidative base modifications, strand breaks and DNA adducts)
and induces lipid peroxidation [27,40–42]. Caffeic acid derivatives have also been considered as
selective matrix metalloproteinases (MMP-9 and MMP-2) inhibitors [43–45], express antiangiogenic
activity [46] and suppress DNA methylation [47].

With its broad spectrum of activity and variety of possible pharmacological effects, CA has
been widely used as a template for the development of new derivatives with potential therapeutic
applications [14]. During previous work, our group synthesized a series of caffeic acid derivatives via
a modified Wittig reaction, with variable numbers and positions of free or protected phenolic hydroxyl
groups and a modified carboxyl acid terminal group [48].

In this study, as a continuation of previous work, we investigated the possible anticancer activity
of twelve resynthesized CA derivatives against two pancreatic cancer cell lines: AsPC-1 and BxPC-3
(cells of metastatic and primary origins, respectively), and NHDF (normal human dermal fibroblasts)
cells. Using the MMT assay, we observed specific antiproliferative effects for some of the derivatives
tested and we were able to select two of the most active ones for further study. While the poor water
solubility of these compounds is a challenge for their clinical application, we encapsulated them
into liposomes for delivery to tumor cells (to improve their bioavailability and increased stability).
In general, drug delivery systems have been reported to enhance the efficacy and reduce the toxicity of
anticancer drugs. Long circulating nanocarriers, such as PEGylated liposomes, are well-studied and
very promising carriers, which facilitate preferential drug accumulation in tumors via the enhanced
permeability and retention (EPR) effect, allowing the lowering of the required dose of the drug and
reducing the level of toxic side-effects. The other advantages of using liposomes are the protection of
the drug from the surrounding environment and the prevention of its early degradation, resulting in a
longer circulation time in the blood. All these features result in an improvement in the therapeutic
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index of the encapsulated drugs [49–52]. The PEGylated liposomes generated during this study were
characterized for their physicochemical properties (including size, shape, zeta potential and stability
at 4 ◦C), the ability to promote hemolysis of human erythrocytes and their cytotoxicity and cellular
uptake by tumor cells. We wished to investigate whether the compounds encapsulated as liposomal
formulations had potent anticancer activity against the pancreatic cancer cell lines AsPC-1 and BxPC-3
and were less toxic to normal cells.

2. Materials and Methods

2.1. Chemicals and Reagents

RPMI-1640, alpha-MEM media and the normal human dermal fibroblast cell line
(NHDF) were purchased from Lonza (Lonza, Warsaw, Poland), while fetal bovine serum
(FBS) was from Biomedia (EuroClone by Biomedica, Piaseczno, Poland), GlutaMAX™
(L-alanyl-L-glutamine dipeptide in 0.85% NaCl) and 100× antibiotic-antimycotic were purchased
from Life Technologies (Gibco/Life Technologies, Warsaw, Poland). The BxPC-3 cell line
was purchased from the American Tissue Culture Collection (ATCC, Manassas, VA, USA).
The AsPC-1 cell line was kindly provided by the Institute of Immunology and Experimental
Therapy (Wroclaw, Poland). Nile Red (9-diethylamino-5H-benzo[alpha]phenoxazine-5-one), DAPI
(2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride) and MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) were from Sigma-Aldrich (Poznan, Poland), chloroform, methanol
and DMSO from Archem (Kamieniec Wroclawski, Poland). Soya phosphatidylcholine (SPC)
was purchased from Lipoid GmbH (Ludwigshafen, Germany). 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) was obtained from
Northern Lipids (Vancouver, BC, Canada).

2.2. Caffeic Acid Derivatives Synthesis, pKa and Log D Calculation

Caffeic acid derivatives were resynthesized using a method reported previously [48]. The negative
logarithm of the acid dissociation constant (pKa) and the decimal logarithm distribution coefficient
(Log D) were calculated using MarvinSketch software (version20.12.0, ChemAxon Ltd., Cambridge,
MA, USA).

2.3. Cell Culture

In vitro cell culture procedures were performed under aseptic conditions and cultures were
maintained in an Innova CO-180 incubator (New Brunswick Scientific, Edison, NJ, USA). Pancreatic
cancer cells, namely, BxPC-3 (primary pancreatic tumor) and AsPC-1 (from ascites of a patient
with pancreatic cancer) cells, were cultured in RPMI-1640 medium supplemented with 10% heat
inactivated fetal bovine serum (FBS), GlutaMAX™ and antibiotic-antimycotic. NHDF cells were
cultured in alpha-MEM medium supplemented with 10% heat-inactivated FBS, GlutaMAX™ and
antibiotic-antimycotic. Culture was carried out at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.4. Liposome Preparation

Caffeic acid derivatives encapsulated liposomes were prepared using the dry lipid film and
extrusion method. A 1 mL solution of 10 mg of total lipids in chloroform (SPC:DSPE-PEG2000

95:5 mol/mol) were mixed with 1 mg of caffeic acid esters in methanol. Subsequently, solvents were
removed from the samples via evaporation under a stream of nitrogen-gas to form a homogeneous
lipid film on the flask wall and dried for 2 h at low pressure using a Savant Modulyo lyophilizer
(Thermo Fisher Scientific, Waltham, MA, USA). Then, the lipid film was suspended by addition of 1 mL
of sterile normal saline (0.9% NaCl), with mixing, until it was completely hydrated. The liposomal
suspensions were extruded 6 times through nucleopore polycarbonate filters (Whatman, Maidstone,
UK) with pore sizes of 100 nm, using a Thermobarrel Extruder (10 mL Lipex extruder, Northern Lipids,



Materials 2020, 13, 5813 4 of 19

Burnaby, BC, Canada). During the extrusion procedure, nonencapsulated compounds were separated
from the loaded liposomes and were deposited on the surface of the polycarbonate filter. Empty
liposomes without CA derivatives were prepared in the same manner. In the case of Nile Red loaded
liposomes, 50 µL of Nile Red solution (1 mg/mL) was added additionally to the total lipids.

2.5. Determination of Compound Encapsulation Efficiency (EE)

The lipid concentration was determined by the Stewart assay [53]. The amount of (7) was
determined spectrophotometrically at 290 nm and was calculated from the appropriate calibration
curve according to the method described previously [54]:

EE (%) = CAf(mg/mL)/Lf(mg/mL)/CAi(mg/mL)/Li(mg/mL) × 100 (1)

where CAi(mg/mL)/Li(mg/mL) represents the (caffeic acid derivate)-to-lipid ratio at the point when
the compound was mixed with the liposomes, and CAf(mg/mL)/Lf(mg/mL) is the final (caffeic acid
derivate)-to-lipid ratio of the liposomes.

2.6. Determination of Particle Size and Zeta Potential

The average particle sizes and zeta potentials of the loaded and control (empty) liposomes were
determined by dynamic light scattering at room temperature (25 ◦C) using a ZetasizerNano-ZS particle
size analyzer (Malvern Instruments Ltd., Malvern, UK). Before measurements, all formulations were
diluted 100-fold with 0.9% NaCl. Measurements were performed in triplicate. The polydispersity
index (PdI) was obtained using the instrument’s built-in software.

2.7. Analysis of the Liposomal Morphology by Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) was employed to observe the structure of liposome
samples. Initially, liposomes were diluted and introduced onto a copper grid and dried at room
temperature. Subsequently, samples were stained with 2% uranyl acetate and again dried at room
temperature. The analysis of liposomal morphology was performed using a TESLA BS 540 transmission
electron microscope (Brno, Czech Republic).

2.8. Preliminary Stability Study

The size, PdI and zeta potential of 7-L and control liposomes were measured immediately after
preparation (t = 0) and after storage at 4 ◦C for 35 days.

2.9. MTT Assay

The effect of CA and its derivatives on cell viability was determined using a quantitative
colorimetric MTT assay adapted from Mosmann [55]. Cells were seeded in 96-well plates (5 × 103/well),
in appropriate complete cell culture medium, for 24 h. The cells were treated with caffeic acid
derivatives (in the range of 18.75–150 µM), DMSO (an equivalent volume of DMSO was used as a
negative control, maximal concentration was 0.4% v/v) or liposomal formulations for 72 h. The medium
containing tested chemicals was removed and MTT solution (working solution: stock 0.5 mg/mL was
10 times diluted in medium) was added to the wells, and the plates were incubated for a further 3 h.
Subsequently, the MTT solution was replaced with DMSO (50 µL/well) to dissolve the purple formazan
crystals. Absorbance was measured at 560 nm with a reference wavelength of 670 nm on an Asys UVM
340 Microplate Reader (Cambridge, UK). Results were expressed as the percentage of surviving cells,
with respect to the control (the untreated cells) calculated as:

Cell Viability (%) = (AT/AC) × 100 (2)

where:
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AT = Absorbance of the treatment well (treated cells);
AC = Absorbance of the control well (not treated cells).

IC50 values were calculated using GraphPad Prism for Windows (GraphPad Software, La Jolla,
CA, USA). The degree of selectivity of the CA derivatives against pancreatic cancer cells was expressed
by the selectivity index (SI) where:

SI = IC50 normal cells/IC50 cancer cells (3)

2.10. Red Blood Cell Hemolysis Assay

Hemolytic activity was estimated by measurement of hemoglobin release from human erythrocyte
suspensions after incubation with liposomes, as previously described [56]. 7-L was added in a
volume corresponding to 200 µM concentration in a sample (L was added in an identical volume).
The study protocol was approved by the Bioethics Commission at the Lower Silesian Medical
Chamber (1/PNHAB/2018).

2.11. Cellular Uptake

Cellular uptake of Nile Red loaded liposomes by BxPC3 cells was assessed by fluorescence
microscopy. Cancer cells were seeded onto glass cover slides, placed in 24-well culture plates.
After 48 h incubation, cell culture medium was replaced with medium containing Nile Red labeled
liposomes. The cells were incubated at 37 ◦C for 2 h. Subsequently, cells were washed three times with
PBS (37 ◦C), to remove excess liposomes and fixed for 20 min in 4% paraformaldehyde, washed with
PBS and stained with DAPI. Slides were analyzed using a Leica TCS SP8 confocal microscope
(Leica-Microsystems, Mannheim, Germany) with a HC PL APO CS2 63× oil objective. To excite
Nile Red and DAPI, 561 nm and 405 nm lasers (Leica-Microsystems, Mannheim, Germany) were
used, respectively.

2.12. Statistical Analysis

Data were presented as mean± standard deviation. Statistical analyses were made using GraphPad
Prism software with a one-way ANOVA (Prism 7 for Windows) and Dunnett’s multiple comparisons
test. A p-value equal or less than ≤0.05 was considered as statistically significant.

3. Results

3.1. Characteristics of Compounds (1)–(12)

The modification strategy of CA was related to reduction in the number (compounds (1)–(3),
(7)–(9)), position (compounds (4) and (10)) or addition (compounds (5), (6) and (11)) of free phenolic
hydroxyl groups. Moreover, the terminal carboxylic group was modified by introduction of an ester
bond (methyl ester, compounds (1)–(6)) or reduction of the carbonyl function (acetyl group, compounds
(7)–(11)). The structure modification introduced to compound (12) relied on the substitution of the
3-hydroxyphenyl by the 3-methoxy group and a change of the terminal carboxylic group to methyl
ketone (Table 1).
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Table 1. List of tested compounds, their chemical structures, pKa and Log D values.

Compound Structure pKa Log D pH 7.4

(1)
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of their physicochemical properties, and of the pKa of the molecules. Moreover, based on the pKa

value of the molecule, it is possible to estimate the pH, which ensures the maximum solubility of
the molecule in water, determined by the ionized form of the drug, or its maximum solubility in a
non-polar environment, in the non-ionized form. Compounds (1)–(3), (7)–(9) and (12) had a single pKa

value in the range of 8.87–9.51, while compounds (4) and (10) each exhibited two pKa states, namely,
pKa1 = 9.40, pKa2 = 10.40 and pKa1 = 8.69, pKa2 = 10.04, respectively, whereas compounds (5) and
(11) had three pKa states (Table 1). Based on the pKa values of these series of compounds, it can be
concluded that they all underwent slight ionization in the physiological pH range, which reduces their
solubility in a polar environment. The overall ratio of the ionized and unionized molecular forms
between the polar/non-polar phases at pH 7.4 was described as the decimal logarithm of distribution
coefficient (Log D). The estimated Log D values of compounds (1)–(12) were in the range of 2.07–2.84,
which indicated their moderate lipophilicity. It is noteworthy that Log D values of compounds (1)–(12)
only differ slightly from each other, despite the huge differences in their structures (e.g., a lack of one
hydroxyl group in compounds (1)–(3), or the introduction of a ketone group in compounds (7)–(9)
versus the CA core structure). The key difference in the 1–6 and 7–12 groups of compounds is that the
first contains the methyl ester of caffeic acid derivatives while, in the second group, the ester moiety
prone to hydrolysis is replaced with a stable ketone carbonyl group bonded to two carbon atoms.

3.2. In Vitro Biological Activity against Pancreatic Cell Lines

The purpose of this study was to obtain a preliminary insight into the anticancer activity of a
series of caffeic acid derivatives. In order to determine the in vitro cytotoxicity of the resynthesized
compounds, the activity of CA and twelve derivatives (Table 1), were screened against two human PC
cell lines, BxPC3 and AsPC1, derived from primary and metastatic tumors, respectively. Since we were
also interested in evaluating the degree of selectivity of the synthetized derivatives, we decided to
use normal human dermal fibroblasts as control, healthy, cells. This made it possible to determine
the specificity of the tested substances, in terms of their selectivity index towards pancreatic cancer
cells. The cytotoxicity of the examined compounds was estimated using the classic MTT assay,
which is based on the detection of the activity of oxidoreductive enzymes (mainly mitochondrial
succinate dehydrogenase), which are present only in living, metabolically active cells [55]. During the
experiments, cells were incubated for 72 h in the presence of increasing concentrations of CA and the
series of CA derivatives, in the range of 18.75–150 µM. Tested compounds were dissolved in DMSO,
a solvent broadly used for drug tests, which, in the concentrations tested (≤0.4%), did not influence
cell viability (data not shown). Untreated cells were tested as the control group. The results obtained
for each cell line are presented in Figure 1.

Six out of twelve tested compounds appeared to be more active than CA. In the case of the first
group of tested compounds, the in vitro cytotoxicity test showed that, compared to caffeic acid and
other tested compounds, compound (5) had the highest cytotoxic activity against pancreatic cancer
cells, with low toxicity to control fibroblasts (Figure 1, left). The results presented in Figure 1 indicate
that all compounds included in the second group (7–12) exhibit dose-dependent, anticancer activity
against both pancreatic cancer cell lines in the concentration range tested. What is more, the cytotoxic
activity of the derivatives was greater, compared to CA. Additionally, their cytotoxicity against the
normal cell line was lower compared to cancer cells, which is reflected also in their selectivity indices
(Table 2).



Materials 2020, 13, 5813 8 of 19

1 
 

 
Figure 1 
 

Figure 1. Cytotoxic effects of caffeic acid (CA) and its derivatives (compounds 1–6 and 7–12), on two
human pancreatic cancer cells lines AsPC1 (a), BxPC3 (b) and control NHDF (c) cells, determined by
the MTT assay, after 72 h of incubation.

Table 2. IC50 values calculated from the MTT assay for biologically active caffeic acid derivatives.
Selectivity index (SI) = IC50 of NHDF/IC50 of cancer cell lines.

Compound AsPC1 IC50 (µM) BxPC3 IC50 (µM) NHDF IC50 (µM) AsPC1 SI BxPC3 SI

(5) 42.47 ± 3.57 46.58 ± 3.47 98.82 ± 9.56 2.33 2.12
(7) 18.70 ± 0.24 22.38 ± 2.52 61.15 ± 1.95 3.27 2.73
(8) 19.22 ± 0.72 30.47 ± 4.55 79.70 ± 6.30 4.14 2.61
(9) 25.62 ± 2.17 28.06 ± 3.36 59.18 ± 11.57 2.31 2.11

(10) 35.30 ± 1.28 34.11 ± 1.74 54.57 ± 2.25 1.54 1.60
(11) 18.35 ± 0.74 21.72 ± 1.51 61.73 ± 10.5 3.36 2.84
(12) 37.96 ± 6.12 29.94 ± 5.13 51.48 ± 1.20 1.36 1.72

Quantitatively, the biological activity of the test compounds was expressed as the IC50 (inhibitory
concentration), defined as the concentration that inhibits the growth of cells by 50%, relative to the
control (untreated cells), which is assumed to be 100%. Results regarding the cytotoxicity and selectivity
obtained for the biological active compounds are summarized in Table 2.

Based on the obtained IC50 values, the most active derivatives were indicated. From the first
group, the most active compound was (5), with IC50 values of 42.47 µM and 46.58 µM, respectively,
for the AsPC1 and BxPC3 pancreatic tumor cells, and an IC50 of 98.82 µM for the NHDF normal line
(Table 2). The SI demonstrates the selectivity index and, the greater the SI value is, the more selectively
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this compound acts and, theoretically, would be safer as a drug. An SI value higher than 2 is considered
as selective to malignant cells over normal, healthy, cells [57]. For compound (5), SI values were higher
than 2, proving its selective action towards both pancreatic cell lines.

For the second group, IC50 concentrations for the tested malignant cells were in the range of
18–37 µM. The data showed that compounds (7) and (11) had the lowest IC50 values, compared with
the other compounds (18.70 µM, 22.38 µM and 18.35 µM, 21.72 µM towards AsPC1 and BxPC3 cells,
respectively). Moreover, both showed specificity of action towards cancer cells, which was confirmed
by their respective SI indexes (in the range of 2.73–3.36; Table 2).

3.3. Preparation and Physical Characterization of CA Derivate Loaded Liposomes

Low aqueous solubility of CA derivatives makes administering them at therapeutic
doses very difficult. To overcome this problem, we decided to encapsulate the most active
representatives, compounds (7) and (11) into liposomes. The selected CA derivates were
encapsulated within the phospholipid bilayer of liposomes composed of soybean phosphatidylcholine
(SPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]
(DSPE-PEG2000) (95:5 mol/mol). The prepared formulations were subsequently characterized.
Encapsulation efficiency was found to be 93% for the compound (7) formulation. Due to the high levels
of compound precipitation encountered with compound (11) during liposome preparation, it was
decided to terminate this part of the study and, therefore, we continued our work with compound (7)
alone. We investigated the physicochemical characteristics of this liposomal formulation in terms of
size, PdI, zeta potential, shape and preliminary stability at 4 ◦C. As shown in Table 3, dynamic light
scattering (DLS) results showed that the diameter of liposomes was around 137.33–147.4 nm.

Table 3. Liposome characterization.

Liposomes Diameter (nm) PdI Zeta Potential (mV)

7-L 147.40 ± 2.90 0.27 ± 0.02 −0.08 ± 0.44
L 137.33 ± 7.19 0.24 ± 0.01 −1.69 ± 0.60

7-L—(7) loaded liposomes; L—control, empty liposomes.

The macroscopic appearance of the liposomal suspension was milky and yellow. To visualize the
shapes and morphology of liposomes, transmission electron microscopy was used. TEM image showed
that the 7-loaded liposomes (7-L) were mostly spherical and had a regular shape (Figure 2). Additionally,
we also conducted preliminary stability studies at 4 ◦C. It is worth noting that, after 5 weeks of storage,
no dramatic changes, such as visible aggregation or precipitation, in the appearance of the tested
liposomes occurred. Storage stability was also examined by measurements of size, PdI and zeta
potential, as shown in Figure 2, under the same conditions. Stored liposomes showed some changes in
all parameters, more visible in the case of loaded vesicles. Overall, the obtained results confirmed the
satisfactory stability of the liposomal suspensions during storage.
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3.4. Hemolysis

Hemolysis assays were performed to test the membrane disruptive activity of the 7-L formulation
at a concentration of (7) corresponding to 200 µM. No activity was demonstrated, and the data for both
loaded and unloaded liposomes were at the level of the results obtained for the mechanical control of
the test (erythrocytes in PBS buffer). This suggests that the developed formulations are non-toxic to
red blood cells at the concentration tested.

3.5. Assessment of Liposome Toxicity on the Cell Viability of Human Pancreatic Cancer Cell Lines

To evaluate the anticancer potential of the 7-L liposomal formulation, we investigated its in vitro
cytotoxicity against two human pancreatic cell lines (AsPC1 and BxPC3). During experiments,
cells were incubated for 72 h with the 7-L liposomal formulation and empty control liposomes (without
drug) at the same amounts as the drug loaded ones. The data indicated that the viability of cells treated
with 7-L, was similar to that observed with the free compound (19.44 µM and 24.3 µM, towards AsPC1
and BxPC3 cells, respectively). Moreover, 7-L also showed specificity against cancer cells (SI indexes:
3.32 and 2.65, in the case of AsPC1 and BxPC3 cells, respectively; Table 4). We observed that control
liposomes also had a toxic effect at the highest vesicle concentrations. This concerns especially the
AsPC1 cell line (Figure 3).

Table 4. IC50 values calculated from the MTT assay for the liposomal formulations. Selectivity Index
(SI) = IC50 of NHDF/IC50 of cancer cell line.

Liposomes AsPC1 IC50 (µM) BxPC3 IC50 (µM) NHDF IC50 (µM) AsPC1 SI BxPC3 SI

7-L 19.44 ± 0.83 24.30 ± 1.29 64.50 ± 2.83 3.32 2.65

7-L—(7) loaded liposomes.
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Figure 3. Pancreatic cell viability assessed by the MTT assay. Concentration–cell viability curves for
(a) AsPC1 (b) BxPC3 and NHDF (c) cells treated with different amounts of (7) loaded liposomes (7-L)
and control vesicles without drug (L) for 72 h.

3.6. Cellular Uptake

The next step was to evaluate cellular uptake of the liposomes. For this purpose, liposomes loaded
with fluorescent Nile Red dye were used. Nanoparticle labeling with this hydrophobic dye, which
fluoresces preferentially in non-polar environments, is commonly used for bioimaging studies [58–61].
Cellular uptake and localization were investigated by fluorescence microscopy. For chromosome
staining, a nucleic-acid specific fluorophore, DAPI, was used. The Nile Red fluorescence signal
surrounded the DAPI nuclear stain. Images of the cells observed under transmitted light and
fluorescence channels after 2 h incubation with labeled liposomes revealed that labeled vesicles were
effectively internalized within BxPC3 cells (Figure 4).Materials 2020, 13, x FOR PEER REVIEW 11 of 18 
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4. Discussion

To date, pancreatic cancer is a serious global problem, being one of the most aggressive and
lethal malignancies because of difficulties in diagnosis, early metastasis, recurrence and resistance to
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chemotherapy [2]. Therefore, there is an urgent need to improve PC patient survival rates, which can
be achieved through the development of better diagnostic tools and the discovery of new, effective and
safe drugs. Such drugs may be natural plant substances or their synthetic analogues, created by
structural modification [62,63]. In our previous work we described the synthesis method for a series
of novel CA-derived compounds [48]. The present study aimed to investigate the efficiency of
these compounds for their potential as anticancer agents towards pancreatic cancer cell lines. So far,
many studies demonstrated that CA and its derivatives (among numerous other potential therapeutic
properties) are compounds with potent anticancer effects. In vitro experiments have revealed their
cytotoxic properties inter alia on breast [64,65], ovarian [66,67], colon [68–71], hepatoma [72–74],
melanoma [75–77], prostate [78] and pancreatic [30,31,79] cancer cell lines.

In this study we tested the antiproliferative effect of twelve CA derivates against two pancreatic
cancer cell lines, namely, AsPC1 and BxPC3. Six of the compounds were found to be more active than
non-modified CA. From the first tested group, compound (5) was interesting, in the context of higher
activity compared to the others. This compound has three OH groups. Previous research suggests that
OH groups undergo deprotonation and can react with Cu ions and, consequently, generate ROS and
form a covalent adduct with DNA [27]. It is known that pancreatic cancer cells lines are very sensitive
to compounds generating free radicals, due to the high basal level of ROS in these cells [80–82]. This is
especially relevant to metastatic cells, where this phenomenon is amplified, due to their high metabolic
rate (the Warburg effect) and a higher level of transition metal ions stored in the cytoplasm of these cells
(involved in free radical reactions). This may, in part, account for the specificity of these derivatives for
pancreatic cancer cells.

Among all of the tested compounds, (7) and (11) exhibited the highest effect on cell viability
towards AsPC1 and BxPC3 cells. Moreover, both compounds also showed specificity of action towards
cancer cells, which was confirmed by their SI indexes. This desired cytotoxic effect, in addition to
weaker activity towards normal healthy fibroblasts, which are widely used in the literature as a control
cell line [83,84], suggests that CA derivatives could constitute very promising targets for PC treatment.
What is worth emphasizing, the most active compound, namely 4-(2’, 3’, 4’-trihydroxyphenyl)-3
(E)-buten-2-one, numbered as compound (11), is a new compound described by us in patent application.
In the literature, similar results were observed for another CA derivative, caffeic acid phenethyl ester
(CAPE). CAPE is a well-known natural CA derivative, the main active component of propolis. It has
confirmed cytotoxic, antiproliferative and anticancer properties, and specifically inhibits NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells) and 5-lipoxygenase activity [28,85]. Studies
have revealed that CAPE, at a concentration of 25 µg/mL (87 µM), reduced the proliferation rates of the
MIAPACa-2 and PANC-1 pancreatic cancer cell lines by 65.7% and 93.0%, respectively, after a 48 h
incubation period [79]. Similar inhibition was observed for BxPC3 cells (80.4%) treated with 10 µg/mL
(35 µM) CAPE [31]. Moreover, researchers have also proven that the combined use of CAPE and
cabazitaxel, a compound used for treating PC patients resistant to paclitaxel, enhanced the cabazitaxel
effect in vivo and in vitro [70]. Interestingly, recently published data suggest that CAPE can protect
normal pancreatic tissue against damage associated with the administration of cisplatin [86].

The intensity of a drug’s biological activity primarily depends on its bioavailability. Low water
solubility of the CA derivates, similar to many synthetic and herbal compounds, is a limiting feature
of their applicability as pharmaceutical products. A possible strategy to overcome this problem is
the development of suitable delivery systems, which may provide better bioavailability and facilitate
delivery of the compound to the target site at the appropriate concentration in vivo. In the literature, a
number of different delivery strategies and carriers for CA and derivates have been described [87],
e.g., solid lipid nanoparticles [88], calcium phosphate nanocomposites [89] and cyclodextrin-based
hydrogels [17]. We chose liposomes as the optimal carrier system for our studies, since we were able to
solubilize hydrophobic molecules that partition within the lipid bilayer. Several liposomal formulations
carrying caffeic acid and their derivatives have also been described in the literature. For example,
caffeic acid was successfully encapsulated in liposomes for topical applications, to improve skin
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penetration through the stratum corneum and to enhance transdermal delivery, thereby developing a
promising drug delivery vehicle to slow down photooxidative damage to the skin [90].

We encapsulated compounds (7) and (11) as the most active representatives of the series of
molecules tested, into liposomes composed of soybean phosphatidylcholine (SPC) and DSPE-PEG2000

in a ratio of 95:5 (mol/mol). Pegylation has been proven to prolong the blood circulation time
of liposomes and to reduce mononuclear phagocyte system uptake [91], while SPC is a natural
biocompatible element. Compound (7) is hydrophobic, with a high affinity to the liposomal bilayer,
in contrast to compound (11), which we failed to encapsulate. In the future, we will focus on elaboration
of liposomes with more rigid bilayers. The most important part is to improve on the release ratio of the
encapsulated compound so it can be made bioavailable to cancer cells, while maintaining the favorable
pharmacokinetics of the compound at the same time. Pancreatic cancer is characterized by the high
amount of extracellular matrix present in the cancerous lesion, hindering drug penetration into the
tumor mass [92]. Carriers, characterized by their nano size and stealth effect (long circulation time) are
able to accumulate to some degree in the PDA tissue by the so-called EPR effect. This effect can be
further increased by several approaches, such as, hyperthermia, pretreatment with TNFα, PEGylated
hyaluronidase, a low dose of angiogenesis inhibitors or losartan [52,93–97].

The presence of (7) within the liposome bilayer caused significant changes, resulting in a larger
size and PdI of 7-L, compared to empty liposomes. The encapsulation efficiency of compound (7) was
high (93%). Moreover, as expected, the 7-L liposomes in the TEM images appeared slightly smaller
than the sizes determined from DLS measurements. This is due to the fact that DLS measurements
were performed for liposomes in solution, while the TEM technique was used to estimate the size of
dried vesicles, which were smaller than in the hydrated state.

Another aspect that was analyzed in our study was the stability of the obtained vesicles. Stability is
a very important factor that must be carefully considered during the design and development of new
formulations. A possible explanation for the trends observed during the stability studies is the influence
of encapsulated (7) upon the liposome bilayer. In order to determine if both loaded and unloaded
vesicles disrupt human red blood cells, hemolysis experiments were conducted. These experiments
were performed at a concentration of (7) that represented a concentration almost ten times greater
than the estimated IC50 for both cancer cell lines. As expected, no hemolytic activity was observed in
our studies, supporting the conclusion that both nanoformulations are safe and compatible with red
blood cells.

Further, to investigate internalization and the cytotoxic effect of the 7-L liposomes, we performed
a cellular uptake study and monitored cytotoxicity via the MTT assay. We confirmed that, after 2 h
of incubation, Nile Red labeled liposomes were effectively internalized by pancreatic cancer cells.
We observed that empty liposomes also had a toxic effect at the highest vesicle concentrations. Such an
effect for plain SPC has been already described in the literature [98] and can be explained by an increase
in the fluidity of the mitochondrial membrane and the release of cytochrome c and reduction of the
cholesterol-to-phospholipid ratio and increase of lipid disorder in the cell membrane, which can lead to
reduction in cell viability [98,99]. 7-loaded liposomes inhibited cell proliferation in a dose-dependent
manner. Under our experimental conditions, the IC50 for liposomal (7) was comparable to free
compound (7) administered in DMSO. However, the use of liposomes as carriers enables application
of molecules characterized by poor water solubility, such as (7), to biological fluids, like blood, which,
consequently, should provide higher bioavailability of such compounds and result in an increase in the
desired biological effects after intravenous administration.

In summary, this study revealed the potential of a CA derivative loaded in a liposomal formulation
as a suitable candidate that could become a promising anticancer drug formulation for the treatment of
human pancreatic cancer.
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attenuates changes in pancreatic tissue damage biomarkers induced by cisplatin. Can. J. Physiol. Pharmacol.
2020, 98, 296–303. [CrossRef]

87. Yordanov, Y. Caffeic acid phenethyl ester (CAPE): Cornerstone pharmacological studies and drug delivery
systems. Pharmacia 2019, 66. [CrossRef]

88. Dikmen, G.; Guney, G.; Genc, L. Characterization of solid lipid nanoparticles containing caffeic acid and
determination of its effects on MCF-7 cells. Recent Pat. Anti-Cancer Drug Discov. 2015, 10, 224–232. [CrossRef]

89. Son, K.D.; Kim, Y.J. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human
osteosarcoma. Biomater. Res. 2017, 21, 13. [CrossRef]

90. Katuwavila, N.P.; Perera, A.D.L.C.; Karunaratne, V.; Amaratunga, G.A.J.; Karunaratne, D.N. Improved
Delivery of Caffeic Acid through Liposomal Encapsulation. J. Nanomater. 2016, 2016, 9701870. [CrossRef]

91. Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical
applications, existing and potential. Int. J. Nanomed. 2006, 1, 297–315.

92. Weniger, M.; Honselmann, K.C.; Liss, A.S. The Extracellular Matrix and Pancreatic Cancer: A Complex
Relationship. Cancers 2018, 10, 316. [CrossRef] [PubMed]

93. Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug Delivery: Is the Enhanced Permeability
and Retention Effect Sufficient for Curing Cancer? Bioconjug. Chem. 2016, 27, 2225–2238. [CrossRef]
[PubMed]

94. Whatcott, C.J.; Han, H.; Posner, R.G.; Hostetter, G.; Von Hoff, D.D. Targeting the tumor microenvironment in
cancer: Why hyaluronidase deserves a second look. Cancer Discov. 2011, 1, 291–296. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.canlet.2014.10.043
http://dx.doi.org/10.1093/carcin/bgt154
http://dx.doi.org/10.1016/j.cbi.2010.05.018
http://dx.doi.org/10.1111/j.1464-410X.2004.04936.x
http://dx.doi.org/10.1007/s11523-015-0388-3
http://dx.doi.org/10.3109/10715761003667554
http://www.ncbi.nlm.nih.gov/pubmed/12649190
http://dx.doi.org/10.1007/s10585-005-4919-7
http://www.ncbi.nlm.nih.gov/pubmed/16475022
http://dx.doi.org/10.1016/j.bioactmat.2020.10.004
http://www.ncbi.nlm.nih.gov/pubmed/33134609
http://dx.doi.org/10.2217/nnm-2017-0337
http://www.ncbi.nlm.nih.gov/pubmed/29873597
http://dx.doi.org/10.1080/01635581.2013.776693
http://www.ncbi.nlm.nih.gov/pubmed/23659443
http://dx.doi.org/10.1139/cjpp-2019-0374
http://dx.doi.org/10.3897/pharmacia.66.e38571
http://dx.doi.org/10.2174/1574892810666150115124413
http://dx.doi.org/10.1186/s40824-017-0099-1
http://dx.doi.org/10.1155/2016/9701870
http://dx.doi.org/10.3390/cancers10090316
http://www.ncbi.nlm.nih.gov/pubmed/30200666
http://dx.doi.org/10.1021/acs.bioconjchem.6b00437
http://www.ncbi.nlm.nih.gov/pubmed/27547843
http://dx.doi.org/10.1158/2159-8290.CD-11-0136
http://www.ncbi.nlm.nih.gov/pubmed/22053288


Materials 2020, 13, 5813 19 of 19

95. Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on
Cancer Therapy. Front. Mol. Biosci. 2019, 6, 160. [CrossRef] [PubMed]

96. Eikenes, L.; Tufto, I.; Schnell, E.A.; Bjørkøy, A.; De Lange Davies, C. Effect of collagenase and hyaluronidase
on free and anomalous diffusion in multicellular spheroids and xenografts. Anticancer Res. 2010, 30, 359–368.
[PubMed]

97. Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.;
Han, X.; Adstamongkonkul, P.; et al. Angiotensin inhibition enhances drug delivery and potentiates
chemotherapy by decompressing tumour blood vessels. Nat. Commun. 2013, 4, 2516. [CrossRef]

98. Sotto, A.D.; Paolicelli, P.; Nardoni, M.; Abete, L.; Garzoli, S.; Giacomo, S.D.; Mazzanti, G.; Casadei, M.A.;
Petralito, S. SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural
Sesquiterpene β-Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery
Design. Pharmaceutics 2018, 10, 274. [CrossRef]

99. Ribas, V.; García-Ruiz, C.; Fernández-Checa, J.C. Mitochondria, cholesterol and cancer cell metabolism.
Clin. Transl. Med. 2016, 5, 22. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3389/fmolb.2019.00160
http://www.ncbi.nlm.nih.gov/pubmed/32118030
http://www.ncbi.nlm.nih.gov/pubmed/20332440
http://dx.doi.org/10.1038/ncomms3516
http://dx.doi.org/10.3390/pharmaceutics10040274
http://dx.doi.org/10.1186/s40169-016-0106-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Caffeic Acid Derivatives Synthesis, pKa and Log D Calculation 
	Cell Culture 
	Liposome Preparation 
	Determination of Compound Encapsulation Efficiency (EE) 
	Determination of Particle Size and Zeta Potential 
	Analysis of the Liposomal Morphology by Transmission Electron Microscopy (TEM) 
	Preliminary Stability Study 
	MTT Assay 
	Red Blood Cell Hemolysis Assay 
	Cellular Uptake 
	Statistical Analysis 

	Results 
	Characteristics of Compounds (1)–(12) 
	In Vitro Biological Activity against Pancreatic Cell Lines 
	Preparation and Physical Characterization of CA Derivate Loaded Liposomes 
	Hemolysis 
	Assessment of Liposome Toxicity on the Cell Viability of Human Pancreatic Cancer Cell Lines 
	Cellular Uptake 

	Discussion 
	References

