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Abstract
Mathematical models are increasingly designed to guide experiments in biology, biotechnology, as well as to assist in medi-
cal decision making. They are in particular important to understand emergent collective cell behavior. For this purpose, the 
models, despite still abstractions of reality, need to be quantitative in all aspects relevant for the question of interest. This 
paper considers as showcase example the regeneration of liver after drug-induced depletion of hepatocytes, in which the 
surviving and dividing hepatocytes must squeeze in between the blood vessels of a network to refill the emerged lesions. Here, 
the cells’ response to mechanical stress might significantly impact the regeneration process. We present a 3D high-resolution 
cell-based model integrating information from measurements in order to obtain a refined and quantitative understanding 
of the impact of cell-biomechanical effects on the closure of drug-induced lesions in liver. Our model represents each cell 
individually and is constructed by a discrete, physically scalable network of viscoelastic elements, capable of mimicking 
realistic cell deformation and supplying information at subcellular scales. The cells have the capability to migrate, grow, and 
divide, and the nature and parameters of their mechanical elements can be inferred from comparisons with optical stretcher 
experiments. Due to triangulation of the cell surface, interactions of cells with arbitrarily shaped (triangulated) structures 
such as blood vessels can be captured naturally. Comparing our simulations with those of so-called center-based models, 
in which cells have a largely rigid shape and forces are exerted between cell centers, we find that the migration forces a 
cell needs to exert on its environment to close a tissue lesion, is much smaller than predicted by center-based models. To 
stress generality of the approach, the liver simulations were complemented by monolayer and multicellular spheroid growth 
simulations. In summary, our model can give quantitative insight in many tissue organization processes, permits hypothesis 
testing in silico, and guide experiments in situations in which cell mechanics is considered important.
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1  Introduction

Driven by the insight that multicellular organization cannot 
be explained from the viewpoint of biochemical processes 
alone and flanked by recent development of methods in imag-
ing and probing of physical forces at small scales, the role of 
mechanics in the interplay of cell and multicellular dynamics 
is moving into the main focus of biological research (Fletcher 
and Mullins 2010). Cells respond on mechanical stress both 
passively and actively; hence, an understanding of the growth 
and division behavior of proliferating cells is not possible 
without properly taking into account the mechanical compo-
nents underlying these processes. Mathematical models are 
being established as an additional cornerstone to interpret 
biological observations and provide information to clinicians 
entering in their decisions (Rodriguez et al. 2013; Karolak 
et al. 2018). This requires high reliability of models and 
quantitative simulations.

A clinical relevant example is the regeneration of liver 
after drug-induced toxic damage after paracetamol (acetami-
nophen, APAP) or tetrachloride (CCl4) overdose. These drugs 
generate a characteristic central necrotic hepatocyte-depleted 
lesion in each liver lobule, which is the smallest repetitive 
functional and anatomical unit of liver. Hoehme et al. (2010) 
used confocal laser scanning micrographs to set up a real-
istic spatial-temporal agent-based model of a liver lobule. 
In their model, hepatocytes were represented as individual 
units (agents) parameterized by biophysical and biological 
quantities and able to move as a consequence of forces on 
the cell, and of the cells’ own micro-motility. The cells were 
approximated as spheres (the shape a cell adopts in isola-
tion), while the forces between them are simulated as forces 
between the cell centers, which is why these models are often 
termed “center-based model” (CBM). Center-based models 
have proven useful to mimic tissue organization processes, for 
example, in vitro and in early development (see, e.g., Drasdo 
and Höhme 2005; Drasdo et al. 2007; Geris et al. 2010; Buske 
et al. 2011) and have been shown to provide a good framework 
for multiscale simulations in tumor development (e.g., Ramis-
Conde et al. 2009; Delile et al. 2017). For liver, the CBM 
predicted that active uniform micro-motility forces would not 
suffice to close the characteristic necrotic tissue lesions gener-
ated in the center of each liver lobule but further mechanisms 
as directed migration and oriented cell division along closest 
micro-vessels (named hepatocyte-sinusoid alignment, HSA) 
would be necessary to explain the observed regeneration sce-
narios. HSA has been subsequently be experimentally vali-
dated. To obtain these results, extensive simulated sensitivity 
analyses had been performed varying each parameter of the 
model within its physiological range (Drasdo et al. 2014). In 
order to arrive at such conclusions, the model must for a given 
set of parameters be able to realistically and quantitatively 

predict the outcome of the regeneration process. The model 
can then be viewed as a mapping from a set of parameters to a 
set of macroscopic observables such as the size of the necrotic 
lesion or the cell density in the lobule.

A major drawback of center-based models is that they are 
based on the calculation of pairwise forces (usually Hertz 
force, Johnson–Kendall–Roberts force or related) between 
cell centers, which lack accuracy in dense cell aggregates 
under compression where the interaction force of a cell with 
one neighbor impacts on its interaction force with another 
neighbor. A consequence of a naive use of pairwise forces is 
the absence of a notion of cell volume. Hence, simulations 
with quasi-incompressible cells characterized by a Poisson 
ratio of � ≈ 0.5 can lead to unrealistic multicellular arrange-
ments and thus to false predictions. Such situation may occur 
during liver regeneration after APAP or CCl4 intoxication 
where many cells enter the cell cycle almost at the same time 
close the drug-induced lesion. It also occurs in the interior 
of growing multicellular spheroids. Model corrections have 
been proposed to circumvent this shortcoming, but so far a 
fully consistent approach for center-based models has been 
out of reach as this requires to consistently relate cell–cell 
interaction forces and cell shape. In center-based models, 
cell shape can only be estimated for very small cell defor-
mations. Approximating cell shape by Voronoi-tessellation 
Schaller and Meyer-Hermann (2005) permits to calculate a 
cell volume, but the interaction forces are in most situations 
inconsistent with the cell–cell contact areas resulting from 
this tessellation (Van Liedekerke et al. 2015).

The shortcomings of the CBM call for a model type that 
consistently relates cell strain and stresses in cells within 
multicellular assemblies. A large category of models called 
lattice-free, force-based “deformable cell models” (DCMs) 
has been developed to meet these needs (Rejniak 2007; 
Sandersius and Newman 2008; Jamali et al. 2010; Odenthal 
et al. 2013; Van Liedekerke et al. 2019). Their lattice-based 
counterparts, called cellular Potts models (CPM), are popular 
in biomedical modeling, partially because of their straight-
forward implementation. The dynamics in CPM is princi-
pally stochastic in nature and is based on the minimization of 
energy functionals (Hamiltonian) and Monte Carlo sampling 
over a vast number of lattice sites (e.g., Graner and Glazier 
1992; van Oers et al. 2014; Palm and Merks 2013). Force-
based methods use equations of motion, which facilitates pre-
senting both stochastic and deterministic components. Early 
work in this field has treated multicellular spheroids, vari-
ous cellular patterns in developing ductal carcinoma in situ, 
invasive tumors as well as normal development of epithelial 
ductal monolayers and their various mutants (e.g., Galle et al. 
2005, Rejniak 2007; Drasdo et al. 2007; Dillon et al. 2008; 
Rejniak and Anderson 2008; Sandersius and Newman 2008). 
Deformable models have also been developed to study the 
dynamics of erythrocytes in blood flow (Hosseini and Feng 
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2009; Fedosov et al. 2010; Van Liedekerke et al. 2013; Fed-
osov et al. 2011), cellular rheology (Sandersius et al. 2011), 
or even impact of tissue (Van Liedekerke et al. 2010, 2011). 
Recent approaches focus more and more on the explicit 
representation of subcellular details such as a nucleus, and 
cytoskeleton (Jamali et al. 2010; Chen et al. 2018). Other 
DCM types, such as the vertex model, focus intrinsically 
more on epithelial sheets (Fletcher et al. 2014).

In this paper, we present an agent-based, high-resolution 
deformable cell model in three dimensions allowing to simu-
late cell growth and tissues. The model is particularly suited 
to study the interplay between cell growth, mechanical vari-
ables and tissue architecture and is here employed to mimic 
tissue regeneration in a part of a liver lobule. Our cell model 
builds upon earlier work by Odenthal et al. (2013) and Van 
Liedekerke et al. (2019), a DCM type whereby the cell surface 
is triangulated and the nodes are connected by viscoelastic 
elements, representing the cell membrane and actin cortical 
cytoskeleton and homogeneous cytoplasm. In the work of 
Odenthal et al., it was shown that this DCM could quanti-
tatively mimic the adhesion dynamics of red blood cells on 
a surface, yet cell growth and division were not envisaged. 
Here, we enrich the model with those features, enabling us 
to model various multicellular systems. DCM types with cell 
division capabilities have been created by a number of authors 
(e.g., Jamali et al. 2010; Tanaka et al. 2015; Milde et al. 2014), 
whereby in Jamali et al. (2010) the mechanical processes lead-
ing to cytokinesis have been explicitly mimicked. Most of 
these models are two-dimensional. Cytokinesis, during which 
a cell splits into two separated daughter cells, completes the 
mitosis phase. Mitosis and cytokinesis together take about 
1 h compared to the duration of the cell cycle ∼ 24 h in most 
mammalian cells, hence are very short. Accurate simulation of 
the cytokinesis process in three-dimensional triangulated cells 
turns out to be challenging with regard to both the algorithms 
and computational efforts. For these reasons, our DCM1 mim-
ics the cell division event in one step, yet ensuring that the 
daughter cells precisely fill the space of the mother cell.

Our model has basically two key advantages. First, the 
model can be parameterized by physical and biokinetic 
parameters. By direct comparison with optical stretcher exper-
iments (Guck et al. 2001), which cause cell deformation as a 
response of an externally applied stress by a laser beam, we 
determine the type of the cell’s viscoelastic elements and the 
magnitude of its parameters. In addition to the basic cortical 
triangulated model, we have created the possibility for each 
cell to mimic an internal cytoskeleton by connecting the cell 
cortex and the cell nucleus by viscoelastic elements. However, 
as we have found that the deformation of cells can quantita-
tively be captured even without explicit representation of cell 

nuclei, we perform the simulations in this paper discerning 
only the cell boundary elements. Second, the model design 
is such that each cell can interact with any arbitrarily shaped 
objects that are either represented by a triangulated surface 
(rigid of flexible, see, for example, Fig. 11), which can also be 
generated by external specialized software, or represented by 
a mathematical surface. The model is not restricted to simu-
late elementary structures such as spheroids or monolayers. In 
liver architecture, relevant for our final application example, 
cells interact with other cells, but also with a complex network 
of micro-vessels (named liver sinusoids).

The approach facilitates performing hybrid tissue simula-
tions where DCM cells can interact with center-based cells. 
Generally, hybrid simulations are useful if simulations of 
an entire tissue need to be performed in a reasonable time 
(González-Valverde and García-Aznar 2018). Hybrid modeling 
combining DCM and center-based model, conceptually similar 
to the hybrid strategy proposed in Kim et al. (2013), enables us 
to simulated part of the system as higher spatial resolution and 
thereby “zoom” into spatial substructures of interest. To ensure 
that the center-based model behaves “on average” as the DCM, 
which is a priori not the case due to the shortcomings of the 
CBM approach as discussed above, we here propose a simple 
correction scheme in which the interaction forces of the CBM 
are calibrated from simulations with the DCM. In this way, 
the DCM can be used to verify the systems behavior of the 
CBM for small cell populations, while the CBM can be used to 
simulate large cell populations. We demonstrate this by direct 
comparison of a CBM and a DCM in the same liver lobule.

This paper is structured as follows. The technical details of 
the DCM and the CBM (and force calibration) are explained 
in Sect. 2. Following, we first study the single cell dynam-
ics of the DCM. Each model parameter, biomechanical and 
biokinetic, can be directly associated with a physical prop-
erty, i.e., can either be directly measured or be calibrated by 
comparison to single cell or multicellular experiments. This 
makes it possible to identify physiological parameter ranges. 
We here compare directly optical stretcher real to in silico 
(with the DCM) experiments (Sect. 3.1.1) to identify the 
nature of viscoelastic elements in the DCM and their param-
eters. Next, we consider classical in silico experiments of two 
adhering cells being mechanically separated to identify the 
model parameters for cell–cell adhesion. We verify whether 
the contact forces and stress distribution on the cell surface 
predicted by our model are physically plausible (Sect. 3.1.2). 
These experiments can generally serve as means to calibrate 
the parameters of a single cell accurately. Secondly, we con-
sider the growth and proliferation of the cells in the classical 
settings of growing monolayer and multicellular spheroids, 
which have been studied in numerous experiments and mod-
eling works (Sect. 3.2). Finally, we perform simulations of 
regeneration dynamics after intoxication of liver with CCl4/
APAP using the DCM and compare simulation results to 

1  From now on, we will use the term “DCM” uniquely for our trian-
gulated deformable cell model.
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both experimental data and simulation results with the CBM 
similar as in Hoehme et al. (2010). We analyze the results 
and basic differences in terms of dynamics and tissue archi-
tecture in Sect. 3.3. The cell shapes obtained by simulations 
with the DCM can in principle readily be compared with 
high-resolution confocal microscopy images (e.g., Morales-
Navarrete et al. 2019). Together with developments in tissue 
clearing (Tainaka et al. 2016) this might open up the pos-
sibility to infer the stresses on the cells in full 3D volume 
reconstructions from laser scanning confocal micrographs of 
the cell shapes. Alternatively, the elastic properties of emer-
gent tissues simulated with the model can be compared to 
elastographic images (Sack et al. 2013).

2 � Mathematical models

In this section, we define the specific agent-based mathe-
matical models that we use later in specific applications. In 
agent-based models of multicellular assemblies, every cell ( = 
agent) is represented as an individual separated object that 
is able to move, grow, divide, and die. The cell can interact 
with other cells as well as other objects in its environment. 
As such, emerging effects of these many interactions can be 
studied. We explain the two types of single cell-based models 
used in this work: first the deformable cell model (DCM), and 
then we recapitulate the center-based model (CBM).

2.1 � Deformable cell model (DCM)

In our DCM, the cell surface is triangulated with viscoe-
lastic elements along each edge of each triangle. This cre-
ates a global deformable structure with many degrees of 
freedom (Van Liedekerke et al. 2010; Odenthal et al. 2013; 
Van Liedekerke et al. 2019; Guyot et al. 2016). Throughout 
this paper, we do not represent the cell organelles sepa-
rately, but by a homogeneous isotropic viscoelastic material 
(see Fig. 1a). Nevertheless, our model in principle permits 
the explicit representation of organelles, e.g., by triangulat-
ing them in the same way as the cell surface and connecting 
the structures by viscoelastic elements (Fig. 1b).

We found that the homogenized approximation suf-
ficed as the explicit representation of cell organelles was 
both not needed and computationally costly for the ques-
tions studied in this paper. The viscoelastic elements and 
parameters of the cell surface are calibrated such that they 
simultaneously account for the mechanical response of the 
cell membrane and cell cortex, in particular the cortical 
cytoskeleton (CSK), i.e., forces that represent in-plane and 
bending elasticity of the cortex and the plasma membrane. 
Moreover, we account for a force combining contributions 
from the cytoplasm and the nucleus in response to cell 
compression. Cell–cell interactions induce external forces, 
which may be repulsive or adhesive, or both.

Cells in our model can migrate, die, grow, and divide 
when their volume has doubled. When a cell divides, two 

Fig. 1   a The force-based deformable cell model (DCM) and its basic 
components and functionality used in this work. A cell is represented by 
a viscoelastic triangulated shell (cortex) containing a compressible cyto-
plasm (center). The cells can grow until they split into two new cells, 
eventually creating a clump of adhering cells (top). Each nodal point 

of the cell moves according to an equation of motion in response to a 
force �

i
 . The cells can interact with rigid triangulated bodies (such as 

here a capsule encapsulating them) or simple geometric bodies such as 
a center-based model (bottom). b Same model showing prototype of the 
model where a nucleus and internal cytoskeleton is included explicitly
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new cells are created that fit in the envelope of the mother 
cell and all aforementioned forces are automatically 
invoked on the daughter cells (see Fig. 3). Apoptosis can 
be modeled as well. The details of the model components 
are explained in the following sections.

2.1.1 � Forces and equations of motion

Movement and deformation of a cell can be calculated from 
a force balance summarized in the following equation of 
motion for each node i of the triangulation:

The terms denote (1) node–node friction of nodes belong-
ing to the same cell, to mimic damping by the CSK of two 
nodes move relatively to each other; (2) node–node fric-
tion of nodes belonging to different cells (alternatively, the 
first two terms as they have the same form could be casted 
into one term keeping in mind that the friction coefficients 
among nodes of the same cell and of a cell with another 
cell may differ); (3) friction between nodes of the cell and 
extracellular matrix (ECM) or liquid; (4) nodal forces due 
to CSK in-plane elasticity; (5) nodal forces due to CSK 
bending elasticity; (6) nodal volume force terms penalizing 
deviations from the cells’ intrinsic volume; (7) nodal forces 
due to membrane area conservation; (8) nodal contact forces 
consisting of a repulsive and adhesive part due to interac-
tions with a substrate or other cells; and (9) nodal active 
migration forces.

Inertia terms have been neglected as the Reynolds num-
bers of the medium circumventing the cells are very small 
(Odell et al. 1981); this approximation is common for cell 
movement (see, e.g., Van Liedekerke et al. 2015; Drasdo 
et al. 2007). More specifically, the matrices �nn and �ns rep-
resent node–node friction and node substrate (ECM) friction, 
respectively. �i denotes the velocity of node i. The first term 
and the second term on the rhs. represent the CSK in-plane 
nodal elastic forces �e,ij and the bending force �m,i . The third 
term on the rhs. is a volume force �vol,i and controls the cell 
compressibility. We assume that cells are compressible on 
longer timescales controlled by in- and outflow of water. As 
water transport volume flow rates are small, on short time-
scales cell volume can be only slightly compressed by com-
pression of the elastic structures inside the cell such as the 
cytoskeleton; hence, the cell exhibits a near incompressible 
behavior. On longer timescales, the cell response may become 
more complex due to intracellular adaptations (Monnier et al. 

(1)

∑

j

�
c
nn,ij

(�i − �j)
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(1)

+
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(3)

=
∑

j

�e,ij

⏟⏟⏟
(4)

+
∑

m

�m,i

⏟⏟⏟
(5)

+ �vol,i
⏟⏟⏟

(6)

+
∑

T

�T,i

⏟⏟⏟
(7)

+�rep,i + �adh,i

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(8)

+ �mig,i

⏟⏟⏟
(9)

.

2016). The force �T,i accounts for resistance against isotropic 
expansion of the cell membrane. The two terms ( �adh,i , �rep,i ) 
account for potential adhesion and repulsion forces on a local 
surface node, exerted by an external object such as other trian-
gulated cells or rigid structures (see Fig. 1a). �mig,i describes 
the migration forces acting on each node to result in a global 
movement of the cell. We now give more detail on how these 
forces and friction components can be calculated.

Friction terms (1–3): The matrices �c
nn

 , �cc
nn

 and �ns in Eq. 1 
represent node–node friction and node substrate friction ten-
sors, respectively. Friction between two nodes of the same cell 
mimics damping in the cortical CSK. Nodal friction terms with 
the cytosol are not explicitly accounted for but are partially 
incorporated in the node–node friction terms. Node-node fric-
tion from different cells the mimics the friction when their 
membranes slide along each other. Individual friction coef-
ficients for two nodes are denoted as �k where k can refers to 
the nature of the contact (i.e., nodes on the same cell; nodes of 
two different cells; friction of a node with extracellular matrix; 
friction of a node with a liquid). Furthermore, we distinguish 
between friction in parallel ( �|| ) and normal ( �

⟂
 ) direction to 

the relative motion. If the parallel and normal coefficients are 
not equal (anisotropy), the friction tensor becomes

with �ij = (�j − �i)∕||�j − �i|| , where ri , rj denote the position 
of the nodes of a cell. I is the 3 × 3 identity matrix, while ⊗ 
denotes the dyadic product. The nodal cell–substrate fric-
tion �ns can represent viscous resistance with liquid, ECM, 
capillaries or membranes. If the cell is spherical and the 
medium is isotropic, then �ns is a diagonal matrix.2 It can 
be reasonable to split the friction coefficients—which have 
unit Ns/m—into a product of a friction coefficient per sur-
face area (unit Ns∕m3 ) and the shared surface area associ-
ated with the interaction of the two nodes (unit m2 ). The 
nodal areas are calculated in the contact model (See Contact 
force model). In case of friction of a node i with an exter-
nal medium, this surface area is the Voronoi region area of 
that node (from the dual graph of the surface triangulation), 
which is determined by the neighboring nodes (see Van 
Liedekerke et al. 2017).

Cytoskeleton in-plane elasticity—term (4) in Eq. 1: The 
CSK in-plane elasticity is controlled by the viscoelastic ele-
ments. The elastic forces in the network of a cell cortex are 
in this model mimicked by linear springs with spring stiff-
ness ks . In combination with the node–node friction coeffi-
cients �int which endow the terms (1) of Eq. 1, the elements 
become viscoelastic. Complex viscoelastic elements can be 
constructed by combining several springs and dashpots or 
using nonlinear springs.

(2)�nn,ij = 𝛾
⟂
(�ij ⊗ �ij) + 𝛾||(I − �ij ⊗ �ij),

2  In this paper, we assume that friction with ECM is isotropic and 
variations in cell shape do not alter the friction significantly.
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Let us first focus on a nodal subsystem in Eq. 1 in which 
the spring and friction terms are schematically positioned 
in parallel, representing a solid like behavior so that the ele-
ments after release of an external force relax back to its orig-
inal length. This is called the Kevin–Voigt Element (KVE) 
(Fig. 5d). Consider the internal force Fint originating from 
the Kelvin–Voigt viscoelastic element between node nodes 
i and j (for simplicity �|| = �

⟂
= �).

where l0
ij
= ||�0

ij
|| = ||�0

j
− �

0
i
|| and lij = ||�ij|| are the initial 

(cell at rest) and actual lengths between the nodes, and 
�ij = �i − �j is their relative velocity. The force balance equa-
tion with external forces �ext (external forces can be for 
instance adhesion forces between nodes, see further) 
demands that �ext + �int = � , hence:

Contrary, a Maxwell element (ME) simulates a fluid-like 
extension of the cortex. In the ME, the friction element and 
spring element are schematically positioned in series (see 
Fig. 5d), which is why an external force leading to an exten-
sion of the element is damped but removal of the force does 
not lead to relaxation of the element back to its original 
length characteristic for a fluid behavior. The equation of 
the internal force in the element �int (assuming isotropic 
constants) reads

This equation contains a derivative of the force, which can 
be approximated by �̇int = (�int(t) − �int(t − Δt))∕Δt . From 
the force balance between external and internal forces, we 
find now:

This equation thus involves the evaluation of the internal 
force on the previous time step.3

The linear spring constant ks for a sixfold symmetric tri-
angulated lattice can be related approximately to the cortex 
Young modulus Ecor with thickness hcor by Boal (2012)

(3)
�int,ij = �e,ij − ��ij

= − ks(lij − l0
ij
)�ji − ��ij,

(4)�ext,ij − ks(lij − l0
ij
)�ji − ��ij = �.

(5)
�̇int,ij

ks
+

�int,ij

𝛾ME

= �ij.

(6)�ext,ij(t) +
�int,ij(t − Δt)

1 + ksΔt∕�ME

+
kΔt

1 + ksΔt∕�ME

�ij = �.

Furthermore, the total elastic in-plane CSK forces can be 
related to a local in-plane stress using the virial formula:

where Ni is the coordination number of node i, Fint,ij is the 
total elastic force between i and j.

We here do not assume an active contractile state of the cell. 
Cell contractility could be included in the model as an extra 
active elastic force term by, e.g., changing the element rest length 
l0 (see Odell et al. 1981), but this is not considered in this paper.

CSK bending force—term (5) in Eq. 1: The bending resist-
ance from the cortex is incorporated by the rotational resist-
ance of the hinges determined by two adjacent triangles 
T1 = {ijk} and T2 = {ijl} (see Fig. 2b). This permits to define 
the bending moment M:

where kb is the bending constant specified below and � is 
the angle between the  normal vectors to the triangles �1, �2 
, determined by their scalar product (�1�2) = cos(�) . �0 is 
the angle of spontaneous curvature. The moment M can be 
transformed to an equivalent force system �m,z ( z ∈ {ijkl} ) 
for the triangles T1 and T2 where for T1 we can compute 
�m,i = M∕l1�1 using l1 as the distance between the hinge 
of the triangle pair and the point i, and similar expres-
sion for �m,l . The forces working on nodes j, k must fulfill 
�m,i + �m,j + �m,k + �m,l = 0 to conserve momentum. The 
bending stiffness of the cortex is approximated by

where � is the Poisson’s ratio of the cortex.
Volume force—term (6) in Eq. 1:
The nodal contact forces with the cytosol are in the standard 

model accounted for by the volume forces. These regulate the 
volume changes according to the applied pressure and the bulk 
modulus property KV of the cell. The compressibility of the cell 
depends on volume fraction of water in the cytosol, the CSK vol-
ume fraction and structure, and the compressibility of the orga-
nelles. In addition, it may be influenced by the permeability of the 
plasma membrane for water, the presence of caveolae (Sinha et al. 
2011), and active responses in the cell. We calculate the internal 
pressure in a cell by the logarithmic strain for volume change:

(7)ks ≈
2√
3
Ecorhcor.

(8)�i =

√
3

Ni

�

j∈Ni

Fint,ij

lij
,

(9)M = kb sin(� − �0)

(10)kb ≈
Ecorh

3

12(1 − �2)
,

(11)p = −KV log

(
V

V0

)
,

3  Alternatively, the solution of Eq. (5) can be expressed analytically 
be means of an integrating factor leading to 
F(t) = e

−k
s
t∕�

ME

[
∫ t

0
k
s
v(t�)e−kst

�∕�
ME dt

� + C

]
 where C is an integration 

constant. However, this equation would have to be equally discretized 
for integration.
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whereby V is the actual volume and V0 is the refer-
ence volume, i.e., the volume of the cell not subject to 
compression forces. For small deviations of V from V0 , 
p ≈ KV(V − V0)∕V0 . Within our model, the volume V of 
the cell is computed summing up the volumes of the indi-
vidual tetrahedra that build up the cell. The nodal force is 
obtained by multiplying the pressure with the nodal Voro-
noi region area Si (see Van Liedekerke et al. 2017), i.e., 
�vol,i = pSi�

n where �n  is the normalized curvature vec-
tor computed for that node (see contact force model).

Equation 11 expresses isotropic compression only. As 
KV ≫ Ecorhcor∕Rc (see Tinevez et al. 2009), KV controls the 
overall compressibility of the cell while the mechanical stiff-
ness of the cortex plays a minor role herein.

In case the internal CSK would be explicitly represented by 
internal structural elements not considered in the simulations 
of this work, those elements would contribute to both volume 
compression and shear forces.

The membrane area conservation force—term (7) in Eq. 1: 
A lipid bilayer membrane resists to expansion of its area, but 

only little to shear forces. This can be expressed by the force 
magnitude:

Here kmem is the area compression stiffness and A0 , A are the 
reference and the current surface areas of the cell, respec-
tively. These can be obtained by summing all the individual 
triangle areas, i.e., A =

∑
k ak of the cell surface, where ak 

is the surface area of a triangle Tk (see Fig. 2b). Note that A0 
is not necessarily constant as the cell can grow. The direc-
tion of the force �Tk

 is from the barycenter of each triangle’s 
plane outwards. The parameter kmem for area conservation 
forces in the membrane is obtained by rescaling the area 
compression modulus KA with the vertex resolution l0:

Cell–cell contact model forces—terms (8) in Eq. 1: Whereas 
in a CBM, cells interact through central forces described 
by (modified) Hertz or JKR theory for adhesive spheres, 

(12)FT = kmem(A − A0)∕A0.

(13)kmem ≈ KAl
0.

Fig. 2   a, b Cartoon of adhering 
cell and detail of the force ele-
ments acting in the cell surface 
triangulation. c Projection of a 
triangle pair ( T ,T ′ ) belonging 
to different cells to compute 
the cell–cell interaction force 
�adh on a 2D plane for illustra-
tion. Note that in the (2D) 
projection, a triangle in 3D 
gives only two nodes, whereas 
the circumscribing spheres are 
represented as circles ( C,C′

) each with well defined radii. 
d Simulation snapshot of adhe-
sion between a CBM and a 
deformable cell model (DCM). 
The color bar is according to 
membrane tension (see Eq. 8)
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in DCM the interaction forces need to be defined for each 
node individually, thereby endowing representation of local 
surface heterogeneities. This can be achieved by pairwise 
potential functions (Van der Waals, Morse) between nodes 
which mimic the effect of short-range repulsion and long-
ranged attraction forces of molecules (Tamura et al. 2004; 
Rejniak and Anderson 2008; Sandersius and Newman 2008; 
Jamali et al. 2010). While straightforward to implement, this 
approach poses some problems with respect to the scalability 
and calibration of the parameters for these potentials. Fur-
thermore, pairwise potentials are not efficient in avoiding 
unwanted interpenetration of two approaching cells. The 
alternative approach followed in this work (which largely 
avoids these problems) is based on Maugis–Dugdale theory. 
This has been successfully applied to predict red blood cell 
spreading dynamics on surfaces (Odenthal et al. 2013). The 
Maugis–Dugdale theory for adhering bodies is a generaliza-
tion of the JKR theory for spheres (Maugis 1992). It cap-
tures the full range between the Derjaguin–Muller–Toporov 
(DMT) zone of long reaching adhesive forces of a soft homo-
geneous isotropic elastic sphere and small adhesive deforma-
tions of the Johnson–Kendall–Roberts (JKR) limit of a hard 
homogeneous isotropic elastic sphere of short interaction 
ranges. Here, we assign each triangle of the cell surface with 
a circumscribing sphere reflecting the local curvature. Two 
triangles belonging to different cells can interact by collision 
of their assigned spheres. To compute the magnitude of these 
interactions, we use Maugis–Dugdale stress formula.

In our model, Maugis–Dugdale theory is applied to a dis-
crete system of triangles, which constitute the cell surface. 
This assumes a quasi-continuous distribution of cadherin 
bonds at the cell contact area.4 Because the cell curvature 
is not constant as it would be for a perfect sphere, we locally 
estimate the curvature from the triangulated structure (see 
Fig. 2c) using the discretized Laplace–Beltrami operator, 
which is an approximation function to associate a mean cur-
vature vector to a discretized surface or boundary curve as 
an alternative to the approximation by the angle between the 
surface normal vectors (Drasdo and Forgacs 2000). In this 
way every triangle of the cell can be associated with a local 
curvature vector �i for which a circumscribing sphere can be 
defined. An interaction between two cells defines several pair-
wise triangle–-triangle interactions ( T , T ′ ). One pair of trian-
gles defines a pair of circumscribing spheres ( C,C′) with radii 
determined by the curvatures, and a common contact plane to 
which their triangles are projected (Fig. 2c, dashed red line).

The local stress at the contact, which depends on the 
radius of both spheres and the adhesion energy can then 

be computed using the adhesive Maugis–Dugdale stress 
component:

In this formula, r is the distance from the contact point, a 
is the effective contact radius (pure Hertz contact) and c 
is the radius of the adhesive zone (see Fig. 2, bottom). We 
then compute the Tabor coefficient (Johnson and Greenwood 
1997):

where Ê and R̂ are the reduced elastic moduli and radius 
of the two objects in contact.5 The tension �0 is the maxi-
mum adhesive tension from a Lennard-Jones potential and 
is related to the specific adhesion energy W by W = h0�0 . 
Here h0 is the typical effective adhesive range that reflects 
the attractive cutoff distance between the bodies. We set 
h0 = 2 × 10−8m in all the simulations (Leckband and 
Israelachvili 2001; Odenthal et al. 2013). After this, c can 
be computed from m = c∕a for which holds:

On the other hand, the repulsive part is given by the Hertz 
pressure:

The total stress distribution between the two spheres is thus 
pa + pr . The total interaction force �adh,i + �rep,i between a 
pair of triangles is obtained by integrating this stress using 
standard Gauss quadrature rules over the surface area com-
mon of the two triangles that have been projected on the 
contact plane. Once the force is known, it is distributed onto 
the nodes of both triangles, with the total force on the first 
triangle opposite in sign to the one of the second, to con-
serve total momentum. Note that for each triangle which has 
a contact area A with another triangle, each node associated 
with this triangle acquires a contact area A / 3. For more 
details about the implementation, see Odenthal et al. (2013) 
and Smeets et al. (2014, 2019).

Importantly, this interaction model also permits to simu-
late interactions between a triangulated body and a smooth 

(14)pa =

{
−

�0

�
arccos

(
2a2−c2−r2

c2−r2

)
if 0 ≤ r ≤ a

−�0 if a ≤ r ≤ 0.

(15)𝜆 = 𝜎0

(
9R̂

2𝜋WÊ2

)1∕3

,

(16)

𝜆

2

�
4a3Ê

3𝜋WR̂2

�2∕3�
(m2 − 2) sec−1 m +

√
m2 − 1

�

+
4𝜆2

3

�
4a3Ê

3𝜋WR̂2

�1∕3�
(m2 − 2) sec−1 m − m + 1

�
= 1.

(17)pr =
2Ê

𝜋R̂

√
a2 − c2.

4  We assume here a constant and homogeneous adhesion field. 
However experiments have pointed out that adhesion bounds are 
more point-like and can reinforce over time (Pawlizak et  al. 2015). 
Although this consideration could be addressed with our model, it 
remains out of the scope of this paper.

5  Ê is given a large value compared to the cell Young modulus to pre-
vent interpenetration of triangles.
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surface such as spheres or planes having fixed curvature. 
In such case, the contact establishes simply between the 
sphere assigned to a triangle, and the sphere that represents 
the object as a whole. This allows to implement a relatively 
simple algorithm that defines the handshake between a DCM 
and a CBM (see example Fig. 2d).

Cell migration force—term (9) in Eq. 1: The migration 
force �mig is usually an active force, representing the random 
micro-motility of a cell. Migration of cells involves complex 
mechanisms such as filopodia formation and cell contractil-
ity, and may be modeled as such (see, e.g., Tozluoğlu et al. 
2013; Kim et al. 2018), but for the sake of simplicity we do 
not resolve the migration in such detail and instead lump the 
different mechanisms into one net force, which is homoge-
neously distributed to the nodes the cell. For specific appli-
cations, the forces might be in-homogeneously distributed. 
In the absence of influences that impose a certain direction 
or persistence, it is commonly assumed that the migration 
force is stochastic, formally resulting in �mig = �

ran , with 
⟨�ran⟩ = � , and ⟨�ran(t)⊗ �

ran(t�)⟩ = �𝛿(t − t�) , where 
� is an amplitude 3 × 3 matrix and relates to the diffusion 
tensor � of the cell. As cell migration is active, depending 
on the local matrix density and orientation of matrix fib-
ers, the autocorrelation amplitude matrix � can a priori 
not be assumed to follow a fluctuation–dissipation (FD) 
theorem. However, “measuring” the position of a cell in the 
simulations the position autocorrelation function might be 
experimentally used to determine the diffusion tensor using 
⟨((�(t + 𝜏) − �(t))⊗ (�(t + 𝜏) − �(t))⟩ = 6�𝜏  , and � be 
calibrated such that the numerical solution of the equation 
of motion for the cell position reproduces the experimental 
result for the position autocorrelation function. For exam-
ple, in a homogeneous environment � can be casted into a 
form formally equivalent to the FD theorem, leading to a kBT
-equivalent for cellular systems, that is controlled by the cell 
itself (Van Liedekerke et al. 2015; Drasdo and Hoehme 2012).

On the other hand, if cells migrate in response to a morpho-
gen gradient, an additional directed force �mor into the direction 
of the concentration gradient of the morphogen may occur. The 
total migration force for the cell reads then �mig = �

ran + �
mor . 

In the liver lobule example simulations (Model III in Sect. 3.3), 
we assume that only “leader” cells have the capability of 
directed migration. These are the cells in the lobule that are 
located at the interface to the pericentral necrotic lesion.

Note finally, we assume here momentum transfer to the 
ECM by the ECM friction and active micro-motility term 
but we do not model the ECM explicitly.

2.1.2 � Cell growth and mitosis

During progression in the cycle, a cell grows by acquiring 
dry mass and water, eventually doubling its volume. This 
volume growth in both, interphase consisting of the G1 , S 

and G2 phase, and mitosis phase may be described by an 
increase in the radius of the cell. We assume here that for 
a cell in free suspension during growth stage, the reference 
volume of the cell V0 gradually increases and is updated 
according to:

where � is the growth rate for simplicity assumed to be con-
stant during the cycle, which can be justified if we look at 
timescales much larger than one cell division (Van Liede-
kerke et al. 2019). � is chosen such that the volume of a cell 
doubles in the experimentally observed cell cycle duration.

Cell growth and division in the CBM (see, e.g., Drasdo 
et al. 2007) is straightforward to implement, but involved for 
the DCM, requiring a multistep procedure.

Cell growth: During cell growth, the volume of the cell 
is increasing (Fig. 3a, b). We model this by an update of 
the reference volume V0 following Eq. 11, update of the 

(18)V0(t + Δt) = V0(t) + �Δt,

Fig. 3   Model algorithm of the cell cycle of deformable cells: a, b cell 
growth (double volume by increasing the radius). b Choose division 
direction randomly (assign nodes to one side). c Add two default cells 
as daughter cells to center of masses. Project nodes of the daughter 
cells to surface of division plane if they intersect it. A sub-simula-
tion is run to come rapidly to situation D. d After the sub-simulation, 
mother envelope is removed. e Division stage finished: two mechani-
cally relaxed daughter cells
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reference values of the cell surface triangle  areas, and 
update of the spring lengths. The reference triangle area A0 
for each triangle, and spring rest length l0 for each viscoelas-
tic element are recomputed every time step Δt according to 
A0(V0(t + Δt)∕V0)

2∕3 and l0(V0(t + Δt)∕V0)
1∕3 , respectively. 

The coordinated update of V0 , A0 and l0 in the algorithmic 
implementation of the model is necessary to ensure that no 
additional volume penalty forces or other artifacts are gener-
ated during growth. Note that at this moment, growth inhibi-
tion due to excessive external mechanical stress (e.g., Drasdo 
and Hoehme 2012) can be easily included in our model, but 
in the scope of this paper we do not consider it further.

Cell death: When a cell dies, it can be either removed 
instantly from the simulation, or gradually shrink (lysis). 
Algorithmwise, lysis can be regarded as the inverse of 
the growth process. However, during lysis the mechanical 
parameters of the cell may change. The process may con-
tinue until a certain cell volume has been reached, below 
which the cell cannot longer shrink. Finally, a lysed cell 
may be removed completely from the simulation (e.g., by 
phagocytosis).

Cell division: During cytokinesis, the continuous shrink-
ing of the contractile ring, together with the separation of 
the mitotic spindle, gradually creates the new daughter cells. 
After mitosis the cell has split up in two adhering daughter 
cells. An analytical approach describing this process can be 
found in Turlier et al. (2014). An approach with 2D deform-
able cells has been previously proposed (e.g., Jamali et al. 
2010). In a first attempt, we had implemented such an algo-
rithm in 3D but this turned out to be prone to numerical 
instabilities, as triangles on the side of the contractile ring 
tended to be extremely stretched while nodes accumulated 
at the position of the contractile ring. Hence, simulations 
of these processes in DCM in 3D would require a complex 
re-meshing process for the surface to leave the local stresses 
unchanged but avoiding numerical instabilities. An imple-
mentation of these steps turned out to be not only challeng-
ing, but also computationally time consuming.

As we are merely interested in long-term effects (i.e., 
several hundreds of cell divisions), and as the cytokinesis 
is a short process compared to the duration of the entire cell 
cycle, we avoid these particular tedious intermediate steps 
in our model, and instead directly create two new adhering 
cells that are enclosed by the mother cell just before its divi-
sion as pictured in Fig. 3.

First, a division plane is chosen, which determines the 
direction into which the cells divide. The label of the divi-
sion plane on the surface of the mother cell can be associ-
ated with the position of the contractile ring. The orientation 
of this plane may be chosen randomly or into a preferred 
direction, and splits the mother cells into two halves each 
bounded by part of the surface of the mother cell and the 
division plane (see Fig.3b, c); note that the mother cell in 

the figure is spherically shaped, but the algorithm works for 
arbitrary cell shapes as well). Then, the centers of the two 
future daughter cells on both sides of the plane are computed 
as the two centers of mass of the nodes that form each of the 
two halves, and each of those two centers of mass is associ-
ated with the center of a new spherically shaped daughter 
cell (Fig. 3c). The radii of the daughter cells are chosen such 
that they are both contained by the mother cell. To ensure 
the daughter cells are not overlapping at this stage, those 
nodes that would overlap with the division plane are pro-
jected back on the division plane. Each of the daughter cells 
has now as border approximately a half of the mother cell 
envelop and the division plane that it shares with the other 
daughter cell. At this stage however, the radii (and volumes) 
of the daughter cells are not yet those they each should have, 
i.e., half of the volume of the mother cell.

To achieve this, a sub-simulation6 is performed where the 
cell volume and strut lengths of the viscoelastic network are 
reset to their reference values for a cell half the size of the 
mother cell. During the sub-simulation, we artificially set all 
friction coefficients of the daughter cells to very small values. 
This “inflates” the two daughter cells rapidly. On the other 
hand, we momentarily freeze the positions of the nodes of the 
mother cell. As a consequence, the two cells will rapidly adapt 
their shapes to the limiting shape of the mother cell “cocoon” 
and the division plane. The repelling interactions between the 
triangulated envelop of the mother cell and daughter cells 
ensure that the latter stay inside. We thus arrive in this step 
at a system of three triangulated cells: one fixed mother cell, 
and two encapsulated daughter cells with forming a shape 
approximately that of mother cell just before cell division.

After the sub-simulation, all the friction coefficients are 
reset to their normal values, the division plane is discarded 
and the daughter cells start adhering to each other because 
the mutual adhesion forces are invoked. The mother cell 
envelop is removed from the simulation and the daughter 
cells interact again with their environment. The system can 
relax slowly toward a mechanical equilibrium (Fig. 3d) over 
a time span equal to the mitosis phase duration.

2.2 � Center‑based model (CBM)

Center-based models (CBM) are well-established modeling 
approaches where cells have the same features as in DCM, 
but the cell shape is approximated as a simple geometrical 
object. The cell shape is not explicitly modeled but only 
captured in a statistical sense. The cells are represented by 
homogeneous elastic and adhesive spheres (see Fig. 1a, bot-
tom), and interact through pairwise forces (e.g., Hertz, JKR), 

6  A sub-simulation means that it runs in parallel and does not add up 
to the total simulation time (time is kept constant). The duration of a 
sub-simulation is very short, of the order of 10 s.
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which are computed from a virtual overlap of both cell geom-
etries. The equation of motion is similar to that of DCMs, 
yet the forces are here directly applied to the cell centers 
(for details, see Sect. 2.3). During division, two new cells 
are created next to each other that replace the mother cell. 
In our work, we will use the CBM for comparative runs in 
the simulations for liver lobule regeneration (Hoehme et al. 
2010), see Sect. 3.3.

2.3 � Forces, equations of motion and cell division

We here only briefly recapitulate the basic components of 
CBM: for more detailed information, we refer to literature (see, 
e.g., Drasdo and Höhme 2005; Drasdo and Hoehme 2012; Van 
Liedekerke et al. 2015). In CBM, cells are usually represented 
as spheres. The equation of motion for a cell i reads:

For the same reasons as for the DCM, inertia is neglected as 
cell movement occurs. The first term on the lhs. denotes the 
friction of cells with the substrate or extracellular matrix, 
the second term cell–cell and—in simulations of the regen-
erating liver lobule as explained in the introduction of this 
paper—cell-sinusoid friction forces. Sinusoids are modeled 
in this work as immobile chain of slightly deformable 
spheres (hence �j = 0 for sinusoidal elements j) with the 
radius equal to the sinusoidal radius found experimentally 
(Hammad et al. 2014). For cell–cell friction, the velocities 
�j will generally be not zero. �int

ij
 denotes interaction forces 

on cell i from repulsion or adhesion with other cells j or 
static blood vessel cells (see Sect.  3.3). The force �sub

i
 

reflects adhesive/repulsive interactions with a flat substrate 
or wall. �mig

i
 denotes the total migration force which has a 

random part and may also have a directed term (see explana-
tion DCM). The friction terms involve tensors for the 
cell–cell friction ( �cc

ij
 ) and cell–substrate friction ( �cs

i
 ). The 

friction tensors are computed in the same way as for the 
DCM, with the nodes of the DCM being replaced by the 
actual cell centers in the CBM (Drasdo and Hoehme 2012).

The cells in CBM interact by pairwise forces having a 
repulsive and adhesive part, which are characterized by a 
function of the geometrical overlap �ij = Ri + Rj − dij . As in 
Chu et al. (2005), we assume here that cell adhesion forces 
can be described by Johnson–Kendal–Roberts (JKR) model, 
approximating cells by isotropic homogeneous sticky elastic 
bodies that are moderately deformed if pressed against each 
other. The interaction force is computed by

(19)�
cs
i
�i +

∑

j

�
cc
ij
(�i − �j) =

∑

j

�
int
ij

+ �
sub
i

+ �
mig

i

(20)Fint
ij

=
4Ê

3R̂

[
a(𝛿ij)

]3
−

√
8𝜋WÊ

[
a(𝛿ij)

]3
.

The contact radius a in Eq.  20 allows to compute the 
cell–cell contact area, and can be obtained from Pathmana-
than et al. (2009):

In the latter equations, Ê and R̂ are defined as

with Ei and Ej being the Young’s moduli, �i and �j the Pois-
son numbers and Ri and Rj the radii of the cells i and j, 
respectively.  W = ρm Wb is the specific  surface adhe-
sion energy obtained by multiplying the surface density of 
adhesion molecules ρm with the adhesion energy Wb stored 
in a single adhesive bond. Note that the Young moduli in 
the center-based model should be chosen such that they cor-
respond as much as possible to the elastic properties of the 
DCM. In particular, we warrant here that for a CBM’s Young 
modulus and Poisson’s ratio, E = KV∕3(1 − 2�) where KV 
is the compression modulus of the DCM cell (Sect. 2.1). 
Note that for a CBM, the elastic properties of the cortex and 
membrane cannot be identified a priori.

During the cycle the intrinsic volume of a mother cell 
doubles before it splits into two daughter cells. The intrin-
sic volume is defined by the volume of the cell if it would 
be undeformed and uncompressed. Its true volume in case 
it interacts with other cells or structures cannot be exactly 
tracked as the CBM does mostly not permit to calculate 
the volume of cells interacting with other cells. Like in the 
DCM, we are assuming constant growth rate during the 
cell cycle and the intrinsic volume Vi of cell i is updated 
every time step Δt as in Eq. 18.

If the cell passed a critical volume Vcrit , the cell under-
goes mitosis and two new cells with volume Vcrit∕2 are 
created. In case the cell grows to twice its original value to 
divide as considered throughout this work, Vcrit = 2V0. A 
simple version of the division algorithm consists of plac-
ing directly two smaller daughter cells in the space origi-
nally filled by the mother cell at the end of the interphase 
(Schaller and Meyer-Hermann 2005; Galle et al. 2005). 
When the two daughter cells are created, the JKR inter-
action force will push away the two daughter cells until 
mechanical equilibrium is reached. If the space filled by 
the mother cell is small, which is often the case for cells in 
the interior of a cell population, the local interaction forces 
occurring after replacing the mother cell by two spherical 
daughters can adopt large (unphysiological) values leading 
to unrealistic large cell displacements. This might be cir-
cumvented by intermediately reducing the forces between 
the daughter cells (see below). Alternatively, cells could 

(21)𝛿ij =
a2

R̂
−

√
2𝜋W

Ê
a.

Ê =

(
1 − 𝜈2

i

Ei

+
1 − 𝜈2

j

Ej

)−1

and R̂ =

(
1
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+
1

Rj

)−1

,
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in small steps be deformed during cytokinesis into dumb-
bells before splitting (Hoehme et al. 2010). In this work, 
we pursue the simpler approach as it resembles the cell 
division algorithm we use for the DCM.

2.3.1 � Corrections to JKR contact forces

As mentioned above, center-based models suffer from a 
number of major artefacts, often ignored in simulations.

The most striking is that common pairwise contact forces 
(type Hertz, JKR, etc.) and contact areas become largely inac-
curate when cells are densely packed and become jammed and 
compressed. This problem discussed in Van Liedekerke et al. 
(2015); Van Liedekerke et al. (2019) is comparable to the pack-
ing problem in liquid foams and emulsions as described in 
Höhler and Weaire (2018), Höhler and Cohen-Addad (2017). 
In densely packed cell aggregates, the deformation a cell, say 
cell i, experiences as a consequence of interaction with one 
of its neighbors, say cell j can be so large, that it affects the 
interaction cell i has with another neighbor cell, say cell k ≠ j . 
In that case the approximation of considering the interaction 
forces between the pair cell i and cell j as independent of the 
interaction force between the pair cell i and cell j becomes 
inaccurate. As a consequence, even an incompressible cell 
characterized by Poisson ratio � = 0.5 in the JKR force model 
(Eq. 20) will be compressed if surrounding cells are pushed 
toward it. In such a situation, cell volume and cell–cell contact 
area are only poorly approximated by the JKR force model.

Voronoi tessellation of the positions of the cells can esti-
mate the individual cell volumes (and hence predict realistic 
pressure forces) (Bock et al. 2010; Schaller and Meyer-Her-
mann 2005). However, in the attempt to correct the unrealis-
tic contact forces in the center-based model upon large com-
pression forces, we here propose a simple calibration step in 
which we use DCM simulations to estimate contact forces 
between cells. The DCM does not have the aforementioned 
problem because the shape and cell volume are determined 
at high spatial and temporal resolution. As such, there is no 
notion of geometrical overlap in DCM cells. A small clump 
of DCM cells is compressed quasi-statically while monitor-
ing the contact forces as function of the distances between 
the cell centers (see “Appendix 1”, Fig. 12b). During com-
pression, a stiffening of the contacts can be clearly observed. 
Performing an equivalent experiment with CBM using the 
JKR law results in a significant underestimation of the con-
tact forces (Fig. 12b). To correct these, we partially follow 
the procedure as outlined in Van Liedekerke et al. (2019). As 
in this work, we keep the original JKR contact law form but 
modify the apparent modulus Ei → Ẽi of the cell as the cells 
approach each other, by gradually increasing it in Eq. 20 as 
the cells get more packed. The challenge lies in determining 
Ẽi as a function of the compactness of the spheroid. We try to 
estimate the degree of packing around one cell by using the 

distances between that cell and its neighbors, introducing a 
function that depends on the local average of the distances 
d̃i =

∑
j d̃ij∕N (with d̃ij = 1 − dij∕(Ri + Rj) and N is the total 

number of contacts7) to each of the contacting cells j, noticing 
that the cell–cell distances differ only very slightly. We here 
considered the case where all cells all have the same elastic 
modulus; for interacting cells of different parameters, the pro-
cedure might have to be adapted. Different to Van Liedekerke 
et al. (2019) we do not take into account the effective volume 
reduction of the CBM cells, because we assume that cells are 
not as heavily compressed. The simulated force curves of the 
DCM could well be reproduced with the CBM for the follow-
ing simple polynomial function of 4th order:

in where a0 = Ei and, a1 is a fitting constant. The best 
fit to the DCM contact force is shown in Fig. 12a, with 
a1 = 4 × 106 . However, we note that the contact stiffness 
generally depends on the number of neighbors a cell has. In 
this experiment, every cell had initially 8 contacting neigh-
bors, yet this number evolves to approximately 12 as the 
compression progresses, which is what would be expected 
from the Euler theorem for volume tessellation.

A side effect of this calibration method is that high repul-
sive forces may arise during cell division, when two new cells 
are created and positioned close to each other. To limit these 
effects, we apply the above formula in a such way, that the con-
tact stiffness becomes gradually larger over a time period just 
after division, which we choose about ∼ 1∕10 of the cell cycle 
(roughly the duration of mitosis phase; however, smaller dura-
tions would also be possible), reaching the maximal value after 
this period. This is similar as what has been used in Galle et al. 
(2005) to avoid repulsion force cues, and ensures that cells will 
not separate abruptly during division. The period gives time to 
the cells to evolve to a local mechanical equilibrium, and can 
be seen as the analog of the relaxation period in the division 
algorithm in the deformable cell model (see Sect. 2.1.2). We 
have verified that small variations on this relaxation period did 
not influence the simulations results significantly.

3 � Results

3.1 � Single cell experiments

3.1.1 � Calibration of DCM parameters from optical stretcher 
experiments

Classical experiments such as optical stretchers, optical 
tweezers, and micro-pipetting techniques are used to observe 

(22)Ẽi(d̃i) = a0 + a1d̃
4
i
,

7  Note that d̃ij would correspond to the sphere-sphere overlap in the 
standard CBM.
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the mechanical behavior of individual cells and can be used 
to estimate the physical range of the DCM viscoelastic 
network model parameters (see, e.g., Odenthal et al. 2013; 
Guyot et al. 2016; Fedosov et al. 2011). Here, we choose the 
optical stretcher experiment where, as the experiment is per-
formed in suspension, represents a type of ground state and 
thus an excellent situation for the calibration of the mechani-
cal parameters. Therefore, the optical stretcher experiment is 
mimicked in silico with a DCM. In the optical stretcher, two 
laser beams in opposite direction and faced to each other trap 
a cell in suspension (see Fig. 4a). The diffracted laser beams 
exert a surface force on the cell’s membrane and cortex, 
deforming it toward the beam direction. Increasing the laser 
power yields a higher optical stretching force. At the same 
time, the deformation along two perpendicular directions 
is measured using image analysis, yielding information on 
cell shape. We refer to Guck et al. (2001, 2005) and Grosser 
et al. (2015) for more details of the setup and conditions in 
such an experiment.

New data of optical stretcher experiment were generated 
using MDA-MB-231 breast cancer cells. These cells had 
an average radius of 8.8 ± 1.3 μm ( N = 100 samples). Actin 
staining further revealed average approximate cortex thick-
ness of hcor ∼ 500nm (Fig. 4b).

In each experiment, the laser beams were applied during 
a time interval of a few seconds, in which the cell continues 
to deform. Thereafter, the cell relaxation behavior period 
was monitored for several seconds. The long axis (Z) and 
short axis (Y) lengths changes over time are derived from 
analyzing the images (see data Fig. 5; the X-axis and Y-axis 
are by rotation symmetry with regard to the Z-axis assumed 
to be equally long). Two laser powers were considered 
( P0 = 900mW and P0 = 1100mW ), with an applied stretch-
ing time of two seconds and a monitoring of the relaxation 

behavior of two seconds. Because of the large biological 
variability, for each individual experiment the measurement 
has been taken with a minimum of about 100 cells.

In a first step, we identified some parameters and/or their 
ranges by comparison to published references.

An initial spherical deformable cell was created with a 
total of N = 642 nodes (test runs indicated that further spa-
tial refinement was not required). The cells were immersed 
in a medium with viscosity � being close to that one of 
water. We approximate the cell-medium friction coefficients 
for each note needed to determine term (3) in Eq. (1) by 
�ns = �liq∕N = 6��R∕N  . This approximation ensures that 
for a spherical cell of radius Rc modeled by N nodes at its 
surface, the friction coefficient is precisely as predicted by 
the Stokes equation.

Determination of the force terms (4) and (5) in Eq. 1 
requires determination of the elastic modulus of the cell 
cortex. Because we did not have information on the elas-
tic properties of the MDA-MB-231 cells, we adopted a 
nominal value for the elastic modulus of the cell cortex 
Ecor ∼ 1 kPa based on different cell types (see Tinevez 
et al. 2009; Brugués et al. 2010). Applying Eqs. 7 and 
10, which relate the elastic moduli to the parameters of 
the coarse-grained model of the CSK, the nominal cortical 
stiffness constants in the model are thus ks ∼ 4 × 10−4 N∕m , 
kb ∼ 1 × 10−17 N/m (see Sect. 2.1, Eqs. 3 and 10). To deter-
mine the compression force of the cell represented by 
term (6) in Eq. (1), we need to know the cell compression 
modulus KV , which is still subject of debate. For instance, 
Delarue et al. (2014a, b) conclude from experiments with 
growing spheroids under pressure that cells are compress-
ible with compression moduli of the order of 10 kPa. On 
the other hand, the Monnier et al. (2016) find individual cell 
compression moduli of several orders of magnitude higher 

Fig. 4   a Sketch of the experi-
mental setup with a trapped 
cell in an optical stretcher. b 
Top: image of unstretched and 
stretched MDA-MB-231 cell. 
Bottom: actin-stained image of 
a MDA-MB-231 cell indicating 
cell cortex actin cytoskeleton. 
c Surface forces profile due to 
laser is visualized (red arrows) 
on a triangulated surface of the 
deformable cell. The Z-axis 
(long axis) is aligned with the 
laser beam, whereas the X- and 
the Y-axis give the direction of 
the short axes during defor-
mation. �L is the nodal force 
induced by the laser power
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(1 MPa) than the one reported above. Yet, Monnier et al. 
have measured this over short time period and accordingly 
they further state in their paper that on longer timescales, 
the compression modulus might differ from that value may 
due to adaptation of the cell. In the work of Tinevez et al. 
(2009), the cytoplasm compression modulus is estimated as 
± 2500 Pa. Although this is not the compression modulus 
of the whole cell, it indicates that if cells are able to expel 
water through the aquaporins on longer timescales, this may 

be a good estimate of KV . We here adopted this value but we 
note that in the simulations for the optical stretcher, we did 
not find any significant influence on the results during the 
time course of the experiment when KV was varied within 
100 Pa to 10000 Pa , see “Appendix 2”.

Term (7) of Eq. (1) represents the effect of bilayer com-
pression modulus KA (see Eq. 12). For pure lipid bilayers, 
about 0.2N∕m has been reported, while in case of a plasma 
membrane of a cell, much lower values have been measured, 

Fig. 5   a, b Comparison of 
the simulated MDA-MB-231 
cell deformation with the 
experimental data in an optical 
stretcher, using laser powers of 
900mW and 1100mW . a The 
model was first fitted using a 
Kelvin–Voigt model (KVE) 
and assuming temperature 
dependent friction coefficients 
for the cytoskeleton. b The 
model then was fitted assum-
ing a modified Maxwell model 
(MME) but using the same 
temperature dependence as for 
KVE. For sake of clarity, the 
error bars are only shown for 
some data points, and only for 
the P0 = 1100mW case. The 
errors bars on the data are quite 
large, indicating a high biologi-
cal variability. c Temperature 
dependence of damping coef-
ficients, using model fit for 
DCM, compared to Arrhenius’ 
law using an activation energy 
close to the value reported in 
Kießling et al. (2013). d Sche-
matic representation of nodal 
force elements with springs and 
dampers. KVE, Kelvin–Voigt 
element; ME, Maxwell element; 
MME, modified Maxwell ele-
ment
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likely due to invaginations and inclusions of other mole-
cules in a regular cell membrane. In our model, we chose 
KA = 0.8mN∕m (Brugués et al. 2010).

In the work of Ananthakrishnan et al. (2006), it was sug-
gested that the cortical actin cytoskeleton is the main com-
ponent determining the mechanical behavior of the cell. We 
follow this assumption, yet in order to simulate the experi-
ment, we need to know the applied surface force vectors 
on each node generated by the deflecting laser beams (see 
Fig. 4c). The calculation of this force profile is described in 
“Appendix 3”.

In a second step, we identify the type of the viscoelastic 
elements connecting the surface nodes of the model cells 
(Fig. 5d) by comparing the results of the model simula-
tions with those of the optical stretcher experiments with 
MDA-MB-231 cells. The characteristic relaxation behavior 
excludes purely elastic springs (Fig. 5). We first consider 
Kelvin–Voigt elements (KVE) between the surface nodes 
(Fig.  5d). Kießling et  al. (2013) reported thermoelastic 
phenomena, whereby an increased laser power causes a 
transient temperature rise, which in turn modifies the vis-
coelastic properties of the cell. A thermal analysis of the 
used setup similar as in Kießling et al. (2013) indicated 
an ambient temperature increase of 20 to 25 K for a laser 
power from 900 to 1100 mW. The temperature rise and 
fall is very quick ( ∼ ms ) in comparison with the duration 
of the experiment; hence, latency effects can be neglected. 
Because of the thermoelastic effects, we assumed in the 
model that the viscous properties (1) are changed by the 
laser power during the stretching stage to (i.e., � = �(T) ), 
and (2) are all restored to their original value during release. 
A good fit for the P = 1100mW was achieved by the values 
ks = 1.0 × 10−4 N/m , kb = 2 × 10−17 N/m as cortex elastic 
constants, �|| = �

⟂
= �(T0) = 2.3 × 10−4 Ns/m as nominal 

friction coefficient (see Fig. 5a) and by a temperature depend-
ence of the friction coefficients of �(310K)∕�(T0) = 0.29 and 
�(315K)∕�(T0) = 0.11 . The fitted elastic constants for the 
springs and bending thus correspond well to those obtained 
from the nominal material properties (see above). We then 
tested the assumption that the viscosity would scale with 
temperature as in the Arrhenius law (Kießling et al. 2013):

where R = 8.314J mol−1K−1 and T0 = 290K  .  Using 
this equation, we obtained an optimal fit with the model 
calibrated friction coefficients (see Fig.  5c) using the 
value Ea = 55 kJ mol−1 K−1 , which is not too far to 
Ea = 74 kJ mol−1 K−1 derived in Kießling et  al. (2013). 
Neglecting thermoelastic effects, no simultaneous fit of the 
experimental results for both laser powers could be obtained: 
if the KVE model is calibrated such that an optimal fit is 

(23)
�(T)

�(T0)
= exp

(
Ea

R

(
1

T
−

1

T0

))
,

obtained for P = 1100mW ; then, using the same constants 
we get a significant overestimation of the deformation for 
P = 900mW , and vice versa (result not shown). The influ-
ence of a change in cortex mechanical properties on the 
results is given in “Appendix 2”.

Although the stretching and the relaxation behavior are 
both qualitatively well captured if thermoelastic effects are 
accounted for, there is (1) a restoring effect of the cell shape 
in the simulations (solid like behavior) that is not observed 
in the time course of the experiment, and (2) the short axis 
deformation slightly exceeds the experimental one. This lat-
ter deviation [point (1)] might be a consequence of missing 
out an explicit representation of the internal cytoskeleton 
in the model (i.e., see Kubitschke et al. 2017), which might 
here result in a higher resistance to a movement of the cell 
surface perpendicular to the laser axis, but including an 
explicit representation of the cytoskeleton is not expected 
to remove the significant deviations of the model during 
the relaxation stage [point (1)]. For this reason, we cap-
ture a possible contribution from the fluid-like behavior of 
the cortical cytoskeleton (see, e.g., Brugués et al. (2010)), 
by adding an additional friction element in series with the 
spring in the Kelvin–Voigt element (with the choice of 
�(T0) = 10−5 Ns/m ), resulting in a modified Maxwell model8 
(MME) (see Fig. 5d). An optimal fit for the P = 1100mW is 
now achieved using the elastic constants ks = 5 × 10−4 N/m , 
kb = 2 × 10−17 N/m , but with �(T0) = 3 × 10−5 Ns/m and 
�ME(T0) = 3 × 10−3 Ns/m as overall damping parameter and 
for the Maxwell damping, respectively (Fig. 5b, d). The tem-
perature dependence for the friction coefficients was chosen 
as obtained in the KVE model (Eq. 23). The two fits capture 
the relaxation behavior overall well and much better than the 
KVE model, with an apparent plastic deformation keeping 
the cell shape from its original value on the short time scale 
of the optical stretcher experiment.

In conclusion, in this section we have identified the basic 
biomechanical material properties of the DCM, namely the vis-
coelastic elements and its parameters, to quantitatively mimic 
optical stretcher experimental results. Our simulations indicate 
that the laser induced stretching and the subsequent fluid-like 
relaxation behavior after the stretching can be best mimicked 
assuming a modified Maxwell model for the elements (MMEs) 
representing the cortical cytoskeleton, with the additional 
assumption that the viscous properties decrease with increasing 
temperature as a result of the lasers. The KVE model overall 
results in less optimal fits but may still be useful in simulations, 
because the behavior of the cells, on longer timescales (minutes 

8  Because of the presence of bending elasticity and resistance against 
area expansion of the cell plasma membrane, the overall behavior is 
not purely fluid-like but may rather be regarded as a Standard Linear 
Solid (SLS). However, these effects only appear on much longer time-
scales in the simulations.
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to hours) after the experiment is not a priori known and may 
exhibit active responses, likely leading to a restoring of the 
original cell shape (Gyger et al. 2014). Further refinements can 
be easily performed in the future to capture effects such as from 
the microtubule cytoskeleton (see Fig. 1).

3.1.2 � Verification of cell adhesion forces in pull‑off 
experiment

The DCM adhesion model used in this work has been able 
to predict the correct red blood cell spreading area on a sur-
face given a certain adhesion strength. We have further vali-
dated this adhesion model on the level of the adhesive forces 
between two cells. In Chu et al. (2005), it was shown that JKR 
theory can be applied to living cells using micro pipette aspira-
tion, providing a technique to determine the adhesion energy 
between cells experimentally. To verify that the resulting 
adhesive forces in our discretization are in the correct physi-
cal ranges, we have run several test simulations in which two 
adhered cells (with radius R1 = R2 ) are mechanically separated 
by applying opposite forces to them. The separating force (also 
called pull-off force) is a well-known quantity in JKR theory 
for soft adhesive spheres and reads

(24)Fp = −
3

2
𝜋WR̂,

where W is the adhesion energy per surface area (specific 
adhesion energy) and 1

R̂
=

1

R1

+
1

R2

 (cf. Eq. (21)). On the other 
hand, adhesion between stiff spheres is best described by 
Derjaguin–Muller–Toporov (DMT) theory (Leckband and 
Israelachvili 2001), leading to a pull-off force of 
Fp = −2𝜋WR̂ . For vesicles, a theoretical analysis leads to 
Fp = −�WR (Leckband and Israelachvili 2001).

To measure the cell–cell adhesion force in our simula-
tions, two cells in contact are first brought into contact and 
relaxed until they are in an equilibrium state. The adhesion 
energy is a genuine parameter in our model (see Sect. 2.1). 
Then, a force equal in magnitude is applied on each node of 
both cells into the direction perpendicular to the cell–cell 
contact, whereby the force on one cell is exerted in opposite 
direction than the force on the other cell. The orientation is 
chosen such that the contact is under tensile stress (negative 
load). The cells then move away from each other until a 
new equilibrium is reached (Fig. 6). The force at which the 
cells just separate defines the pull-off force. By performing 
several simulations following a binary search algorithm, we 
estimate the pull-off force. The operation is done for increas-
ing adhesive forces and depicted in Fig. 6c. This shows that 
the simulated pull-off forces are slightly higher but close to 
the theoretical values as calculated from JKR theory, DMT 
theory, and vesicle theory. Overall, we can assume that the 

Fig. 6   a, b Simulation snap-
shots of the experiment for 
determining pull-off force for 
adhering cells. The color cod-
ing is according to membrane 
stress. Stresses can be negative 
(compressive) in the common 
adhesive plane, indicated by 
the blue coloring (a, left). The 
2D cartoon (a, right) shows 
the forces on the nodes �adh . 
The resulting nodal force (red 
arrows) along the cell bounda-
ries point toward the contact 
center. b Cell deformation 
during the pulling with net force 
Fp . c Absolute values of pull-off 
forces obtained as function of 
the adhesion energy per unit 
surface area: DCM simulations 
compared to JKR theory, DMT 
theory, and vesicle theory. 
Video 1 of this in silico experi-
ment is provided in the SI D
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implementation of the adhesion energy and the choice of 
parameters in the model reproduce realistic magnitudes for 
the contact force.

A closer analysis of Fig. 6 (top) further reveals that ten-
sions in the membrane (see Eq. 8) of the adhered cells in 
equilibrium are largely tensile except in the adhesive plane 
where they can be compressive. This is a direct conse-
quence of the adhesive node–node forces at the boundary 
of a cell–cell contact, which generate forces (see red arrows 
in sketch, Fig. 6) on the nodes along the cell–cell interface 
toward the contact zone. This phenomenon is in agreement 
with experimental observations (Murrell et al. 2014). A very 
strong adhesion energy might even result in a buckling of the 
cell surfaces at the contact zone as we observed in test simu-
lations, and as was suggested in Schwarz and Safran (2013).

It might be noticed that JKR and DMT theory locally 
average over the adhesion contacts, while in some applica-
tions one might like to keep the discrete form of the contacts. 
The latter is in principle possible by our model by associat-
ing different adhesion contacts with each node, and choosing 
the resolution of the cell surface (by the number of nodes per 
cell surface) high enough to capture the important aspects of 
the discreteness of focal contacts.

3.2 � Multicellular simulations: growth of small 
tumors and monolayers

In the past, multicellular spheroids (MCSs) and monolay-
ers have often been used and tested as in vitro models for 
tissues (see, e.g., Sutherland 1988; Brú et al. 2003). Several 
authors have investigated the growth dynamics of these sys-
tems using agent-based models. In a number of commu-
nications, center-based models (CBM, see Sect. 2.3) have 
given basic insight how cell growth is affected by hypoxia 
and contact inhibition (Drasdo and Höhme 2005; Schaller 
and Meyer-Hermann 2005; Drasdo and Hoehme 2012). As 
mentioned before, CBMs generally suffer restrictions, such 
as poor shape representation.

Here, we employ our deformable cell model including 
cell division with regard to the aforementioned systems. In 
the growth dynamics of multicellular assemblies, important 
parameters are the strength of cell–cell adhesion respon-
sible for the formation of multiple cell–cell contacts, and 
viscous cell–cell friction. To determine the cell–cell friction 
coefficients, we have simulated the relaxation behavior in 
an experiment whereby a spheroid is first compressed and 
subsequently the compression released (see “Appendix 1”). 
For long compression times, typical relaxation times of ∼ 5 h 
have been reported for such experiments (Marmottant et al. 
2009; Alessandri 2013). Hence, the spheroid relaxation 
times are much longer than the short relaxation timescales 
of the cells in the stretcher experiment, indicating that cel-
lular re-organization processes not relevant in the optical 

stretcher experiments play a major role on the timescale of 
multicellular spheroid relaxation. For example, trypsinated 
cells in suspension round off, indicating that on timescales 
much longer than those probed in optical stretcher experi-
ments, the cell relaxation behavior is governed by processes 
restoring a spherical cell shape, which is not correctly cap-
tured by the modified Maxwell element mimicking short 
term relaxation (Fig. 5d). Instead of further complexify-
ing the viscoelastic elements to capture both the short and 
long-term relaxation behavior at the expense of elevating the 
computing time requirement,9 we here use the simple KV 
viscoelastic elements for the simulations at the timescale 
of cell growth and division. This allows to fit the internal 
friction coefficients and cell–cell friction coefficients such 
that the spheroid relaxation is approximately 5 h without 
prolonging the computing time (see Fig. 12b).

Both MCSs and monolayer simulations start from a single 
cell growing and dividing unlimited with a cell cycle time of 
24 h. Each cell is represented by 162 nodes. For an overview 
of all the reference parameters, see Table 1. The simula-
tions are run over several days, in which in total about 1000 
cells are created (see time series of simulation snapshots 
in Fig. 7a, b for MCSs and monolayers, respectively). Two 
cases were simulated, one with the original specific adhesion 
energy, W = 10−5 J/m2 , one with an increased specific adhe-
sion energy, W = 8 × 10−5 J/m2 . However, the cell popula-
tion sizes were too small to objectify differences in the tumor 
spheroid shape despite the spheroid with W = 8 × 10−5 J/m2 ) 
looks slightly more compact compared to the other case, 
where intermittently, small “branches” form (Fig. 7a, right). 
At this cell population size, the number of cells grows expo-
nential in time in both cases (Fig. 7c).

In a further step, we test our model for three different cases 
of monolayer growth. We first constructed a flat fixed adhe-
sive surface, triangulated with a slightly larger mesh size than 
the one used for the cell surface triangulation. The simulation 
starts from one cell adhering to the surface (the reference 
adhesion energy per area is W = 10−5 J/m2 ). To study the 
effect of adhesive strength, we simulated monolayer growth 
scenarios for three different parameter combinations, denoted 
as type 1–3, with type 1: specific cell–cell adhesion energy 
W = 10−16 J/m2 , and relatively large diffusion constant 
D = 10−15 m2∕s ; type 2: specific cell–cell adhesion energy 
W = 10−5 J/m2 , and diffusion constant D = 10−16 m2∕s ; type 
3: specific cell–cell adhesion energy W = 5 × 10−5 J/m2 , and 
diffusion constant D = 10−16 m2∕s (Fig. 7c–f). Visually, no 
large difference between the spatial pattern for different 
parameter combinations can be seen. This is objectified by 
plotting the radius of gyration Rgyr(t) for the three different 

9  The long-term relaxation into a spherical shape might be mimicked 
by implementing an additional spring with small spring constant in 
the MME element.
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parameter combinations, which is a measure for the spatial 
cell spread. It is defined as Rgyr =

√
(1∕N)

∑
i (�i − �com)

2 , 
where �i and �com = (1∕N)

∑
i �i are the center-of-mass posi-

tions of the individual cells and the whole multicellular clus-
ter, respectively. There is no significant difference in Rgyr for 
the three different types. All three populations grow expo-
nentially fast during the simulation time period. However, 

the pressure profile differs: At a population size of 1000 cells, 
the pressure in the center of the monolayer is largest for type 
3, the smallest for type 1 and intermediate for type 2. For 
type 1, the cell–cell adhesion energy is almost zero while 
the micro-motility is the largest, which results in a maxi-
mum relaxation of compressive stress and lower cell density 
(Fig. 7e). The specific cell–cell adhesion energy for type 3 

Fig. 7   Simulation snapshots 
and time series for multicellular 
spheroid (MCS) and monolayer 
growth. a Spheroid growth with 
specific cell–cell adhesion ener-
gies W = 1 × 10−5 J/m2 ) and 
W = 8 × 10−5 J/m2 ). b Typical 
monolayer growth scenario 
(screenshots). c–e Kinetics of 
the cell population size N(t) 
(monolayers, MCS), radius 
of gyration Rgyr(t) (monolay-
ers) and area density profile 
(number of cells per unit of 
substrate area) �(r,N = 1000) 
(monolayers). f Visualization 
of spatial pressure distribu-
tion in multicellular pattern for 
type 1–3 monolayers [the color 
encodes internal cell pressure 
(red: high, blue: low pres-
sure)]. Parameters for monolay-
ers: type 1: cell–cell specific 
adhesion energy W ≈ 0 J/m2 , 
cell–substrate adhesion 
energy W = 10−5J∕m2 , 
D = 10−15 m2∕s ; type 2: cell–
cell specific adhesion energy 
W = 10−5 J∕m2 , cell–substrate 
adhesion energy W = 10−5 J/m2 , 
D = 10−16 m2∕s ; type 3: 
cell–cell specific adhesion 
energy W = 5 × 10−5 J/m2 , 
cell–substrate adhesion 
energy W = 10−5 J/m2 , 
D = 10−16 m2∕s . Demonstrating 
video 2 and 3 of these in silico 
experiment are provided in the 
SI D
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cells is higher than for type 2 cells while all other param-
eters are the same, resulting in a higher adhesion and hence 
a higher compression (highly jammed state) in the interior 
of type 3 cell populations compared to the interior of type 2 
populations (Fig. 7e). The spatial profile shows a decrease 
from the center to the border, in qualitative agreement with 
earlier observations in center-based model simulations (e.g., 
Byrne and Drasdo 2009; Galle et al. 2005). Contrary to the 
former studies, the cell volume and pressure in DCM simula-
tions can be calculated more precisely.

In summary, these simulations show the potential of 
the model to analyze in detail forces, shape and pattern 

formation in monolayers and spheroids. We emphasize that 
the aforementioned results are indicative and that much 
more and much longer simulations maybe required to 
come to strong conclusions. With the current implementa-
tion (single core, cell cycle time of 1 day), it takes roughly 
half an hour of CPU time to simulate a growing DCM 
spheroid from one cell to 10 cells; 12 h to reach 100 cells; 
and about a week to reach 1000 cells. In comparison, this 
task takes only 5 min for a CBM model. The cause for this 
discrepancy is the increased number of nodes, the increase 
data structure size per cell, and the lower time step needed 
to keep the DCM simulation stable. As a consequence, 

Table 1   Nominal physical parameter values for the model. An (*) 
denotes parameter variability meaning that the individual cell param-
eters are picked from a Gaussian distribution with ±10% on their 
mean value.  Note, that the contact friction parameters  in the table 
denoted with a superscript "+"  are to be multiplied by the respec-

tive  contact area between the cell and the interacting structure  in 
order to obtain the values inserted in the above equations i.e.,  γx = 
γx

+A, where γx denotes the friction parameters in the text for struc-
ture x in units of Ns/m and A the contact area. CR: Calibration Runs

Parameter Symbol Unit Value References

Deformable cell model
Radius (undeformed) Rc μm 8.8–12 Observation, Hoehme et al. (2010)
Cycle time* � h 24 Hoehme et al. (2010)
Cortex Young’s modulus Ecor Pa 1000 Brugués et al. (2010)
Cortex thickness hcor nm 500 Observation
Cortex Poisson ratio �cor – 0.5 Tinevez et al. (2009)
Membrane area compression KA N/m 0.8 × 10−3 Brugués et al. (2010)
Cell bulk modulus KV Pa 750–2500 Hoehme et al. (2010) and Tinevez et al. (2009)
Specific cell–cell adhesion energy W J/m2

10−5 − 5 × 10−5 Hoehme et al. (2010), CR
Nodal friction �int Ns/m 1 × 10−4 CR
Cell–cell friction �+ext Ns/m3

5 × 1010 Galle et al. (2005) and Buske et al. (2011), CR
Cell-ECM friction �+

ECM
Ns/m3

108 Galle et al. (2005), CR
Cell-liquid friction �+

liq
Ns/m3 500 CR

Motility D m2/s 10−16 Drasdo and Hoehme (2012) and Hoehme et al. (2010)
Center-based model
Radius (free suspension) Rc μm 12 Hoehme et al. (2010)
Young’s modulus∗ E Pa 450 Hoehme et al. (2010)
Poisson’s modulus � – 0.47 See KV , Hoehme et al. (2010)
Cell–cell friction �+ext Ns/m3

1010 Galle et al. (2005) and Buske et al. (2011), CR
Cell-ECM friction �+

ECM
Ns/m3

5 × 108 Galle et al. (2005), CR
Motility D m2/s 10−16 Drasdo and Hoehme (2012) and Hoehme et al. (2010)
Specific cell–cell adhesion energy W J/m2

10−5 − 5 × 10−5 CR
Lobule network
Radius lobule Rlob μm 280 Hoehme et al. (2010)
Radius portal veins Rpv μm 15 Hoehme et al. (2010)
Radius central veins Rcv μm 10 Hoehme et al. (2010)
Radius sinusoids Rsin μm 4.7 Hoehme et al. (2010)
Sinusoids Young’s modulus Esin Pa 600 Hoehme et al. (2010)
Sinusoids Poisson’s modulus �sin – 0.4 Hoehme et al. (2010)
Specific cell-sinusoid adhesion 

energy
W J/m2 0 Hoehme et al. (2010)

Radius lesion Rnec μm 150 Hoehme et al. (2010)
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DCM simulations with larger cell numbers will need to 
rely on a parallelization of the code.

3.3 � Multicellular simulations: regeneration 
in a liver lobule

Finally, we come back to the introductory example of the 
regenerating liver lobule after CCl4-induced pericentral 
damage, and study whether the regeneration process with 
the DCM model would lead to different results than obtained 
with the CBM model (Hoehme et al. 2010). As the smallest 
repetitive physiological and anatomical unit is a liver lobule, 
our model simulations focus on this unit. A liver lobule has a 
central vein located approximately in its center that collects 
blood from the capillary (sinusoidal) network surrounding the 
central vein. The blood enters the liver lobule through 3–4 

pairs of portal veins and hepatic arteries. Portal veins carry 
blood from the intestine to the liver contributing about 70% of 
the blood entering the liver lobule, and hepatic arteries carry 
oxygen-rich blood from the aorta to the liver. Hepatocytes are 
arranged around the capillaries. In the cut section perpendicu-
lar to the central vein, the lobular shape is approximately a 
hexagon. The distance from the central vein to the lobule bor-
der (radius of the lobule) is about nine cell diameters (Ham-
mad et al. 2014). A typical 3D volume data sample obtained 
by processing of optical sections from confocal micrographs 
has a height of three cell layers. Between sinusoids and 
hepatocytes, there is an about 0.5 μm small space, named 
“Space of Disse” filled with ECM that mechanically stabilizes 
the sinusoidal network. The liver lobule micro-architecture 
ensures a maximum exchange area between hepatocytes and 
sinusoids for metabolites, thereby promoting metabolization 

Fig. 8   a Segmentation of 
hepatocyte nuclei (blue) and 
sinusoidal network (red) in liver 
tissue of mouse. Green lines 
outline a liver lobule substruc-
ture in the tissue. b Structure of 
the blood vessel network of a 
single lobule within the model. 
c Part of the network used for 
the simulations with the DCM. 
c, d Cells artificially growing up 
to realistic cell size (initializa-
tion). e The spatial-temporal 
proliferation pattern is imposed. 
The red cells are dividing. f 
Regeneration process the lobule, 
cells are colored according to 
internal pressure
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in the hepatocytes. After overdose of the drugs CCl4 or aceta-
minophen (paracetamol, APAP) those cells expressing the 
Cytochrome P450 enzymes CYP2E1 and CYP1A2 metabo-
lize these two drugs, which downstream can cause cell death. 
In healthy liver, CYP-expressing enzymes are localized in 
hepatocytes within an area fraction of about 40% around the 
central vein. At sufficiently high doses of CCl4 (or acetami-
nophen) the hepatocytes are killed leaving a central lesion 
with debris with maximal size at about 1–2 days after admin-
istration of the drug. About two days after the generation of 
the lesion, hepatocytes start to divide, reaching closure of the 
necrotic lesion and regeneration of the hepatocyte mass after 
about 6 days (Hoehme et al. 2010). The hepatocytes localized 
at and close to the border of the lesion proliferate by far the 
most, while proliferation is lower in the layers more distant 
to the lesion.

The simulations are performed in a in statistically rep-
resentative liver lobules, obtained by sampling of param-
eters quantifying the lobule architecture in confocal laser 
scanning micrographs (Hoehme et al. 2010). A statistically 
representative lobule has a hexagonal structure (Fig. 8a, b, 
XY plane) with a vertically (Z-axis) oriented central vein in 
its center and three portal veins and hepatic arteries in three 
of its six corners. Simulations with a center-based model 
revealed that cell proliferation alone, without directed migra-
tion of hepatocytes toward the central vein, is insufficient to 
explain the experimental observations (Hoehme et al. 2010). 
The mechanical pressure exerted by proliferating cells on 
their neighbors leading to pushing of cells and squeezing 
them into the spaces between the sinusoidal network was 
insufficient to close the lesion within the experimentally 
observed time period. In center-based models (CBM), cells 
are by construction usually relatively rigid as only moder-
ate deviations of cell shape from their equilibrium shape in 
isolation can be captured by that model type. Furthermore, 
forces in standard center-based models are defined pair-
wise lumping compression and deformation forces usually 
together (see also Sect. 2.3.1). We here study if this rigidity 
might be responsible for the failure of regeneration in the 
experimentally observed time period.

As in Hoehme et al. (2010), we used a three-cell-thick lob-
ule architecture representative of a mouse liver. The sinusoids 
and veins are approximated as a dense network of fixed over-
lapping spheres, each with radius equal to the vessel radii. The 
high density of overlapping spheres warrants a smooth inter-
action with the cells. The hexagonal shape allows for iden-
tification of 6 statistically identical “pie segments” together 
constituting a full lobule. As a full lobule is currently not 
amenable to simulations with the DCM because of the large 
computation times, we simulate regeneration in only one pie, 
representing 1/6 of a statistically representative liver lobule 
(Fig. 8c) At the outer boundaries of the lobule pie segment, 
the cells are pushed back by vertical planes that mimic the 

presence of the neighboring lobule parts (see Fig. 8b). In our 
model, we assume that vessels can interact with the cells, yet 
their positions remain static during the simulation (Hoehme 
et al. 2010). We perform both DCM and CBM simulations 
of the regeneration and quantitatively compare the differ-
ences. Both simulations start from identical initial conditions 
and configurations and have the same model parameters (see 
Table 1). A maximum equivalence of mechanical parameters 
for both model types is ensured (see Sect. 2.3).

We start from a multicellular configuration characteris-
tic for the beginning of the regeneration process after CCl4 
(or acetaminophen)-generated damage, where only hepato-
cytes localized at distance of at least Rnec from the central 
vein survive (see Fig. 8c, d, blue colored cells). Hepatocytes 
localized at distances smaller than Rnec from the central vein 
are assumed to be killed by the drug and removed from the 
system as those express the CYP-enzymes metabolizing 
CCl4, which downstream leads to cell death. At t < 0 , there 
are about 90 cells positioned in the free spaces between the 
sinusoids. An initial small radius is assigned to the hepato-
cytes, so that they initially do not touch the sinusoids. Next, 
the hepatocytes’ size is artificially increased, gradually 
generating contact with the sinusoids, until the hepatocytes 
reach a radius of Rc = 12 μm (Hammad et al. 2014) and the 
system a mechanical equilibrium (Fig. 8d). The time at this 
starting configuration is set to t = 0 as we here focus on the 
regeneration process (which is about 2–2.5 days after drug 
administration Hoehme et al. 2010).

During regeneration, those cells that have survived the 
intoxication enter the cell cycle to grow and divide with a rate 
depending on their distance from the necrotic lesion. Dur-
ing the regeneration process, they gradually move toward the 
central part, and eventually close the lesion and restore the 
lobule hepatocyte mass. Hepatocytes do not enter as individ-
ual, isolated cells (like mesenchymal cells) but in a collective 
movement as a sheet (with epithelial phenotype). In the simu-
lations performed in Hoehme et al. (2010), the spatiotempo-
ral proliferation pattern of the cells during regeneration from 
an experimental BrdU staining pattern was directly imposed 
to the cells. BrdU stains cells in S-phase. Here, we impose 
a similar but a slightly coarse-grained proliferation pattern 
(for simplicity and better comparability to CBM simula-
tions), where cells are proliferating in a certain time window 
(Fig. 10a) and in a region smaller than 4–5 cell layers closest 
to the necrotic lesion. Outside this window, cells are assumed 
to be quiescent. Despite we do not simulate the entire lob-
ule, the simulation results can readily be extrapolated to an 
entire lobule. By extrapolating the ratio of the cells numbers 
before intoxication and after regeneration with regard to the 
dimensions (Hoehme et al. 2010), the simulation results can 
be directly compared to that work.

The cells gradually progress toward the central vein to 
close the lesion with the largest fraction of proliferating cells 



210	 P. Van Liedekerke et al.

1 3

at the border to the lesion (the front of the expanding tis-
sue) and smallest proliferation activity at the periportal field 
(Fig. 8f). During the simulations, various cell state variables 
such as pressure, volume, state and tissue properties (cell 
density, area of the necrotic zone) can be monitored (see 
Figs. 8, 9, 10)

In a next step, we study whether different hypotheses 
addressing the behavior of individual cells can explain the 
closure of the pericentral liver lobule lesion generated by 
toxic concentrations of CCl4 or acetaminophen. Guided by 
the choices in Hoehme et al. (2010), we distinguish between 
three model cases in which the cells differ by certain migra-
tory or proliferation-related properties.

In the basic model (Model I), we assume the cells to be 
proliferating with daughter cells oriented in a random direc-
tion and active movement generated by an unbiased random 
force (controlled by the cell diffusion coefficient D).10 With 
this mechanism, the lesion closure speed11 is too small (see 

Fig. 10b), showing that this model is not in agreement with 
the experimental data for a time window of 10 days after 
intoxication, for both the DCM and the CBM. This is in 
line with the conclusion in Hoehme et al. (2010), stating 
that the pericentral lobule lesion does not completely close 
within the experimentally observed time period if the driv-
ing force for the closure is cell proliferation only. Neverthe-
less, the DCM simulations exhibit a closer agreement with 
the experimental data than the CBM. Potentially, this is due 
to the more realistic contact forces and cell shapes in DCM 
compared to the CBM, which permit deformable cells to 
adapt their shape by squeezing in between the sinusoids. The 
pairwise JKR-based contact force in CBM lumps force con-
tributions originating from cell deformation and compres-
sion into one mathematical formula assuming the cell shape 
changes only slightly. As consequence, at large compression 
forces emerging as a result of massive cell proliferation as 
in liver regeneration, significant overlap among cells, and 
cells and blood vessels can occur. The large overlaps might 
lead to an underestimation of the total volume occupied by 
the cells and blood vessels and too small repulsion forces. 
This in turn critically slows down cell movement of cells 
that are pushed by proliferating cells toward the lesion, as 
the pushing forces also result from volume compression. In 
the DCM simulations, volume is explicitly tracked; hence, 

Fig. 9   Simulation snapshots of 
the liver regeneration performed 
with the DCM (a) and CBM 
(b). c Simulation of CBM and 
DCM in hybrid mode. The 
color bar here is according to 
cell pressure. Videos 4 and 5 of 
the simulations are provided in 
the SI D

A

C

B

10  The assumptions in Model I are equivalent to those in Model 1 in 
Hoehme et al. (2010)
11  We define here the lesion radius as the average distance from the 
central vein to the closest cell in every layer whereby we consider the 
3 closest layers to the lesion.
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cells are pushed away stronger. At the same time, DCM cells 
can automatically adapt their shape and squeeze through the 
network. Both effects together speed up the cell displace-
ment in DCM compared to CBM.

In the second model (Model II), we assumed that the 
during division the daughter cells align along the clos-
est sinusoid, in Hoehme et al. (2010) named “hepatocyte-
sinusoid alignment” (HSA) mechanism and identified as 
responsible order mechanism for the reconstitution of 
liver lobule micro-architecture. In Hoehme et al. (2010), 
healthy liver lobule micro-architecture was shown to be 
characterized by a maximal hepatocyte-sinusoid contact 
area, facilitating the molecular exchange area between 

hepatocytes and blood. However, contrary to the model of 
Hoehme et al., where cell polarity was introduced as aniso-
tropic adhesive forces, we here do not impose cell polarity; 
HSA in combination with differential adhesion between 
hepatocytes and lack of adhesion between hepatocytes 
and sinusoids already result in a largely columnar order. 
Moreover, in Hoehme et al. (2010) HSA was combined 
with a directed migration of hepatocytes toward the central 
necrotic lesion, which we drop in Model II to test the effect 
of HSA only. Interestingly, with this “directed division” 
mechanism, we observe for both the CBM and the DCM 
a slight “speed-up” of the lesion closure, in line with the 
reasoning that cells get less obstructed by the sinusoids 

Fig. 10   a Simulation (DCM and CBM) of the evolution of cell num-
bers during the time course of the simulation. b Simulated (DCM and 
CBM) relative area of the necrotic lesion during liver regeneration 
compared to data from Hoehme et  al. (2010), assuming Model I or 
Model II. c Simulated (DCM and CBM) relative area of the necrotic 

lesion assuming Model III. d Simulated (CBM) relative area of the 
necrotic lesion using the calibration procedure for contact forces, 
assuming Model I or Model III. Each line is the average of 5 simula-
tions with different random seeds, and the shadowed zone indicates 
maximum and minimum values
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after division if aligned. Yet, an acceptable quantitative 
agreement is not obtained (Fig. 10b).

Finally, in the third model (Model III) we assume that 
cells migrate toward the central vein as a response to a 
morphogen gradient, whereby the morphogen source is the 
necrotic lesion. The directed migration manifests itself as an 
active force �mor in the equation of motion (see Sect. 2.1). 
Cell migration in liver is mediated by the extracellular 
matrix (ECM) scaffold, whereby the ECM is localized 
mainly in the Space of Disse (Mazza et al. 2015). In Hoehme 
et al. (2010), hepatocytes at the border of the necrotic lesion 
were observed to stretch filopodia into the necrotic lesion. 
Consequently, the migration force �mor is assumed to only 
act on the outer cells (here referred to as “leader” cells) and 
directed toward the central vein.

In Hoehme et al. (2010), adding directed migration forces 
toward the central vein to Model I was able to ensure com-
plete lesion closure.

For the DCM simulations with Model III, we found an 
excellent agreement with the data if the migration force had 
a strength of Fmor ∼ 0.3 nN . Contrary, for the CBM simula-
tions with the same model (Model III) a significantly larger 
force of 1 nN is needed to close the lesion, showing again the 
significant and important differences between the two model 
approaches at the quantitative level (Fig. 10c). In turn, simu-
lations with DCM with the migration force chosen as the 
migration force needed in the CBM to close the lesion (i.e., 
1 nN ) led to a too fast motion of the hepatocytes, hence a 
too fast closure of the lesion (Fig. 10c). This again confirms 
DCM cells adapt easier to the obstructions imposed by the 
environment. However, overall the magnitude of the migra-
tion force for both approaches is in agreement with experi-
mental observations of migrating cells (Kim et al. 2015; Jac-
quemet et al. 2015). Specific measurements for regeneration 
after drug-induced damage have so far not been performed.

The simplified formalism in CBMs thus leads to una-
dapted cell shapes (Fig. 9a, b) and possibly quantitatively 
incorrect contact forces and cell density. In order to test 
the influence of the contact forces between the cells on the 
results, we applied our procedure to re-calibrate the CBM 
contact forces from the DCM (see Sect. 2.3.1 and “Appen-
dix 1”). In the procedure we simulate a spheroid compres-
sion experiment. The contact stiffness of every CBM cell is 
adjusted depending on by how many neighbor cells it is sur-
rounded and by the relative distances between the cell and its 
neighboring cells, to finally obtain the same contact forces 
as in the equivalent DCM simulation. As such, we obtain a 
calibrated CBM that takes the effect of multiple cell contacts 
into account. Using the calibrated CBM, we rerun the simu-
lations for Model I and Model II. For Model I, the lesion is 
now closing faster and comparable to the DCM simulations. 
For Model III we now obtained a much better agreement if 
using the same migration force as in DCM (Fig. 10d). This 

overall shows the significant impact of quantitatively correct 
contact forces for quantitative simulations of the cell dynam-
ics in the liver lobule. Simulations with center-based models 
may still be used to give valuable quantitative insight if the 
cell contact mechanics is corrected. The DCM thus permits 
to partially correct for inaccuracies of the CBM, and to serve 
as an instrument for verification simulations for selective 
parameter sets, whereby parameter sensitivity analysis 
simulations might now still be performed with the compu-
tationally much faster CBM. We conclude that with a more 
refined cell model as the DCM, the magnitude of the active 
migration force needed to close the central necrotic lesion 
after drug-induced pericentral damage is smaller than for the 
center-based model, but overall the same mechanisms, i.e., 
active hepatocyte migration toward the necrotic lesion and 
oriented cell division are necessary for closure of the lesion. 
This qualitatively confirms the conclusion made in Hoehme 
et al. (2010) based on simulations with a CBM. However, as 
we demonstrated, the differences between CBM and DCM 
simulations become smaller if the cell–cell interaction forces 
in the CBM are calibrated by simulations with the DCM.

Finally, and in line with this argument, we demonstrate 
that the two model approaches are capable of working in a 
hybrid mode. This is particularly useful if one can subdi-
vide the total system in zones with a higher interest where 
more detail is required (high interest), and others where only 
approximated dynamics is needed (low interest) (see, e.g., 
Kim et al. (2007)). Here, a lower computational cost can 
be obtained if the zone of lower interest can be simulated 
using CBM. Thanks to the nature of the contact model of 
the DCM, we can run simulations where parts of the lobule 
are covered by a DCM while others by a CBM. In Fig. 9c, 
we considered two equal parts of the liver lobule where each 
part is covered by another model. At the interface, the model 
ensures that cells from DCM and CBM smoothly interact.

4 � Summary and conclusions

In this paper, our main goal was to study in how far model-
based statements and interpretations depend on the level of 
detail in the representation of cell shape and mechanics. Our 
showcase was the regeneration of hepatocutes after drug-
induced liver damage.

We have developed a computational model that permits to 
explicitly mimic the cell shape and subcellular details. The 
starting point was a previously introduced deformable cell 
model (DCM) that has been used to simulate realistic cell 
shapes in response to local internal and external forces. In 
this work, we have extended this model with cell prolifera-
tion and motility to perform multicellular simulations, with 
a model for cell growth and division. We demonstrated how 
the viscoelastic elements can be chosen to explain data at 
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timescales differing by order of magnitudes, namely optical 
stretcher experiments to probe cell biomechanics on a time-
scale of seconds, as well as tissue regeneration occurring at 
timescales of several days.

An adequate choice of the rheological model for the 
individual subcellular elements (representing the outer 
cytoskeleton) and the calibration of parameters hereof is an 
essential aspect for acquiring realistic simulations. Starting 
from simulating deformation of MDA-MB-231 cells in an 
optical stretcher experiment, we have shown that commonly 
used linear spring damper elements like Kelvin–Voigt and 
Maxwell with proper adaptations may be sufficient to repro-
duce experimental data over a short time course. Overall, 
the Maxwell model approach seems to be more realistic in 
predicting cell relaxation behavior. In line with the analysis 
in Kießling et al. (2013), changes of friction coefficients 
in response to the ambient experiment temperature changes 
were necessary. Performing in silico pull-off experiments 
imposing increasing adhesion energies, we have further veri-
fied that the adopted cell contact model consistently repro-
duces realistic forces in cell–cell adhesive contacts. Here, 
the model shows a further potential for investigating local 
stress distributions in cell–cell adhesive bonds, which can 
be important to understand mechano-transduction processes.

Cell growth and division occurs on much longer time-
scales than those probed by most experimental methods 
(optical stretcher or atomic force microscopy). Simulating 
cytokinesis explicitly by a contractile ring that splits the 
mother cell body into two approximately equal daughter 
cells, requires a re-meshing of the cell surface which turned 
out to be algorithmwise very complex. In our final algo-
rithm, we let the cell in a first step grow to the twofold of its 
initial volume immediately after division. In the actual cell 
division step, two cell bodies are created which are inscribed 
in the original volume of the mother cell, increasing their 
volume until the volume of the mother envelop cell is pre-
cisely filled by its two daughter cells, after which the latter 
is removed.

The model allows to simulate in vitro experiments such 
as monolayers and spheroids growth from a single cell up to 
1000 cells on a single processor of a standard PC in about 
one week time. Despite these relatively low cell numbers, 
we have here illustrated that model predictions with adhe-
sion energy variations between cells and substrate may have 
different effects in monolayers as compared to spheroids.

Hoehme et al. (2010) demonstrated that agent-based mod-
els of the center-based type, mimicking cell–cell forces as 
forces between cell centers, are capable of giving valuable 
insights in liver regenerative processes. In particular, their 
simulations of a liver lobule regeneration showed that after 
intoxication, cell cycle re-entrance and cell division alone 
cannot explain the closure of lesions. By iterations between 
model simulations and experiments, they concluded that 

cells need active migrative forces in order to acquire a fully 
regenerated lobule in a realistic time course. However, the 
center-based model has no explicit notion of shape in case 
cells are densely packed as this is a case in a regenerating 
liver lobule. Deviations from its rest shape in isolation, typi-
cally a sphere, can only be approximately and statistically 
inferred from geometrical constructions as such as a partial 
Voronoi tessellation. Our simulations with the deformable 
cell model confirm this hypothesis, yet comparisons between 
our model and the center-based approach indicates some 
important quantitative differences, which we could use to 
identify model determinants that must be represented in suf-
ficient detail.

The most critical differences between CBM and DCM 
simulations are:

1.	 In the DCM, cells adapt to their environment requiring 
lower migrative forces to close the gap as compared to 
their center-based counter parts. In the latter, large cell–
cell overlaps exist and rigid cell shapes result in a lower 
closure speed or higher required migrative force to close 
the lesion.

2.	 Cell contact forces play an important role in the dynam-
ics. Replacing the (standard) JKR contact force model 
in the CBM by new force relations obtained from simu-
lated force probing experiments with the DCM largely 
removed the difference in the regeneration dynamics 
between CBM and DCM. We note that finding such 
a force might become almost impossible if, as in dis-
eases such as fibrosis, the spaces between blood vessels 
and extracellular matrix structures are so narrow, that 
the cell body has to deform into a long thin object to 
squeeze through them. Another example where realis-
tic contact forces for a CBM might not be found is in 
case of fluid-like movement of cells in cell sheets where 
cells move along each other despite high cell density. 
In such a type of movement, large deformation of cell 
shape from spheres might be necessary to permit cells 
moving, while at the same time, the volume of the cells 
is largely conserved. This combination—shape change 
at (almost) conserved volume—is an obstacle for center-
based models.

3.	 DCM simulations result in more accurate cell shapes 
along the sinusoids as they adapt to the environment 
(cells do not overlap with sinusoids).

However, as demonstrated in this paper for a regenerating 
liver lobule, the DCM can be used to calibrate the CBM 
model and/or to simulate tissue organization processes in 
a hybrid mode. This may open possibilities to accomplish 
large scale tissue simulations where some parts are mod-
eled at high spatial resolution models (DCM), while in 
other zones approximate models (CBM) are sufficient. In 
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that case, the CBM, that performs well in case of moderate 
deformations and at moderate compressive stress becomes 
also more accurate under higher compressive stress. How-
ever, it is recommendable to verify in situations of high com-
pression that the CBM simulation does indeed reproduce the 
results of DCM with sufficient accuracy at least for single 
parameter combinations.

In conclusion, we have shown that this highly detailed 
model approach may become mandatory to simulate tissue 
regeneration quantitatively, integrating subcellular informa-
tion on cell shapes and biomechanics. For the future, we strive 
to run simulations directly starting from triangulated struc-
tures (representing cells, blood vessels, flexible or stiff struc-
tures, see prototype simulation explained in Fig. 11), which 
can be imported automatically from processed images (Frie-
bel et al. 2015) without further approximations or assumptions 
about shape. For example, the deformable cell model could 
permit to run simulations directly from 3D image reconstruc-
tions of confocal micrographs, integrating the experimental 
staining information as, e.g., used in Morales-Navarrete et al. 
(2019) to stain hepatocyte apical and basal membranes as well 
as hepatocyte borders to compute a tensorial order parameter 
characterizing the order of hepatocytes in the tissue. Modify-
ing the properties expressed by the markers as in a perturba-
tion experiment will allow to mimic and predict realistic and 

detailed expected outcomes of real experiments, thus repre-
senting an in silico test model for experimental hypotheses.

The principle bottleneck is the high computational cost 
requiring distributed computing. Hence, large population 
DCM simulations will require code parallelization envisaged 
for the future. Prospectively, this and a prospective transfer 
onto quantum computers might open up enormous opportu-
nities for the DCM toward an in silico parameter sensitivity 
testing to explain hypotheses, test hypotheses in the plan-
ning of new experiments and data acquisition to economize 
resources. Sensitivity analysis should then become auto-
mated (Jagiella et al. 2017).
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Appendix 1: Determining DCM contact 
forces and friction coefficients

A small cell clump was used as in silico model to estimate 
the contact forces and relaxation in a cell aggregate. We con-
sidered a central cell neighbored by several others initially 

structured as a body centered cubic (Fig. 12a). The cell clump 
was then positioned in an imaginary rigid spherical capsule 
(see Van Liedekerke et al. 2019). The radius of the capsule 
was steadily and stepwise decreased, compressing the cells 
inside (Fig. 12a). The average distance function between 
the central cell and its contacting cells was computed as 
d̃i =< 1 − dij∕(Ri + Rj) > at every time step. This resulted in a 
forces-distance relation during the time course of compression 
that was used to calibrate the contact forces in the center-based 
model. In Fig. 12b, we have displayed the average force–dis-
tance relation during the experiment. The contact force in the 
center-based model shows a clear deviation as the distance gets 
smaller. This clearly shows that JKR or Hertz contact force 
models do not apply for high cell densities in CBM.

The full relaxation behavior of the spheroid is deter-
mined by the nodal friction coefficients, the viscous fric-
tion of the adherent cells, and the friction with the ECM. 
To measure relaxation, the cells are suddenly released 
from the encapsulation. This period for the cells to come 

Fig. 12   a Snapshot of a simula-
tion of a small cell clump of 
DCM being compressed by 
isotropic forces. The distances 
d are computed between the 
cell centers and averaged. The 
equivalent CBM simulation is 
depicted below. b Force–dis-
tance data for a compression 
experiment simulated with 
DCMs, CBMs with using the 
JKR contact model, and CBMs 
using the calibrated contact 
model. c Simulated relaxation 
curves of a small spheroid per-
formed with DCMs assuming 
different friction coefficients

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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back to their original state is a measure for the relaxation 
time of a spheroid, and is used to calibrate the friction 
coefficients. The relaxation state is quantified by a strain 
function measuring again the average distance function d̃i 
between the cells as a function of time. This is depicted 
in Fig. 12c. We choose the optimal friction coefficients 
so that the cell clump has a relaxation time of ∼ 5 h as 
mentioned in Alessandri (2013); Marmottant et al. (2009). 
A model run with 5 times higher and 20 times friction is 
depicted to show a significant increase in relaxation times.

Appendix 2: Sensitivity of the model to some 
mechanical parameters

In Sect. 3.1.1, we have estimated the mechanical param-
eters of the cell that gave a good agreement with the data 
for MDA-MB-231 cells. The model parameters that can 
directly influence the deformation of the cells upon exter-
nal forces are the cell compression modulus ( KV ) the stiff-
ness of the cortex ( Ecor ), and the viscosity of the cortex 

Fig. 13   Comparison of the simulated MDA-MB-231 cell deformation 
with the experimental data in an optical stretcher, using a laser power 
1100mW (for clarity the laser power of 900mW has been omitted). 
The model was solely fitted using a Kelvin–Voigt model (KVE) and 
assuming temperature dependent friction coefficients for the cytoskel-
eton. A parameter study was run for varying KV , showing very lit-

tle effect of the cell compressibility for over 2 orders of magnitude. 
An increase in the cortex stiffness to E = 2000 Pa shows a significant 
decrease deformation of the cell, whereas a two-time increase in the 
cortex viscosity decreases the cell deformation and straightens out the 
curves

Fig. 14   DCM parameter influence on the liver lobule lesion closing. a Simulation with two times high cell stiffness ( 2000 Pa ) as compared to 
nominal value ( 1000 Pa ). b Simulation with two times higher cell–cell adhesion ( 10−4 J/m2 ) as compared to nominal value ( 5 × 10−5 J/m2)
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( �int ). As it may be assumed that these parameters change 
along various cell types, we have performed a sensitivity 
study to the get an idea of their influence. In Fig. 13, we 
have depicted the results of simulations for a variation on 
their nominal values (see Table 1). A relatively small vari-
ation (factor of two) of cortex properties seem to greatly 
influence the deformability of the cell. Contrary, the bulk 
modulus of the cell does not seem to play any role herein.

Since we do not know all the mechanical parameters for 
hepatocytes, we partially re-used parameters of the MDA-
MB-231 cells in the liver lobule simulations. As such, we 
may need to indicate how the mechanical cell properties 
influence the results on the lesion closing. Therefore as in 
the optical stretcher experiment, we run simulations with 
cell type with a variations on the parameters ( KV , Ecor , 
and �in ). In Fig. 14a, we have depicted the effect of a two 
times stiffer cortex, showing no large effect of this param-
eter, in contrast to the optical stretcher experiment. For a 
two times higher viscosity of the cortex, we found simi-
lar small effects (not shown). As in the optical stretcher 
experiment, a variation of the cell compressibility also 
did not show significant mutual differences (not shown).

However, as the lobule simulations include the cell–cell 
adhesion energy as additional parameter, we also run a set 
of simulations with a 2 times higher cell–cell adhesion. 
These indicate a significant effect of cell–cell adhesion on 
the lesion closing speed, as depicted in Fig. 14b.

Appendix 3: Estimation of the surface 
forces on a cell during the optical stretcher 
experiment

Here, we give explain how the nodal forces on the cell 
are calculated from the optical laser beam. Therefore, we 
closely follow the approach detailed in Guck et al. (2001). 
The cells pass the optical stretcher experimental setup 
in suspension. The radius of the Gaussian laser beam is 
Rbeam = 8.2�m (Grosser et al. 2015). We can assume a ray 
optics approach, since the wavelength of the laser light, 
� = 1064 nm is much smaller than the diameter of our opti-
cal particles ( ≈ 17�m).

Assume first a cube-like object which obstructs in the 
laser beam path. The laser beam enters the cube at the front 
side and leaves it at the back side. The incident momen-
tum of the laser pi = nE∕c (E is the energy of the incoming 
beam, n is the refractive index, and c is the speed of light), 
needs to be conserved at the interfaces of the medium with 
the cube. The surface picks up the difference of momentum 
Δp = pincident + preflected − ptransmitted between the incident ray 
and the transmitted ray through the cube.

A resulting optical force acting due to momentum transfer 
for the frontal cube side is calculated using the Fresnel for-
mulas and Newton’s second law (Guck et al. 2001):

where E is the energy of the photons, c is the speed of light, 
and nm is the refractive index of the medium. The factor Q 
represents the transferred momentum ( Q = 2 for total reflec-
tion, Q = 1 for total absorption) and total P0 is the incident 
power. The same formula needs to be applied to the laser 
beam leaving the cube to the medium. The total force on 
one side of the cube at the laser axis due to the presence 
of two lasers in opposite direction can thus be calculated 
by summing up the transferred momenta at one side (Guck 
et al. 2000, 2001):

where nc is the refractive index of the cube. The reflection R 
can be neglected for small incident angles, since according 
to the Fresnel equation:

Hence, the total force on the cube interface simplifies to:

This force acts always perpendicular to the object opposed to 
the incoming laser light. The applied stress in the direction 
of the laser beam on the cube is thus:

For nm = 1.33 , nc = 1.36 , P0 = 1.1W and c = 3 × 108 m/s , 
we find �0 = 1.05 Pa.

Within our model, we need the applied stress for each 
triangular surface segment. However, the forces due to the 
laser beam are not equally distributed over the cell, as the 
cell is not a cube but has a spherical-like shape and the 
incident angle is not zero anymore but varies along the cell 
surface. A realistic overall stress profile can be assumed to 
be approximated by �(�) = �0 cos

n � with amplitude �0 and 
fitting parameter n (Ananthakrishnan et al. 2006). Here, � is 

(25)F =
Δp

Δt
=

nmΔE

cΔt
=

nmQP0

c
,

(26)Ftotal = Ffront − Fback

(27)=
nmQfrontP0

c
−

ncQbackP0

c

(28)
= [nm − (1 −R)nc +Rnm]

P0

c
− [nc − (1 −R)nm +Rnc](1 −R)

P0

c
.

(29)R =

(
nc − nm

)2
(
nc + nm

)2 = 1.24 × 10−4 ≈ 0.

(30)Ftotal = (nm − nc)
2P0

c
.
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2P0

�R2
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.
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the angle between the laser axes and the nodal position of the 
cell (see Fig. 4c). To determine the parameter n, we evaluate 
the ratio of the laser beam radius to cell radius:

For a ratio of � ≈ 1 , n fits best when set to 2 (see, e.g., Guck 
et al. 2000, 2001; Ananthakrishnan et al. 2006). As we know 
how much surface area An each node on the cell represents, 
we can now calculate the forces on the DCM nodes by 
FL(�) = An�(�) , where FL(�) is oriented perpendicular to 
the cell surface at that node (Fig. 4c).
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