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Abstract

Mortality associated with breast cancer is attributable to aggressive metastasis, to which

TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking

the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltra-

tion/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils

(TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-

17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-asso-

ciated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion,

tumor growth, angiogenesis, and metastasis. In the current study, we investigate the poten-

tial of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα
mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The

results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage

colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many

aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling

patterns associated with CCL2 were blocked by apigenin and mediated through suppressed

mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of

CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated

extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings sug-

gest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines

from human breast cancer cells, which can be attenuated by apigenin.

Introduction

Breast cancer is a leading cause of death in women worldwide, despite medical advances in surgi-

cal techniques, radiation and chemotherapy. There is a continued need to identify preventive and

adjunctive chemosensitization agents in the management of breast cancer. Apigenin (4’,5,7-trihy-

droxyflavone) is naturally occurring bioactive compound (NOBC) found in parsley, garlic, and

celery. The biological relevance of apigenin in management of breast cancer is evidenced by the

growing pool of research (in vitro and xenograft tumor models) demonstrating its capacity to
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inhibit tumor promoting enzymes [1,2], overcome chemoresistance [3,4] and/or multi-drug

resistance [5], prevent angiogenesis [6] metastasis and lessen the growth of aggressive breast can-

cers [7]. There is also a plethora of research showing apigenin as a cytostatic agent with capacity

to attenuate clonogenic survival in a wide range of breast cancer cells; MDA-MB-231 [8], SKBR3

[9,10], Hs578T, MCF-7 [11], MDA-MB-453 [12], MDA-MB-468 Cells [13,14], T47D [15] and

BT-474 Cells [16]. Biological targets of apigenin relevant to tumor potential are known to involve

MAPK/NFkappaB, phospho-JAK1/ STAT3 signaling [17], VEGF, aromatase, proteasomal pro-

cesses, fatty acid synthase [18–21] and the Fas-associated protein with death domain (FADD)

[22].

Despite surmounting evidentiary support for apigenin in tumor suppression, there is lack

of research regarding its influence on the tumor microenvironment in response to pro-inflam-

matory cytokines, specifically TNFα. TNFα is present in high concentrations throughout the

breast tumor/ stroma milieu, and upon activation of TNFα receptors, can trigger a powerful

perpetual cascade of NF-κB activation [23,24]. epithelial-to-mesenchymal transition [25] and

sustained release of diverse chemokines (i.e., CCL2/CCL5) [26]. Chemokines in turn ulti-

mately trigger inward migration of a large number of leukocyte sub-populations (LSPs) bear-

ing CCR2 / CCR5 receptors that embed into the tumor, and further drive tumor aggression

and stem cell survival. [27,28] Tumor promoting LSPs are known to include tumor-associated

macrophages (TAMs) [29], myeloid-derived suppressor cells (MDSCs) [30], tumor-associated

neutrophils (TANs)[31,32], T-regulatory (Tregs) [33] metastasis-associated macrophages

(MAMs), T helper IL-17-producing cells (Th17) cells and cancer-associated fibroblasts (CAFs)

[34].

Thus, given the dynamic control of diverse chemokines as key trafficking molecules

released by tumor cells in response to TNFα capable of driving LSP recruitment [35–38], here

we investigated the effects of apigenin on TNFα mediated chemokine release in triple-negative

breast cancer (TNBC) cells.

Results

A basic cell viability in MDA-MB-231 cells was performed to establish appropriate non-lethal

working concentrations of apigenin and TNFα (Fig 1A) and (Fig 1B), respectively. Based on

these baseline studies, we chose the concentrations of 40μM of apigenin and 40ng/ml of TNFα
to carry out all subsequent studies. A semiquantitative analysis was performed to study the

cytokine release pattern, in the presence of TNFα and +/- apigenin, using sandwich-based pro-

tein arrays from RayBiotech (Norcross, GA, USA). The data obtained show that TNFα caused

significant upregulation of few specific cytokines. These cytokines included GM-CSF, CCL2,

IL-1α, IL-6 (Fig 2A–2D) IL-8 and GRO CXCL1/CXCL2/CXCL3 a/b/g (Fig 3A–3D), some of

which were downregulated by apigenin and subject to further validation by ELISA assays.

First, the densitometry array values (reflected by INT/MM2) are shown for the effect of api-

genin on TNFα mediated release of GM-CSF (Fig 4A), IL-6 (Fig 4B), CCL2 and IL-1α (Fig

4C). Results were then validated by independent ELISA, where the data paralleled between the

findings in the arrays for both CCL2 and IL-1α (Fig 5A and 5B).

To elucidate potential signaling changes associated with these findings, which were occur-

ring at the transcriptome level, RT-PCR NF-κB arrays were conducted using Signaling Path-

way H96 Predesigned 96-well panel for use with SYBR1 Green.CAT Number: 10025558.

Biorad (Hercules, CA, USA). The data show a lack of significant changes in all mRNAs

involved with NF-κB transcriptome pathway, where IL-1α shows a distinct but non-significant

change (Fig 6A and 6B and Table 1). The lack of data as reflected by this RT-PCR NF-κB array

was surprising, but a limitation to this array was the absence of IKBK-epsilon which plays a
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pivotal role in driving tumor malignancy in both TNBC [39] and receptor positive breast can-

cer cells [40]. Therefore, in the next study, we investigate changes in IKBK-epsilon transcrip-

tion determined by RT-PCR (Fig 7A) and protein expression using Western blot (Fig 7B).

These findings validate IKBK-epsilon to be the major proponent of NF-κB signaling control

involved with TNF-α mediated rise in CCL2 release and its reduction by apigenin. In the next

study, we demonstrate additional influential effects of MAPK signaling on TNF-α mediated

CCL2 release, focusing on changes in phospho-ERK protein, also downregulated by apigenin

(Fig 8). These findings show that apigenin can alter TNF-α mediated breast cancer signaling

pathways that control the release of CCL2, which in part involve IKBK-epsilon, and ERK, both

essential biological events required for TAM infiltration and recruitment into solid breast

tumor tissue.

Discussion

The findings in this study describe another anti-cancer property of apigenin to add to the arse-

nal of existing research having shown its ability to attenuate tumor promoting enzymes [1,2],

prevent chemoresistance/multi-drug resistance [3–5], halt angiogenesis [6] lessening VEGF,

inhibiting aromatase, proteasomal processes and fatty acid synthase, [18–21] and an overall

reduction in proliferation, migration, and invasion of aggressive breast cancer [7]. Here we

demonstrate the ability of apigenin to block TNFα mediated release of pro-inflammatory cyto-

kines which are themselves responsible for inward migration of leukocytes that drive tumor

growth, metastatic invasion [27], stem cell survival and immune evasion [23].

Fig 1. The effect of apigenin (A) and TNFα (B) on cell viability of MDA-MB-231 cells at 5% CO2/Atm for

24 Hr. The data are presented as viability (% Ctrl), Mean ± S.E.M. n = 4. The significance of differences from

the Ctrl and were determined by a one-way ANOVA, with a Tukey post hoc test. *p<0.05.

https://doi.org/10.1371/journal.pone.0175558.g001

Fig 2. (A-D). The release of cytokines as assessed using Human Cytokine Array C1000 membranes

from MDA-MB-231 cells ± TNFα ±Apigenin. [A] Ctrls, [B] TNFα-treated (40ng/mL) [C] Apigenin (40μM)

and [D] TNFα-treated (40ng/mL) + Apigenin (40μM) co-treated cells.

https://doi.org/10.1371/journal.pone.0175558.g002
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TNFα evoked release of tumor-promoting chemokines such as CCL2 (MCP-1), CCL5

(RANTES) and CXCL8 (IL-8) [26] trigger infiltration of CCR2/CCR5 receptor bearing leuko-

cyte sub-populations (LSPs) including TAMs [29], MDSCs [30], TANs[31,32], Tregs [33],

MAMs and CAFs [34]. While all LSP subtypes enable a tumor permissive and the evasive

immune environment [41], independently, each LSP can confer a unique independent effect.

For example, the arrival of MDSCs leads to potent immunosuppression by disabling the nor-

mal function of T and NK cells [42]. Whereas, the arrival of TANS perpetuates a sustained

release of CCL2, GM-CSF, CCL17 which correspond to elevated tumor size, microvascular

invasion and inward migratory activity of the macrophages and Tregs [43]. Reported results

on Tregs indicate a direct role in suppression of antitumor immunity by attenuating the T-

cell-mediated tumor cell killing [33] and secreting TGF-beta1 [44,45]. Meanwhile, the collec-

tive activity of TANS and MDSCS both yield the perpetual release of CCL2 and M-CSF foster-

ing synergistic infiltration of TAMS. TAMS, upon arrival, can then lead to even more release

of promoting cytokines: TGF-beta, MMPs, VEGF, CM/M-CSF, CCL 17, IL-13 and CCL2

which secure pro-angiogenic tumor processes [46]. In aggressive malignancies, metastatic

MAMs arrive at secondary sites and in turn recruit inflammatory CCR2 bearing monocytes by

CCL2, which in themselves release CCL3 and express CCR1, amplifying tumor potential [47].

LSP tumor infiltration is a vastly complex topic, yet all of these studies suggest the importance

of controlling the chemokines produced and released by tumor tissue.

The current study shows that apigenin can downregulate TNFα mediated release of CCL2,

largely attributable to its ability to downregulate IKBKe. The importance of IKBKe in driving

tumor malignancy potential in both TNBC [39] and receptor positive breast cancer cells are

known [40]. Moreover, there is a correlation between concentration of IKBKe and activated

JAK/SAT[39] TRAF2 [48] Akt/PI3K [49] phosphorylated p65-NFkB [40] and NF-kB activation

Fig 3. (A-D). The release of cytokines as assessed using Human Cytokine Array C1000 membranes

from MDA-MB-231 cells ± TNFα ±Apigenin. [A]Ctrls, [B]TNFα-treated (40ng/mL) [C]Apigenin (40μM) and

[D]TNFα-treated (40ng/mL) + Apigenin (40μM) co-treated cells. The data present membrane spot densities

(top) and manufacturer’s grid layout (bottom).

https://doi.org/10.1371/journal.pone.0175558.g003

Apigenin regulates CCL2 release in breast cancer cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0175558 April 25, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0175558.g003
https://doi.org/10.1371/journal.pone.0175558


Apigenin regulates CCL2 release in breast cancer cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0175558 April 25, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0175558


[50]. Likewise, numerous studies show many of these signaling pathways are blocked by api-

genin in tumor models [17] in particular NF-kB signaling [51,52] which controls the down-

stream release of TGF-b [53] and activity of MMP-9 [54], themselves involved with TAM/

TANs [55–57] and Treg recruitment [44,45].

The capacity of apigenin to block CCL2 is important because this single event is not only in

control of infiltrating/migratory activity of CAFs, TAMS, TANS, and MSCs into the tumor

environment but enables its perpetual ongoing accelerated release of CCL2, CXCL8, CCL5,

mediated by through NF-kB signaling [24]. There is sufficient evidence to show that initial

release of chemokines such as CCL2, GM-CSF [58] mark a potentially irreversible turning

point for tumor infiltration, immunological evasion, and tumor immune support [29,59,60].

Natural plant-derived chemicals that can downregulate CCL2 or act as CCR2 receptor antago-

nists [61] such as luteolin [62] esculetin [63] or EGCG [64,65] typically result in impaired

migration, less proclivity for metastasis [66] enabling greater efficacy of immunotherapies and

chemotherapy drugs [65].

In summary, these findings show that apigenin can block TNFα mediated release of CCL2

in a TNBC cell line. While the experimental evidence for the therapeutic application of api-

genin in cancer treatment is growing, human clinical trials are lacking [67]. Future studies will

be required to determine if apigenin can be used clinically to establish long-term remission in

cancer patients.

Materials and methods

Cell line, chemicals, and reagents

Triple-negative human breast tumor (MDA-MB-231) cells were obtained from the American

Type Culture Collection (Rockville, MD, USA). Dulbecco’s modified Eagle’s medium (DMEM),

fetal bovine serum (FBS) and penicillin/streptomycin were all obtained from Invitrogen (Carls-

bad, CA, USA). Recombinant human TNFα was purchased from RayBiotech (RayBiotech Inc.,

Norcross, GA, USA). Apigenin was purchased from Abcam (Cambridge, United Kingdom).

Cell culture

MDA-MB-231 cells were cultured in 75 cm2 or 175 cm2 flasks containing DMEM supple-

mented with 10% FBS and 1% 10,000 U/ml penicillin G sodium/10,000 μg/ml streptomycin

sulfate. Cells were grown at 37˚C with humidified 95% air and 5% CO2.

Cell viability assay

Alamar Blue cell viability assay was used to determine cytotoxicity. Viable cells are capable of

reducing resazurin to resorufin, resulting in fluorescence changes. Briefly, 96-well plates were

seeded with MDA-MB-231 cells at a density of 5×104cells/100 μl/well. Cells were treated with-

out or with either apigenin (10 μM, 20 μM, 30 μM, 40 μM 50 uM, 60 μM 70 μM 80 μM 90 μM

100 μM) or TNFα (0.1, 1, 10, 20, 40, 80, 100 ng/ml) for 24 h at 37˚C, 5% CO2. Alamar blue (0.1

mg/ml in HBSS) was added at 15% v/v to each well and incubated for 6–8 hrs. Quantitative

analysis of dye conversion was measured on a microplate fluorometer–Model 7620-version 5.02

Fig 4. The effect of apigenin on TNFαmediated changes in GM-CSF (A) IL-6 (B), CCL2 and IL-1α (C) in

MDA-MB-231 cells. The data represent the densitometry values (expressed as intensity per square millimeter)

(INT/MM2) per spot as Mean ± S.E.M. n = 3. The significance of differences between the Ctrl and TNFα groups

and TNFα vs. TNFα + Apigenin were determined by a Students t-test *p<0.05.

https://doi.org/10.1371/journal.pone.0175558.g004
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Fig 5. Effect of Apigenin on TNFαmediated changes in CCL2 (A) and IL-1α (B) in MDA-MB-231 cells.

The data represent CCL (pg/ul) or IL-1α (O.D. @ 405nm) as Mean ± S.E.M. n = 3. The significance of

differences between the Ctrl and TNFα groups and TNFα vs. TNFα + Apigenin were determined by a

Students t-test *p<0.05.

https://doi.org/10.1371/journal.pone.0175558.g005

Fig 6. NF-kB PCR microarray assessment on MDA-MB-231 cells ± TNFα ±Apigenin. The data displays

differential transcription for controls vs. TNFα (A) and TNFα vs. TNFα + Apigenin (B) in MDA-MB-231 cells

treated for 24 hours. The data show no significant changes at P < .05 for either analysis, with non-significant

differences for only IL-1α.

https://doi.org/10.1371/journal.pone.0175558.g006
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(Cambridge Technologies Inc, Watertown, MA, USA) set at 550/580 (excitation/ emission).

The data were expressed as a percentage of live untreated controls.

Table 1. NF-kB PCR microarray tabulated data on MDA-MB-231 cells ± TNFα ±Apigenin. The data displays differential transcription as Log2 (Fc) for

controls vs. TNFα (Left Panel) and TNFα vs. TNFα + Apigenin (Right Panel) in MDA-MB-231 cells treated for 24 hours. The data show no significant changes

at P < .05 for either analysis, with non-significant differences for only IL-1α.

TNF-alpha vs Controls TNF-alpha vs TNF-alpha+Apigenin

Symbol Log2(Fc) p Value Symbol Log2(Fc) p Value

IL1A 3.47 0.14 IL1A -2.555 0.121

AKT1 -0.03 0.83 AKT1 0.088 0.769

AKT2 -0.36 0.01 AKT2 -0.122 0.6

AKT3 -0.27 0.92 AKT3 0.415 0.975

CD14 -0.8 0.17 CD14 -0.482 0.176

CD28 -0.29 0.81 CD28 0.168 0.923

CHUK 0.27 0.69 CHUK 0.655 0.833

IKBKB -0.07 0.79 IKBKB 0.851 0.173

IKBKG 0.84 0.24 IKBKG 0.375 0.619

IL1R1 0.46 0.55 IL1R1 -0.019 0.705

IL1RAP 0.35 0.58 IL1RAP -0.169 0.616

IRAK1 -0.6 0.33 IRAK1 -0.445 0.507

IRAK2 0.6 0.43 IRAK2 0.515 0.334

IRAK3 0.98 0.35 IRAK3 -1.222 0.201

LBP -0.29 0.81 LBP 0.168 0.923

LTA 1.12 0.76 LTA 0.488 0.225

LTBR 0.63 0.34 LTBR -0.372 0.584

LY96 0.52 0.6 LY96 0.755 0.776

MAP3K1 -0.44 0.82 MAP3K1 0.138 0.846

MYD88 -0.52 0.36 MYD88 0.421 0.371

NKKB1 0.45 0.65 NKKB1 0.328 0.609

NFKB2 0.57 0.1 NFKB2 0.778 0.055

NFKBIA 1.04 0.18 NFKBIA 0.105 0.687

NFKBIB 0.48 0.22 NFKBIB 0.625 0.092

NFKBIE 0.84 0.45 NFKBIE 0.348 0.656

PRKCQ -0.29 0.81 PRKCQ 0.168 0.923

REL 0.53 0.6 REL 0.665 0.956

RELA -0.43 0.16 RELA 0.605 0.033

RELB 1.45 0.08 RELB 0.395 0.222

RIPK2 0.38 0.67 RIPK2 0.598 0.72

SUMO1 0.06 0.95 SUMO1 -0.299 0.927

TBP -0.13 0.74 TBP 0.558 0.946

TLR4 0.09 0.98 TLR4 -0.149 0.587

TNF 0.37 0.95 TNF 0.215 0.955

TNFRSF1A -0.16 0.57 TNFRSF1A 0.118 0.692

TNFRSF1B 0.49 0.47 TNFRSF1B -0.465 0.255

TRADD -0.54 0.31 TRADD 0.045 0.959

TRAF2 0.2 0.2 TRAF2 0.438 0.012

TRAF6 0.35 0.78 TRAF6 -0.129 0.728

UBB -0.82 0.1 UBB -0.295 0.167

UBC -0.12 0.92 UBC -0.135 0.685

https://doi.org/10.1371/journal.pone.0175558.t001
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Human adipokine array

Sandwich-based arrays purchased from RayBiotech (Norcross, GA, USA) consist of mem-

branes with 62 different proteins in duplicate. Each experiment was carried out by manufac-

turer’s instructions. Briefly, antibody-coated array membranes were treated with 1 ml of

medium from resting, apigenin-treated (40 μM), TNFα-treated (40 ng) and co-treated cells

and incubated overnight at 4˚C on a rocker/shaker. The medium was decanted, the mem-

branes were washed with wash buffer and then incubated with 1 ml biotin-conjugated anti-

bodies (overnight 4˚C). The mixture of biotin-conjugated antibodies was removed, and

membranes were incubated with horseradish peroxidase–conjugated streptavidin (2 h). After

a final wash, membrane intensity was acquired using chemiluminescence and analyzed using

Quantity One software (Biorad Laboratories, Hercules. CA, US). Densities were calculated by

subtracting blanks values from each array, then calculating all values as a percentage of the

positive control spots on each membrane multiplied by an arbitrary averaged control values

across all arrays in one individual test set. The data are represented as Density (Intensity

(INT)/MM2).

CCL2 and IL-1α detection by ELISA

Supernatants from resting and stimulated (24 h) MDA-MB-231 cells were collected and centri-

fuged at 100× g for 5 min at 4˚C. Specific ELISAs were performed using MCP-1/ CCL2 ELISA

kits (RayBiotech) following the manufacturer’s instructions. Briefly, 100 μl of supernatants

from samples and standards were added to 96-well plates pre-coated with capture antibody.

Fig 7. A. IKBKe transcription in MDA-MB-231 cells ± TNFα ±Apigenin. The data represent normalized

expression and are expressed as the Mean ± S.E.M., n = 3. The significance of differences between the Ctrl

and TNFα groups and TNFα vs. TNFα + Apigenin were determined by a Students t-test *p<0.05. Figure 7B.

Protein expression of IKBKe/GAPDH with TNFα ± Apigenin at 24 hours.

https://doi.org/10.1371/journal.pone.0175558.g007
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After incubation, 100 μl of prepared biotinylated antibody mixture was added to each well.

After one hour, the mixture was decanted, and 100 μl streptavidin solution was placed in each

well and incubated. Substrate reagent (100 μl) was then added to each well followed by the

addition of 50 μl stop solution 30 min later. The plate was read at 450 nm using UV microplate

reader.

RT-PCR and RT-RCR NF-kB signaling pathway

MDA-MB-231 cells were lysed with 1 ml Trizol reagent. Chloroform (0.2 ml) was added sam-

ples were vortexed, incubated at 15–30˚C for 2–3 min and centrifuged at 10,000 x g for 15

min. at 2–8˚C. The aqueous phase was transferred to a fresh tube, and the RNA precipitated

by mixing 0.5 ml isopropyl alcohol. RNA was extracted and subject to iScript advanced reverse

transcriptase (RT) to the reaction. The reverse transcription was performed for 30 min at 42˚C

and RT inactivation for 5 min. at 85˚C. PCR reaction. The following components were mixed

in a 0.5 ml PCR tube: 5.0 μl cDNA product, 10 μl Ss Advanced Universal SYBR1Green, 1.0 μl

primer and 4 μl water. PCR was performed with 39 cycles of denaturation: 15 sec. at 95˚C;

annealing: 30 sec. at 60˚C; and extension 60 sec. at 72˚C using Bio-Rad CFX96 Real-Time Sys-

tem (Hercules, Ca, USA). cDNA synthesis and Real-Time PCR was performed using iScript

Advanced synthesis kit / SsAdvanced Universal SYBR1 Green according to manufacturer’s

instructions. RT-PCR for IKBKe was run normalized to GAPDH mRNA, and the normalized

values for the NF-kB Signaling array are as specified in Fig 6A. The array used was the tran-

scription—NF-kB Signaling Pathway H96 Predesigned 96-well panel for use with SYBR1

Green (Bio-Rad, Hercules, CA).

Fig 8. Protein expression of ERK 1 2 (total and phosphorylated) and GAPDH in MDA-MB-231 cells ± TNFα ±Apigenin.

https://doi.org/10.1371/journal.pone.0175558.g008
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Western blot ERK1/2 and IKBKe

Total cell protein concentrations from MDA-MB-231 cells treated with apigenin, with and

without TNFα co-treatment, was determined using a modified Bio-Rad “DC” protein assay

(Bio-Rad Laboratories, Hercules, CA, USA). Cell lysates were separated by electrophoresis on

10% SDS-polyacrylamide gels and then transferred to Immobilon-P PVDF membranes. Blots

were blocked at 4˚C overnight in 5% bovine serum albumin (Sigma, St. Louis, MO, USA) in

Tris-buffered saline with 0.05% Tween 20 in PBS (PBST) and then incubated overnight at 4˚C

with mouse anti-human ERK1/2 and IKBKe affinity purified antibody (Cell Signaling, Dan-

vers, Ma, USA). Membranes were washed with PBST and incubated overnight with anti-goat

IgG-horseradish peroxidase (Santa Cruz Biotechnology, CA) in PBST overnight at 4˚C. Pro-

tein loading was monitored in each gel lane by probing the membranes with anti-GAPDH

antibodies (Santa Cruz, Ca, USA). Immunoblot images were obtained using a Flour-S Max

Multimager (Bio-Rad Laboratories, Hercules, CA). Lane density data was acquired with Quan-

tity One Software (Bio-Rad Laboratories, Hercules, and CA).

Statistical analysis

Statistical analysis was performed using GraphPad Prism (version 3.0; GraphPad Software Inc.

San Diego, CA, USA) with the significance of the difference between the groups assessed using

a one-way ANOVA, followed by Tukey post hoc means comparison test, two-way ANOVA or

Student’s t-test.
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