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ABSTRACT: The internal conformational strain incurred by
ligands upon binding a target site has a critical impact on binding
affinity, and expectations about the magnitude of ligand strain
guide conformational search protocols. Estimates for bound ligand
strain begin with modeled ligand atomic coordinates from X-ray
co-crystal structures. By deriving low-energy conformational
ensembles to fit X-ray diffraction data, calculated strain energies
are substantially reduced compared with prior approaches. We
show that the distribution of expected global strain energy values is
dependent on molecular size in a superlinear manner. The
distribution of strain energy follows a rectified normal distribution
whose mean and variance are related to conformational complex-
ity. The modeled strain distribution closely matches calculated
strain values from experimental data comprising over 3000 protein−ligand complexes. The distributional model has direct
implications for conformational search protocols as well as for directions in molecular design.

■ INTRODUCTION
Estimating bound ligand strain is complicated by the fact that
the tools available for X-ray crystallography model refinement
are better developed for protein modeling than for ligand
modeling. Very often, the modeled ligand coordinates yield very
high energy values, whether calculated by force field or quantum
mechanics (QM) approaches. This has been established in a
number of studies and reviews concerned with estimating strain
energy1−10 and studies and perspectives involving X-ray model
accuracy.11−13 For the strain-focused studies, especially the
earlier ones (e.g., the influential work of Perola and Charifson3),
unrealistically high strain energies were frequently calculated,
despite employing means to overcome the limitations of the
modeled X-ray ligand coordinates. In perspectives on X-ray
ligand modeling accuracy, frequent and often obviously
incorrect ligand geometries have been well documented.
Liebeschuetz et al.11 found that a majority of PDB complex
ligands showed evidence of incorrect bond lengths and angles
being used in refinement, and a quarter of ligand structures had
avoidable geometric errors that were potentially large enough to
lead to a mischaracterization of binding interactions. Sub-
sequent work highlighted continuing problems with ligand fit,
even in PDB complexes of moderate or high resolution.12

Reynolds13 summarized as follows: except for very high-
resolution cases, structures are fitted models that cannot be
assigned using the experimental density information alone, and
refinement protocols often require that the crystallographer be
responsible for determining appropriate structural constraints
for the ligand, which can be challenging. Improvements in

protocols for ligand refinement have been developed, including
AFITT, qFit-Ligand, and DivCon,14−19 but such methods have
not been adopted widely enough to make an impact on the vast
majority of publicly available protein−ligand structure data.
Consequently, a universal aspect of strain estimation for bound
ligands is the use of a “surrogate-energy conformer” in place of a
conformer with crystallographically modeled atomic coordi-
nates. Methods for deriving the surrogate-energy conformer and
for evaluating its energy vary widely, though all seek to identify
an energetically reasonable surrogate whose deviations from
deposited ligand coordinates are minimal.
We recently introduced a real-space ligand refinement

method (called “xGen”) suitable for application to typical
small molecules but also capable of efficient refinement for
synthetic and peptidic macrocycles.20,21 Two features of the
method are critical in the context of ligand strain. First, the
method explicitly seeks low-energy solutions to fitting X-ray
density, making use of a variant of MMFF94s, and it produces
energy-surrogate conformers as part of the fitting process.
Second, rather than employing atom-specific B-factors to
account for atomic positional uncertainty, occupancy-weighed
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conformational ensembles are sought such that their joint
contributions to calculated electron density fit the experimental
density well. The method simultaneously yielded improvements
in real-space electron density fit and significant reductions in
nominal bound ligand energies.

Figure 1 shows the contrast between a standard approach to
ligand modeling and strain estimation and the xGen-based
approach. Panel A shows the deposited ligand coordinates for
grazoprevir bound to an NS3/4A protease variant, which
exhibited excellent fidelity to the experimental density by both

Figure 1. Alternative methods for estimating bound ligand strain for grazoprevir bound to NS3/4A protease variant R155K. (A) Deposited ligand
model coordinates (green), showing the experimental electron density contour from the 2|Fo| − |Fc| map at 1.0σ, with real-space fit metrics calculated
using the modeled atom-specific B-factors. (B) The energy-surrogate conformer (yellow), with force field energy values for the modeled coordinates,
the energy-surrogate, the global minimum, and the calculated strain. (C) Conformer ensemble from xGen (orange), with real-space fit metrics
calculated using a constant B-factor and conformer-level occupancy weighting. (D) The lowest-energy xGen surrogate conformer (yellow), with the
range of energy values for the ensemble and energy-surrogates along with the calculated strain.
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RSCC and RSR (real-space metrics for quality of density fit22).
Panel B shows the energy-surrogate conformer (yellow)
obtained by position-constrained minimization using a square-
welled quadratic positional restraint on non-hydrogen atoms
(1.0 kcal/mol/Å2 for deviations beyond 0.1 Å). Positionally
restrained minimization reduced the nominal energy of the
deposited bound ligand model from 316.8 (labeled as EPDB) to
154.7 kcal/mol (labeled as Esurr), with minor geometric
deviation, illustrating the need for an energy-surrogate con-
former in place of directly modeled ligand coordinates. Global
strain is calculated based on the difference between the bound-
state energy (Esurr) and the unbound-state minimum energy

(Egmin), which is the global minimum energy from an exhaustive
conformational search of the ligand.
Panel C shows the four-conformer xGen ensemble, which

differed from the deposited ligand in the macrocyclic linker and
in the terminal cyclopropyl, allowing for some movement in
both areas (marked by red arrows). The xGen ensemble is both a
good fit to the density and low in energy. Panel D shows the
ensemble conformers (orange) and energy-surrogate conformer
(yellow) with the lowest energy. Energy ranges for the ensemble
conformers and corresponding energy-surrogates are labeled as
ExGen and Esurr. Estimated strain energy was reduced from +16.1
to +3.9 kcal/mol, which seems more plausible in light of the

Figure 2.Molecular size, flexibility, and degree of ligand binding site contact. (A) Cumulative histogram of molecular size. (B) Cumulative histogram
of total molecular flexibility, which includes exocyclic rotatable bonds plus rotatable macrocyclic bonds. (C) Smoothed histogram of the ligand binding
contact, defined as the fraction of ligand atoms within 1.0 Å of any protein atom (distance measured between VdW surfaces). (D) Relationship
between molecular size and binding site contact.
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Figure 3. Examples spanning different molecular sizes and ligand binding site contact (energy values in kcal/mol). PDB ligand coordinates are shown
with green carbons, and xGen fitted ensembles are shown with orange carbons. (A) Biotin bound to the S45A mutant of streptavidin. (B) Inhibitor
bound to the kinase domain of humanDDR1. (C) Antagonist bound to heat-labile Enterotoxin B. (D) Sanglifehrin A analog bound to cyclophilin. (E)
Cyclosporin A bound to a Leishmania donovani cyclophilin (ΔG from Venugopal et al.26). (F) Endothelin in complex with human endothelin receptor
type-B (ΔG from Shihoya et al.27).
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approximate free energy of binding being −12.3 kcal/mol
(based on a Ki of 0.84 nM for grazoprevir against the R155K
HCV NS3/4a protease mutant23).
Our prior work focusing on macrocyclic peptide strain also

included data from non-peptidic macrocycles and from non-
macrocyclic small molecules.21 We observed a rough upper
bound on ligand strain, independent of ligand type and linear in
molecular size, of approximately 0.3(NnonH − 10) kcal/mol (for
grazoprevir, with 54 non-hydrogen atoms, the nominal upper
bound is 13.2 kcal/mol). Here, we show that the distribution of
strain energy follows a normal distribution (with an enforced
lower bound of 0) whose mean and variance can be defined as a
function of molecular conformational complexity that is
superlinear with respect to molecular size. The distributional
model fits strain calculations for nearly 3,000 PDBBind24,25

protein−ligand complexes whose ligands were subjected to real-
space refinement with xGen (in addition to the prior data set of
341 protein−ligand complexes that was skewed heavily toward
large macrocycles).
Further, the relationship between calculated strain and

experimentally determined binding affinities comports with
physical principles. There is a quantitative relationship between
ligand efficiency (binding free energy per non-hydrogen atom)
and ligand strain-per-atom. Ligands with high efficiency seldom
have high per-atom bound conformational strain, but ligands
with low efficiency exhibit a broad range of per-atom strain.
The distributional model, in the context of the relationship

between strain and binding affinity, has direct implications for
conformational search protocols as well as for molecular design
and optimization.
Data and methods discussed in this paper are available to

other researchers (see Data Availability Statement).

■ RESULTS AND DISCUSSION
We introduce a distributional model of bound ligand strain that
accounts for the dependence on molecular size using a
macrocycle-focused set of 341 protein−ligand complexes21

(the “Brueckner Set”) augmented with nearly 3,000 complexes
from the PDBBind 2020 refined database24,25 (the “PDBBind
Set”). After describing the data set characteristics, we summarize
the differences between the standard approach to modeling
ligand strain and the xGen methodology. Next, we illustrate the
form of the ligand strain distributional model using the
macrocycle-focused data set and present refinements to the
model using the PDBBind protein−ligand complexes. The
relationship to alternative approaches and the biological
relevance of an accurate means for estimating and modeling
strain are discussed last.
Molecular Data Set Composition. The Brueckner Set was

comprised of 38molecules from the Perola/Charifson study3 for
which electron density was available, 147 non-peptidic macro-
cycles,20 and 156 peptidic macrocycles.21 These ligands were
both larger and more flexible than typical drug-like molecules. In
order to understand bound ligand strain more generally, here we
have performed real-space ligand refinement on the full
PDBBind refined data set (2020 release),24,25 resulting in
2,996 cases having high-quality ligand conformational ensem-
bles, each with annotated experimentally determined binding
affinities (see Experimental Section for details). Figure 2
summarizes the size, flexibility, and binding site contact for
the ligands in the Brueckner Set and the PDBBind Set.
The PDBBind ligands generally exhibit the size and

complexity expected of drug-like molecules, per the curation

goals of the refined set.25 As shown in Figure 2, roughly 90% of
the ligands have 40 or fewer non-hydrogen atoms (roughly less
than 500 Da in molecular weight) and 80% have 10 or fewer
rotatable bonds. In contrast, the Brueckner Set has roughly 70%
of ligands withmore than 40 non-hydrogen atoms and 90% with
greater than 10 rotatable bonds.
Molecular size is also related to the proportion of ligand atoms

that are in close contact with a protein when bound. A very
simplemeasurement of the degree of contact is the proportion of
ligand atoms (including hydrogens) whose van der Waals
(VdW) surfaces are within 1.0 Å of the nearest protein atom’s
VdW surface. Figure 2C shows a clearly multi-modal
distribution of ligand contact for the macrocycle-focused set.
A threshold of 70% contact roughly splits the Brueckner Set
between distributional peaks. The PDBBind Set has a small tail
of ligands with contact lower than 70% (less than 1% of cases).
As seen in Figure 2D, very large ligands (roughly 80 non-
hydrogen atoms or more) tend to skew toward lower fractional
contact. However, smaller ligands span a range of binding site
contact. For example, the 40−60 atom size range includes
ligands ranging from 35% to 100% binding site contact. For
reference, the macrocycle in Figure 1 has 82% binding site
contact and 54 non-hydrogen atoms. In what follows, the subset
of the combined Brueckner and PDBBind Sets with at least 70%
contact (the “High-Contact Set”) will be analyzed in the greatest
detail, as it comprises nearly all of the data (3,148 of 3,337
cases).
To provide context regarding the diversity of ligands and

binding site contact, Figure 3 shows six representative examples.
N specifies the number of non-hydrogen atoms, energy values
are in kcal/mol, and ΔG values were estimated from PDBBind
unless otherwise noted. Minimum RMSD values are given for
the xGen ensembles compared with the PDB ligand coordinates.
The examples span the small but highly potent case of biotin
bound to a streptavidin mutant (Panel A) to very large peptide
macrocycles with divergent binding site contact (Panels E and
F). The xGen approach yielded strain reductions in all cases, and
the conformer ensembles showed conformational heterogeneity
in solvent-exposed areas. Each also included a conformer that
was quite close to the original PDB ligand coordinates.
Real-Space Ligand Refinement: Low-Energy Confor-

mational Ensembles. As shown in Figure 1, modeling ligand
density may be done with a conformational ensemble rather
than a single conformer, as previously described in detail.20,21

Briefly, a conformational search is carried out in which each
conformer’s fit to real-space electron density is expressed as an
energetic reward, balanced against the energy from a variant of
MMFF94s. Figure 4 shows the resulting conformer set for the
3SUE case introduced above (top center, shown with a heat-
map of real-space electron density). These conformers balance
the tension of fitting the density perfectly against the constraints
of conformational energy.
Each of these balanced-pool conformers is then re-minimized

in two ways: a) under a condition in which the density overlap is
strongly weighted (top right) and b) with no density overlap
reward but with a positional restraint (top left). These three
pools are used to identify conformer trios with the property that
a low-energy “min-pool” member and a high-fit-quality “density-
pool” member are both within a small neighborhood of a central
“balanced-pool” member. The three members of such a trio are
shown at the bottom of Figure 4 along with their associated
energy values. The collection of such trios is then used to
identify a conformer ensemble to optimize the fit to real-space
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electron density. Note that the density-pool members are used
to construct the occupancy-weighted conformer ensemble, and
their corresponding min-pool siblings serve as energy-surrogate
conformers.
The respective conformational energy values for the three

members of the trio in Figure 4 were 183.7 (density-favored),
150.5 (balanced), and 144.8 (energy-favored). This particular
trio had the single best-fitting density-favored conformer, and
that excellent fit to experimental X-ray data is reflected by very
high conformational energy. Position-restrained relaxation of
that conformation improves its energy (to 157.0 kcal/mol) with
minor atomic coordinate movement (0.1 Å RMSD). However,
that is still much higher energy than seen with the energy-
favored sibling conformer within the trio, which is not reachable
through local optimization. The phenomenon of nearby local
energetic minima that are unreachable is the principal problem
with the standard approach to identifying energy-surrogate
conformers.
By constructing the conformational ensemble with an

awareness of the importance of energy-surrogate conformers,
xGen obtains high-quality fits to electron density while also
allowing for estimation of energetically reasonable bound ligand
strain. The difference between the minimum energy obtained
from the set of energy-surrogate conformers and the global
energy minimum for the ligand is the reported strain energy (the
Experimental Section contains additional details). In the case
shown in Figures 1 and 4, the net result is a marginally better fit
to electron density with a four-conformer ensemble along with a
75% reduction in estimated strain energy.
For the PDBBind Set, the average ensemble size was 2.5, with

a small but consistent improvement in real-space density fit and
an average reduction in estimated strain energy of 37%
compared with the standard approach of positionally restrained
minimization of the original deposited ligand coordinates. The
mean deviation for the final energy-surrogate conformers to the

Figure 4. The xGen approach constructs ensembles to fit electron
density from conformational trios, each of which is anchored by a
conformer that arose from an X-ray density-aware conformational
search (slate). These balanced conformers are optimized toward a
density-weighted fit (orange) and an energy-weighted fit (salmon).
Conformer trios are identified whose density-favored member and
energy-favored member are near optimal and where both are
geometrically close to a central balanced conformer.

Figure 5. Relationship between strain energy and molecular size for the Brueckner Set with an approximately linear upper bound on strain (blue
dashed line).
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real-space fitted conformers was 0.3± 0.12 Å on average. For the
Brueckner Set, the average ensemble size was 3.5, again with a
small but consistent improvement in real-space density fit and an
average reduction in estimated strain energy of 43% compared
with the standard approach. The mean deviation for the final
energy-surrogate conformers was 0.3± 0.14 Å on average for the
Brueckner Set.
The primary focus of this study is strain energy, not the

comparative advantages of ensemble-based ligand modeling in
X-ray diffraction data. However, for this study, it is important
that the ensemble approach yielded ligand models of similar
quality to the original deposited ligand coordinates. As seen in
our prior work,20,21 improvements in RSCC and RSR were small
but consistent compared with original PDB ligand coordinates:
an average RSCC of 0.924 and an average RSR of 0.156,
compared to the original PDB ligand coordinatemetrics of 0.897
and 0.169, respectively.
Ligand Strain Is Superlinear in Ligand Size. Figure 5

shows a simple linear upper bound suggested by the derived
ligand-strain values (SUB = 0.3(NnonH − 10) kcal/mol), as
previously described.21 While this apparent bound accounts for
the lower-right triangular relationship between ligand strain and

molecular size, it lacks statistical support, and it does not account
for the apparent lack of very low strain values at the higher range
of molecular size.
Considering the distribution of strain normalized by NnonH,

the Perola/Charifson subset (violet in Figure 5) and the non-
peptide macrocycles (red) both shared a median value of 0.08
kcal/mol/atom. However, the peptide−macrocycle subset
(orange) was more than 60% larger: 0.13 kcal/mol/atom.
This observation led to the hypothesis that the expectation value
for ligand strain might be superlinear. Given the limited number
of data points, especially at larger molecular sizes, adding the
PDBBind Set to the Brueckner Set provided an opportunity to
better quantify the relationship between ligand size and strain.
Figure 6 shows the relationship between estimated global

strain for the High-Contact Set (top two plots, 3,148 total
protein−ligand complexes) and for a simplified subset with one
formally charged atom or fewer and 65 non-hydrogen atoms or
fewer (bottom two plots, 2,282 protein−ligand complexes). The
left-hand plots illustrate the relationship between ligand strain
and molecular size, with the PDBBind cases shown in violet,
non-peptide macrocycles shown in red, and peptidic macro-
cycles shown in orange. Smoothed sample mean strain is plotted

Figure 6. Relationship of ligand strain to molecular size.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.2c01744
J. Med. Chem. 2023, 66, 1955−1971

1961

https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01744?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01744?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01744?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01744?fig=fig6&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c01744?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


with a thick dashed line (with its confidence interval shown in
thin dashes), smoothed sample upper and lower 95th and 5th
percentiles are plotted with dashes and dots, and the linear fit to
the strain for small molecular sizes is plotted with a thick blue
line. The right-hand plots show cumulative histograms of strain-
per-atom in increasing size bins.
For the full High-Contact Set, ligand strain is clearly

superlinear: the linear fit to strain clearly diverges as molecular
size increases (top-left plot of Figure 6), and there are consistent
rightward shifts in cumulative histograms of strain-per-atom as
molecular size increases (top-right plot of Figure 6). However,
the full High-Contact Set contains cases with a number of
features that complicate accurate strain estimation and may lead
to erroneously high strain estimates: additional degrees of
freedom that might hamper identification of low-energy
ensembles, salt-bridge collapse in cases with multiple formal
charges leading to artificially low global minimima, the effects of
interstitial water within large ligands that may affect structural
stability, and cases where multiple proximal like-charged
moieties, treated as ionized, may lead to high estimates of
bound conformational energy.
The simplified subset contains over 2,000 cases, even with

restrictions onmolecular size (65 or fewer non-hydrogen atoms)
and formal charge (one or fewer ionizable ligand atoms). With
these restrictions, the concerns about overestimated strain
energies were ameliorated. As seen in Figure 6 (bottom two
plots), elimination of the potentially problematic cases had
essentially no effect on the observations regarding superlinearity.
Note that others have attributed anomalously high strain to

artifactual polar collapse,28 which could account for the
observed superlinearity. However, the simplified subset
eliminated the most potentially problematic cases, and the
superlinearity remained. We also recalculated global strain
values for the entire data set of over 3,000 cases without a polar
component in the energetic calculations. Results were nearly
identical, with per-ligand global strain differing by 0.32 kcal/mol
on average between the xGen-based global strain calculation and
this apolar control calculation, with τ = 0.92 (p ≪ 0.001,
Pearson’s r = 0.99).
It is not clear how to directly confirm the superlinearity

experimentally, but there are clear physical principles that
support the observation. There are three components to global
ligand strain: 1) the X-ray fitting strain, which is generally
considered to be an artifact of crystallographic data
reconstruction, and which is addressed by xGen ligand
refinement and positionally restrained minimization; 2) the
local strain, which is the difference between the positionally
restrained conformer and an unrestrained local minimum; and
3) the difference between the energy of the unrestrained local
minimum conformer and the global minimum.
One might expect that the local strain would be proportional

to molecular size, given that, under reasonable assumptions of
gross molecular shape (e.g., cylindrical as ligands become large),
the binding contact area and maximal interaction energy
increase roughly linearly with size. Consequently, the distortive
effect on the ligand would also be roughly linear. However, the
difference in energy between the unrestrained local minimum
conformer and the global minimum should also be related to
conformational flexibility: the likelihood that a ligand might
adopt a much lower energy conformation in its unbound state
should increase with ligand flexibility.
Within the high-contact combined set, molecular size bins of

10−15, 16−20, 21−25, 26−30, 31−35, and 36−40 all had at

least 200 cases. For each of those narrowly defined ligand size
bins, there was a statistically significant positive correlation (p <
0.001, by Kendall’s Tau) between number of rotatable bonds
and ligand strain. Conversely, for rotatable bond counts of 0−1,
2−3, ..., 10−11, and 12−15 (each with at least 200 cases), there
was a statistically significant positive correlation (p < 0.001, by
Kendall’s Tau) between number of non-hydrogen atoms and
ligand strain for all flexibility bins.
Given the clear superlinear relationship between molecular

size and ligand strain, a simple proposition is that the
relationship might be roughly quadratic in terms of molecular
size. A quadratic relationship offers three interesting physical
underpinnings. First, as molecular size increases, non-bonded
energy terms, which increase with the square of the number of
atoms in a molecule, begin to dominate in influence. Second,
demonstrated nicely by Reynolds et al.,29 as size and complexity
increase across multiple specific protein−ligand interactions,
structural compromises in the form of induced strain and
suboptimal protein−ligand complementarity multiply, contri-
buting to increasing per-atom strain. Third, the square of the
number of non-hydrogen atoms is strongly correlated with the
product of molecular size (the number of non-hydrogen atoms)
and molecular flexibility (the total number of exocyclic and
macrocyclic rotatable bonds plus one). For the High-Contact
Set, Kendall’s Tau was 0.76 (p ≪ 0.001), and Pearson’s r was
0.94 (see Figure 7).

A Distributional Model of Ligand Strain. The strain for a
ligand with N non-hydrogen atoms appears to behave like a
random variable x that follows the distribution defined by f:
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Figure 7.Relationship between the square of heavy atom count (X axis)
and conformational complexity modeled as the product of atom count
and number of rotatable bonds (Y axis).
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N n( )0
2= + (2)

N n( )2
0

2= + (3)

where α, β, and n0 are empirically determined constants and, as
will be shown below, have defined but different set of values for
high- vs low-contact ligands. Note that f is a normal distribution
with an enforced lower bound of 0 (also known as a rectified
normal distribution) whose mean and variance are quadratically
dependent on molecular size.
Figure 8 illustrates the distributional model for the High-

Contact Set. The top plot is as shown in Figure 6, with the
addition of the distributional-model-predicted mean and upper
and lower bounds (blue curves). Using the exact molecular sizes

seen in the set, predicted strain energy values were synthetically
generated from the model distribution using the μ and σ
predicted for each molecular size. Note that the smaller
molecular size range (up to 40 non-hydrogen atoms) contains
nearly 3,000 data points, and the sample-mean estimate has a
correspondingly narrow confidence limit that follows very
closely to the modeled distribution. As data density decreases
with molecular size, the confidence limit for the sample mean
widens, but it still largely encloses the modeled distribution
mean. The upper and lower bounds were estimated from the
observed and synthetic distributions at the 95th and 5th
percentiles, respectively. For the observed data, the bounds were
relatively noisy, as expected from sampled tail data.

Figure 8. Relationship between strain energy and molecular size for the High-Contact Set, modeled using the proposed size-dependent rectified
normal distribution.
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The bottom two plots of Figure 8 show the comparison of the
cumulative histograms of observed ligand strain with the
synthetic strain values (gray and blue solid curves, respectively),
both for ligand strain normalized per non-hydrogen atom (left)
and for overall ligand strain (right). If ourmodel distribution was
a poor model of the actual distribution, then the cumulative
histograms would diverge substantially. The dashed blue lines
form a band whose width is determined using the Kolmogorov−
Smirnov (KS) test statistic. Given that the gray curves are
contained within the bands, one cannot say that the observed
and synthetic distributions are different from one another with
any degree of confidence, even at the weak p-value of 0.05. The
actual sample distribution is therefore likely to be well-modeled
by the proposed rectified normal distribution.
The KS test statistic is constructed to reject the hypothesis

that two distributions are the same. Therefore, small p-values
require larger deviations between two distributions in order to
support a claim that the distributions are different. Here, we are
illustrating the closeness of our distributional model and the
strain energy estimates. So when the experimental distribution
falls within the bands around the model distribution, the higher
the nominal p-value is, the more likely it is that the distributions
are the same. Note also that larger data set sizes lead to narrower
bands. In Figure 8, the bands are narrow, given the large data set
(>3,000 cases) coupled with the high nominal p-value (= 0.05),
highlighting the tight correspondence between the observed and
synthetic model distributions.
The Low-Contact Set (less than 70% binding site contact)

includes just 189 ligands in total. Figure 9 is analogous to the top
plot seen in Figure 8 but for the Low-Contact Set. The sample
mean estimate was quite noisy, due to the sparsity of data, but
tracked well with the modeled distribution (sample upper and
lower bounds could not be estimated). As with the High-

Contact Set, the observed strain-per-atom and total strain fell
within conservative bands around the modeled distribution
(data not shown, with the bands being substantially wider due to
the much smaller data set).
Distributional Model Variants. We have shown that a

simple distributional model, with just three parameters, fits the
observed bound ligand strain for a very broad variety of ligands
using a quadratic dependence onmolecular size, measured as the
number of non-hydrogen atoms.
It is also possible to model the distribution as being linearwith

respect to mean and variance using the product of the number of
non-hydrogen atoms and the total number of freely rotatable
bonds plus one (including both exocyclic and macrocyclic
bonds) as a simple conformational complexity measure. A linear
model exhibits roughly the same quality of fit in terms of the
distribution of observed to modeled ligand strain as seen for the
quadratic model, because of the strong correlation between the
square of the atom count and the conformational complexity
measure (see Supporting Information for details). However, the
quadratic model is simpler, requiring only a count of the number
of non-hydrogen atoms. Also, it directly produces an estimate for
strain-per-atom, while the linear model cannot do so, being
parameterized on the conformational complexity measure.
Ligands with high binding site contact are the overwhelming

majority of drug-like ligands, and their strain was well modeled
with the quadratic molecular-size approach using the rectified
normal distribution defined in eqs 1−3 with α = 0.0030, β =
0.0100, and n0 = −5. Ligands with low binding site contact,
typified by large peptidic macrocycles but including smaller
macrocycles and some “normal” small molecules, were well
modeled with α = 0.0013, β = 0.0020, and n0 = +5. The major
difference between the high- and low-contact models is that, for

Figure 9.Relationship between strain energy andmolecular size for the Low-Contact Set, modeled using the proposed size-dependent rectified normal
distribution.
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a given molecular size, the high-contact model predicts higher
strain than the low-contact model.
The analytical formulas for the 95th percentile upper and 5th

percentile lower bounds on strain are

UB 1.64595 = + (4)

LB max( 1.645 , 0)05 = (5)

where μ and σ are defined in eqs 2 and 3. Note that the true
lower bound, while close to eq 5, is very slightly shifted upward
near the intersection with 0 strain energy due to the effect of
clipping in the rectified normal distribution.
Given a ligand with 30 non-hydrogen atoms, the high-contact

model predicts a mean strain of 1.9 kcal/mol with a 95th
percentile upper bound of 6.0 kcal/mol. Respectively, the low-
contact model predicts 1.6 and 4.2 kcal/mol. The trend of lower
predicted strain values for the low-contact condition increases in
magnitude as ligand size increases. At 60 non-hydrogen atoms,
the expected mean/upper bound shifts to 5.5/10.3 and 9.1/18.1
kcal/mol for the low- and high-contact models. This seems to be
an intuitive result: with higher contact, greater free energy gains
can accommodate higher levels of strain. As the influence of the
binding event decreases, with lower contact and reduced free
energy gain, the impact on the conformational preference of the
ligand should also decrease. In the asymptotic case of vanishing
binding site contact, we would, of course, expect to see no strain
at all.
It seems surprising that the objects of a human design process

should have a key property that follows a relatively simple
distribution at all. A number of molecular properties are actively
tuned during lead optimization, for example: potency,
selectivity, logP, size, formal charge, pharmacokinetics, and
metabolic liabilities. Of these, only potency and selectivity have
direct links with bound ligand strain, and considerations of strain
sometimes do influence molecular design choices. However,
because strain cannot be measured experimentally and
computational strain modeling has been an evolving area,
observed bound ligand strain, to a degree, is an experiment of
nature. To the extent that direct optimization of ligand strain has
been (or will be) undertaken for particular targets or within
particular molecular series, the distributional model derived here
will begin to break down.
Relationship toOtherWork. In a very early study of bound

ligand conformational strain energy using the CHARMm force
field, Nicklaus et al.1 found relatively high average conforma-
tional strain energies (15.9 kcal/mol) across a set of 27 flexible
ligands. Subsequently, Boström et al.,2 usingMM3 and AMBER,
estimated quite low energies for 70% of studied ligands (≤3
kcal/mol) but found a significant set of nominal outliers with
higher energies (roughly 20% with strain of 6−19 kcal/mol).
Perola and Charifson3 characterized a 150 ligand set (very large
for the time) using MMFF and OPLS-AA, and found roughly
60% of cases to have strain energy ≤5 kcal/mol but at least 10%
to have strain energy ≥9 kcal/mol. Each of these studies used
minor variations of what we have termed the “standard” method
for strain energy estimation, and all focused on small molecule
ligands.
By contrast, for the high-contact cases in the combined

Brueckner and PDBBind Sets with 40 or fewer non-hydrogen
atoms (2,797 complexes in total), 70% of the xGen refined
ligands had strain values of ≤2.1 kcal/mol, with just 10% ≥4.6
kcal/mol, and less than 2% ≥9.0 kcal/mol. Including the larger
high-contact ligands (3,148 cases in total), the values shifted

slightly, to ≤2.6 kcal/mol at 70%, ≥6.2 kcal/mol at 10%, and
≥9.0 kcal/mol at less than 4%.
Updating the prior study of Nicklaus et al.,1 Sitzmann et al.7

calculated conformational energies at the DFT level of theory.
They carefully curated high-quality PDB structures using criteria
about structure quality (e.g., resolution, Rf ree, and real-space
ligand fit), ligand appropriateness (e.g., non-ionizable molecules
with limited conformational flexibility), and numerous other
aspects, resulting in 98 ligand instances in their strictest filtered
subset. Nominal calculated conformational energies were much
higher than reported here, with a median value of 9.2 kcal/mol
and 70% having energies greater than 6.4 kcal/mol, compared
with results here showing strain energies ≤2.1 kcal/mol for 70%
of cases in the combined Brueckner and PDBBind Sets with 40
or fewer non-hydrogen atoms.
More recent work from Zivanovic et al.10 considered 115

cases (with substantial overlap to the Perola/Charifson set)
using high-level QM methods for energy evaluation and
unconstrained minimization of the bound ligand conformations
to arrive at energy-surrogate conformers. The latter choice led to
greater divergence from crystallographic ligand coordinates than
is typical in such studies, allowing for lower bound strain
estimates than more stringent protocols for managing crystallo-
graphic deviation. Nonetheless, their results largely paralleled
our own, with 73% of ligands yielding strain ≤1.8 kcal/mol
(compared with 66% observed here in the combined Brueckner
and PDBBind Sets with 40 or fewer non-hydrogen atoms).
Another, larger-scale, QM approach is the recent study by

Tong and Zhao,9 which considered over 6,000 cases of protein−
ligand complexes using ab initio energy calculations and a
relatively stringent approach to energy-surrogate conformer
derivation. They filtered publicly available structures for
structural quality in addition to restricting molecular complexity
(130 <MW< 600 and number of rotatable bonds≤10). Overall,
they obtained a mean strain energy of 4.6 kcal/mol (median of
3.7 kcal/mol) and a 95th percentile of 12.4 kcal/mol. The set of
cases included 828 in common with the combined Brueckner
and PDBBind Sets studied here, in which the respective ab initio
strain energy values were comparable to the full set: 4.7 (mean),
3.6 (median), and 12.6 kcal/mol (95th percentile). The xGen-
based strain energy estimates were much lower: 1.5 (mean), 0.8
(median), and 5.8 kcal/mol (95th percentile).
Non-aromatic rings were identified as often yielding

anomalously high strain energy,9 and the example of PDB
code 4MU7 was highlighted, with a calculated ab initio strain
energy of 21.7 kcal/mol for the ligand. Figure 10 shows the
deposited and xGen refined ligand models, with the former
yielding 12.1 kcal/mol in strain energy and the latter yielding 1.1
kcal/mol (both values calculated as above for the Brueckner and
PDBBind data sets). Re-refinement of the ligand produced an
obviously improved structure, with a believable estimated strain
energy.
High-Quality Ligand Fitting Is Critical. In estimating

bound ligand strain energies, theoretical sophistication in
calculations of energy values cannot overcome poorly fit ligand
models. Poor fit, in the sense being used here, may not be
detected by metrics such as RSCC, RSR, or EDIAm.22,30 The
nominal fit quality for the deposited ligand model in Figure 10
(PDB code 4MU7) was high using all three metrics. Cases of
poor fit, as in this example, will generally produce erroneously
high strain estimates. When low-energy models exist that fit the
X-ray data as well or better, strain estimates will more closely
track with measured binding affinity values (i.e., by not
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exceeding reasonable expectations based on the free energy of
binding).
Fit quality, absent consideration of ligand energetics, cannot

be used to identify cases where crystallographic ligand models
may be used as starting points for strain estimation, whether
using simple force field methods or highly sophisticated ab initio
methods. Cases of poor fit, exemplified by the ligand of 4MU7,
will tend to produce anomalously high strain estimates. Even in
cases where the quality of ligand models is not an issue,
computationally expensive calculations are difficult to apply
rigorously to obtain reliable global minimum estimates,
effectively adding another source of noise to strain estimates.
Alternate Energetic Calculations. As we have just seen,

strain estimationmust begin with energetically reasonable ligand
conformations. The foregoing xGen-based results relied upon a
variant of MMFF94s, which is limited, to a degree, in detailed
parameterization of different torsion types. Some studies of
ligand strain have made use of multiple alternative force fields,2,3

finding relatively little difference in general trends or estimated
strain bounds. Here, the xGen conformer ensembles fit to X-ray
density are strongly influenced by the experimental diffraction
data. The energetic benefit of correctly overlapping a single
carbon atom with matching density is roughly −8.0 kcal/mol,20
which is enough to overcome inaccuracies in torsional
parameterization. So, the geometries of the conformer
ensembles are well-fit to the experimental X-ray data while
avoiding obviously high energy configurations.
However, when making quantitative estimates of strain using

the energy-surrogate conformer from the xGen trio, inaccuracies
in torsional parameterization may become important. In order
to address this, wemade use of OPLS431 for a randomly selected
10% of the PDBBind Set (see Experimental Section for details).
The correlation between the xGen strain estimates and the
OPLS4 estimates was very high: τ = 0.59 (p≪ 0.001, Pearson’s r
= 0.78). The OPLS4 post hoc strain estimates derived from the
xGen conformer ensembles increased compared with the
original xGen estimates by a median of 0.9 kcal/mol (mean
strain increased by 1.4 kcal/mol).

We also calculatedOPLS4 strain estimates associated with the
deposited PDB coordinates using the same procedure. OPLS4
strain derived from the xGen ensembles was consistently lower
than was derived from the PDB coordinates, with strain
decreasing by a median value of 1.2 kcal/mol (mean strain
decreased by 2.2 kcal/mol). In 116/299 cases (39%), strain was
reduced by 1.0 kcal/mol or more, and in just 5/299 (2%) of
cases was strain increased by 1.0 kcal/mol or more. Typical
strain reduction for OPLS4 was roughly 40%, which was similar
in magnitude to that seen with the results presented above. The
process of energy-aware real-space refinement of ligand
conformer ensembles substantially reduced estimated strain
compared with deposited PDB coordinates using either force
field.
We have not carried out higher-level energy calculations, for

two reasons. First, while obtaining reasonable conformational
energy estimates for the bound state of ligands is feasible,
obtaining reliable estimates for global minima is very
challenging, especially for complex molecules. Second, as a
practical matter, force field methods can be applied in lead
optimization scenarios, even on macrocyclic ligands. As will be
seen next, the xGen-based force field estimates of strain are
directly related to experimentally measured binding affinities,
suggesting that, even given limitations in the accuracy of the
strain estimates, they are directly relevant to the molecular
design problem.
Biological Relevance. The foregoing has demonstrated

that the xGen method identifies lower energy bound ligand
conformations than other approaches and that the distribution
of observed strain energies closely follows a simple molecular-
size-dependent distribution. However, to this point, we have
made no connection between experimental measurements and
calculated strain energies to support the idea that they reflect
actual physically meaningful phenomena. As mentioned earlier,
it is not clear that a direct experimental measurement can be
made in support of the quality of the strain estimates. A key
advantage of the carefully curated PDBBind Set is that each
protein−ligand complex is associated with an experimentally
determined affinity or activity, expressed as a Kd, Ki, or IC50, in
decreasing order of prevalence. Each of these can be converted
into an approximate free energy of binding, and then into a
measurement of ligand efficiency (LEFF) that captures the free
energy gained per non-hydrogen atom in a given ligand. This
offers an indirect means to assess the quality of strain estimates.
The relevance of LEFF to ligand strain is that, given a highly

efficient ligand, one expects to see low (or no) strain. However,
given an inefficient ligand, it may lack efficiency due to high
strain, but it may also lack efficiency based on poor
complementarity to its binding site (with little or no strain).
Figure 11 shows the relationship between molecular size and
LEFF along with the relationship between LEFF and ligand
strain-per-atom. The top plot recapitulates the observations of
Kuntz et al.32 in one of the foundational papers introducing the
idea of ligand efficiency. As molecular size increases, the upper
bound on LEFF decreases (for the PDBBind data, direct
correlation measured by Kendall’s Tau (τ) was −0.55, p ≪
0.001).
Many reasons have been proposed for this strikingly

consistent relationship,33 but the distributional model we have
proposed here offers an obvious contributor: ligand strain
increases with molecular size (importantly, even on a per-atom
basis) due to its quadratic relationship with the modeled strain
expectation value and upper bound. Figure 11 (middle plot)

Figure 10. Typical example of strained cyclohexane conformation
contributing to high nominal strain in an uncorrected PDB structure
(green) being resolved by re-refinement (orange).
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shows that the relationship between strain-per-atom and LEFF
is as expected. In cases with high LEFF, few molecules exhibited
high strain-per-atom. In cases with low LEFF, strain-per-atom

was spread across a broad range. The inverse correlation
between LEFF and strain-per-atom was highly statistically
significant (τ = −0.35, p ≪ 0.001, 95% CI: −0.37 to −0.33).
Note that if ligand strain were linear instead of superlinear, this
correlation would disappear.
These trends are more easily seen by binning ligand efficiency

and considering cumulative histograms (bottom plot of Figure
11). The highest and lowest efficiency bins had roughly 200 data
points, with the central bins each having roughly 800−900. In
the highest efficiency bin (yellow curve), nearly 90% of
molecules had strain-per-atom ≤0.05 kcal/mol/atom. This
fraction dropped with each step down in efficiency, to just 15%
in the lowest efficiency bin, where the strain-per-atom is spread
widely (violet curve).
The quantitative relationship between estimates of ligand

strain and experimentally measured ligand efficiency offers a
means to assess the quality of strain estimates. The correlation
between the standard strain estimate based on deposited
crystallographic coordinates was significantly lower (τ =
−0.27, p ≪ 0.001, 95% CI: −0.30 to −0.26) than for the
xGen-ensemble estimates. Of note, the ab initio strain estimates
for the 828 PDBBind ligands from the Tong and Zhao study9

had no correlation with ligand efficiency (τ = −0.02, p ≈ 0.15).
The OPLS4 per-atom strain estimates for the 10% PDBBind

subset maintained a significant inverse correlation with ligand
efficiency (τ = −0.29, p ≪ 0.001, 95% CI: −0.37 to −0.22),
though reduced slightly in magnitude from the correlations seen
with the xGen strain estimates. It is likely that a fully native real-
space ligand refinement protocol that employed OPLS4 would
reduce strain estimates from the post hoc calculation done here.
It would be interesting to see whether the correlation to LEFF
would increase in magnitude, with the expectation that
employing more extensive and nominally accurate torsional
parameterization during ligand refinement should lead to a
better correlation with experimental measurements.
Ligand Efficiency, Strain, and Design Strategy. Table 1

lists the examples from Figure 3 in order of decreasing ligand
efficiency. For context, the median LEFF for the full PDBBind
Set was 0.35, with the 95th and 5th percentiles being 0.80 and
0.18, respectively. Four cases had high binding site contact, and
two had low (highlighted with italicized contact and upper
bound values). The biotin/streptavidin interaction is well-
known as an extreme example of ligand efficiency, even with the
mutant S45A protein variant (Panel A of Figure 3), achieving
LEFF of 0.83. With the wild-type protein, LEFF exceeds 1.0
kcal/mol/atom.32 Estimated strain was 0.0 kcal/mol, as is
common among the most highly efficient ligands.
The next two cases fall into a common category, with over

20% of observed LEFF being in the range of 0.25−0.40 kcal/
mol/atom. The DDR1 kinase inhibitor (6GWR, Panel B of
Figure 3) has low strain and high binding site contact, but only
moderate efficiency. Improvement strategies would likely need
to focus on the direct binding interaction. The ligand of 1PZI
(Panel C), by contrast, could likely be improved by engineering
a lower strain analog, but it also suffers in terms of efficiency by
being at the border of high and low binding site contact.
The fourth case (Panel D of Figure 3) is a macrocyclic ligand

whose alkyl linker is solvent-exposed (exhibiting conformational
variation in the xGen ensemble) and whose binding site contact
is low. Strain was also very low from the xGen ensemble,
suggesting that modifications to the protein−ligand interaction
footprint might be a better strategy than strain reduction. In this
case, rigidification of the macrocyclic linker might also be

Figure 11. Relationship of ligand efficiency to ligand size and ligand
strain-per-atom.
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valuable. Note that the estimated strain from the deposited PDB
coordinates was 7.1 kcal/mol, which might lead to a different
conclusion for optimization, as would the static picture of the
alkyl linker.
The final two examples are both naturally occurring peptidic

macrocycles. Both represent extrema, with cyclosporin exhibit-
ing very low binding site contact and endothelin having high
binding site contact for an extremely large ligand. Both exhibit
poor LEFF (below the 5th percentile) but for different reasons:
very low contact for the former and moderately high strain for
the latter. The case of cyclosporin is unusual across many
different binding interactions, forming a vertical column of low-
strain data points (at atom count 85) in Figures 5 and 9,
distorting the sample strain estimates somewhat. Perhaps little
can be learned from the endothelin/endothelin-receptor
interaction from a design perspective, as that system is likely
to have co-evolved.
The superlinear dependence of ligand strain on ligand size

does not completely explain the inverse correlation between
LEFF and ligand size. Figure 12 shows the relationship of LEFF

to ligand size (violet points, as in Figure 11) along with an
adjusted plot of LEFF (red points). The adjustment simulated
eliminating the near-maximal effect of ligand strain on LEFF. In
the adjusted plot, LEFF values were shifted assuming that each
ligand incurred the upper bound of high-contact modeled strain,
with the strain value per-atom added to each data point. The
inverse correlation between ligand size and LEFF decreased in

magnitude to τ = −0.35 (p ≪ 0.001, 95% CI: −0.38 to −0.33)
from τ = −0.55 (p ≪ 0.001, 95% CI: −0.57 to −0.54). Design
strategies to drastically reduce ligand strain should not be
expected to eliminate low LEFF in large ligands, even in themost
optimistic strain reduction scenario, particularly in cases of low
binding site contact.

■ CONCLUSIONS
Estimating bound ligand strain cannot be done meaningfully if
the modeled coordinates of the ligand bound to the target of
interest nominally fit electron density but much lower energy
ligand models exist that fit equally well. No level of energetic
theory can overcome poorly fit ligands. There have been a
number of methods introduced to improve ligand fitting in X-ray
diffraction data,14−19 and some have been shown to improve
ligand energetics. The xGen method used here has been
validated on a broad variety of ligands, particularly complex
macrocycles,20,21 and in the present work an additional set of
nearly 3,000 protein−ligand complexes. Associated strain
estimates are consistently lower (roughly 40%) than those
obtained using positionally restrained, classically modeled ligand
coordinates. Further, they are quantitatively better correlated
with ligand efficiency.
We have derived a distributional model for ligand strain that

fits empirical data remarkably well when accounting for the
degree of ligand binding site contact, with the vast majority of
ligands falling to the high-contact category of binding. The
predicted upper bound on ligand strain offers a tighter constraint
for conformational search protocols than is typically used. For
example, ligands with up to 25 non-hydrogen atoms have a well-
modeled 95th percentile upper bound of just 4.5 kcal/mol, and
the upper bound for 40 atoms is 9.4 kcal/mol. Importantly, the
model is not dependent on molecular class, whether “typical”
small molecules, non-peptidic macrocycles, or peptidic macro-
cycles. It is only dependent on molecular size. It is not
uncommon for computational chemists supporting lead
identification or optimization efforts to generate ligand
conformation ensembles spanning energy windows of 15−20
kcal/mol above the identified force field minimum. For many
molecules in typical size ranges, windows of this size
unnecessarily expand conformer pools to the detriment of
denser sampling of lower energy conformers.
Apart from the practical utility of an accurate upper bound on

ligand strain, the existence of a distributional model has
implications for design strategy. If, for example, a lead project
compound has relatively high strain compared with expect-
ations, strategies to reduce conformational strain while
maintaining the existing interaction footprint are likely to
succeed, resulting in improved potency. Conversely, if estimated
strain is already at the lower end of the distribution for the lead
compound’s size, efforts to engineer lower strain would probably
be better spent towardmodifying the protein−ligand interaction
directly.

Table 1. Example Ligands from Figure 3

PDB Code Ligand Protein N Non-H Contact ΔG xGen Strain Model UB95 LEFF Strain/N

1DF8 Biotin Streptavidin S45A 16 1.00 −13.2 0.0 2.2 0.83 0.00
6GWR Synthetic DDR1 Kinase 41 0.92 −11.0 1.1 9.8 0.27 0.03
1PZI Synthetic Enterotoxin B 23 0.75 −5.7 2.3 3.9 0.25 0.10
5T9W Synthetic PPIA Cyclophilin 40 0.67 −7.6 1.6 5.9 0.19 0.04
3EOV Cyclosporin L. donovani Cyclophilin 85 0.41 −10.6 6.3 17.2 0.12 0.07
5GLH Endothelin ETB Receptor 171 0.74 −14.6 28.3 55.4 0.09 0.17

Figure 12. Relationship of LEFF to ligand size (violet) and LEFF
adjusted upward to account for the modeled high-strain upper bound at
each molecular size (red).
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■ EXPERIMENTAL SECTION
Molecular Data Sets. The Brueckner Set contained 341 protein−

ligand complexes: 38 non-macrocycles from the Perola/Charifson
study,3 147 non-peptidic macrocycles,20 and 156 peptidic macro-
cycles.21 Description of the curation and characteristics of those sets has
been previously detailed.
The PDBBind 2020 Refined Set contains 5,316 entries. Automatic

processing of the PDB files to separate protein, water, and ligands along
with assigning bond orders, adding protons, and checking ligand
connectivity against SMILES strings associated with the annotated
ligand HET codes was done using the getpdb and grindpdb Surflex
Platform commands. Of those that passed the initial automatic
processing, 4,052 had electron density available. Complexes where
the PDB deposited ligand coordinates were clearly poor (RSCC < 0.65
or RSR > 0.45) were eliminated, resulting in 3,942 complexes. Real-
space refinement was carried out using the xGen “diverse ensemble”
protocol,20 which produces the highest nominal ligand ensemble fit
quality but allows for quite large conformational ensembles. Complexes
were retained where the diverse xGen ligand conformer ensemble fits
were high (RSCC ≥ 0.85 and RSR ≤ 0.25), resulting in 2,996 final
PDBBind Set complexes.
In order to avoid conformers having extremely low occupancy, the

PDBBind Set of 2,996 complexes was again refined with the xGen “strict
ensemble” protocol, which produced 2.5 conformers on average.
Overall, the real-space fit quality was high for both the xGen ensembles
and the original PDB ligand models. Improvements in RSCC and RSR
using the xGen ensemble approach were small but consistent compared
with original PDB ligand coordinates: an average RSCC of 0.924 and an
average RSR of 0.156, compared to the original PDB ligand coordinate
metrics of 0.897 and 0.169, respectively. With the xGen approach, 95%
of ligands had RSCC ≥ 0.87 and RSR ≤ 0.22. Respectively, the original
PDB ligand models had RSCC ≥ 0.82 and RSR ≤ 0.24. The same
protocol was run for the Brueckner Set, with similarly consistent
improvements in RSCC and RSR.20,21

Covalent ligands have been excluded in the curation of the data sets,
because they present numerous difficulties for both ligand refinement
and interpretation of binding affinity data. Binding sites with tightly
held metal ions have not been excluded, due to their presence in many
pharmaceutically relevant targets. These cases might lead to higher
ligand strain due to the strength of chelation interactions, but they
comprise less than 15% of the cases overall, and they represent examples
of non-covalent interactions that are genuinely important.
Molecular conformational complexity was calculated based on the

output of the regen3d command within the Tools Module of the Surflex
Platform. The output includes information about the number of non-
hydrogen atoms and counts for exocyclic and macrocyclic rotatable
bonds.
Note that all compounds described in this study have been

previously disclosed and have been characterized by X-ray crystallo-
graphic experiment, with details regarding purity being available in the
original publications or associated with the RCSB PDB deposition
codes.
Conformer Neighborhoods and Energy-Surrogates. A key

aspect of ensemble generation is the idea of conformer neighborhoods
as shown in Figures 1 and 4. Ideal fit to electron density generally yields
distortions from ideal ligand geometry, so the initial refinement
procedure balances the two considerations, achieving reasonable
density fit while avoiding large geometric distortions. As described
earlier, each member of this balanced-pool conformer set is minimized
in two ways: a) under a condition in which the density overlap is
strongly weighted and b) with no density overlap reward but with a
positional restraint (the square-welled quadratic penalty is 1.0 kcal/
mol/Å2 for deviations beyond 0.2 Å). These three pools are used to
identify conformer trios with the property that a low-energy “min-pool”
member and a high-fit-quality “density-pool” member are both within a
small neighborhood of a central “balanced-pool” member.
One could use conventional RMSD to define the extents of such a

neighborhood, but this becomes problematic across different molecular
sizes. An RMSD of 0.25 Å for two conformers of a molecule with 6

heavy atoms yields a maximal single atomic deviation of 0.61 Å. But for
a molecule with 60 heavy atoms, the same 0.25 Å RMSD can mean a
single atomic deviation of as much as 1.9 Å. As previously described,20

we define the sRMSD (scaled RMSD) as the average of the
conventional RMSD and the single maximum atomic deviation. This
sRMSD is always at least as large as the conventional RMSD. We use
0.65 Å sRMSD as the threshold neighborhood size (the maximum
sRMSD from the central member to any other member). The sRMSD
of 0.65 Å generally corresponds to a conventional RMSD of 0.3−0.4
between members of a single neighborhood. Figure 13 shows the full
neighborhood around a single balanced-pool conformer for the 3SUE
ligand, which contains 20 from the min-pool (salmon) and 34 from the
density-pool (orange).

One could use the min-pool conformers corresponding to those that
form xGen ensemble (which come from the density-pool) directly as
energy-surrogates and report the minimum energy (or a weighted
energy) as the bound conformational strain. However, we perform an
additional positionally restrained minimization for two reasons.
First, nominal local minima can be frustrated by the bumpiness of

force field energy surfaces. This can be overcome by performing
multiple, slightly perturbed, positionally restrained minimizations.
Here, we have used 5 small perturbations of 0.01 Å for each atom along
with a square-welled quadratic penalty of 1.0 kcal/mol/Å2 for
deviations beyond 0.1 Å from the original conformer’s atomic position.
This typically results in small improvements in energy (approximately
0.3 kcal/mol) but 2% exhibit improvements of 2.0 kcal/mol or greater.
The resulting final conformers remain very close to the original
crystallographically optimized xGen conformers (mean RMSD of 0.3
Å).
Second, when employing an alternative force field, this final

positionally restrained minimization offers a straightforward means to
make direct comparisons. We employed an analogous procedure for
OPLS431 on a randomly selected 10% of the PDBBind Data Set (299
cases). Positionally restrained minimizations were carried out on the
strict xGen conformer ensembles and their corresponding min-pool
conformer-trio siblings, with the lowest energy being recorded as that
for the bound ligand state. Minimizations were carried out with a
square-welled quadratic positional restraint on non-hydrogen atoms
(1.0 kcal/mol/Å2 for deviations beyond 0.3 Å). This was a slightly
looser restraint than used for the xGen protocol, owing to differences in
termination criteria in the optimization algorithms. RMS deviations for
the OPLS4 optimized conformers from the fitted ensemble conformers

Figure 13. A full conformer neighborhood: a single balanced-pool
conformer (slate), the full set of density-pool (orange) and min-pool
conformers (salmon) within 0.65 Å sRMSD of the balanced conformer.
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averaged 0.3 Å, consistent with the xGen strain estimation protocol.
Minimizations were performed in the gas phase, with a dielectric of
80.0, in order to parallel the xGen protocol.
For all xGen real-space refinement calculations and related strain

estimates, we employed version 5.1 of the Surflex Platform
(BioPharmics LLC, Sonoma County, CA). For all OPLS4 calculations,
we employed Batchmin MacroModel v13.6 of the Schrödinger 2022-2
Suite (Schrödinger, LLC, New York, NY, 2019).
Global Minimum Determination. Global strain is calculated

based on the difference between the bound-state energy (from the
energy-surrogate calculation above) and the unbound-state minimum
energy, which is the global minimum energy from an exhaustive
conformational search of the ligand. This is calculated using the
ForceGen conformational search method, which has been previously
described34,35

For small, drug-like molecules, the -pquant level of conformational
elaboration is likely to be sufficient to identify global minima in the vast
majority of cases, based on the greater than 90% success rate of
identifying close-to-crystallographic conformers (≤1.0 Å RMSD)
beginning from random starting conformations. However, particularly
for large, peptidic macrocycles, we adopted an iterative approach to
conformational search in order to better ensure adequate sampling.21

This iterative search has been implemented as a command within the
Tools Module of the Surflex Platform, called fgen_deep.
Beginning from a single input conformer, the fgen_deep procedure

performs a standard ForceGen search, with the resulting conformer
pool being clustered by RMSD. If the resultingN lowest-energy clusters
contain new conformations compared with prior rounds, search is
iterated beginning with the lowest energy conformers from each of the
N new clusters. Multiple rounds of this are carried out, each time
consolidating the full set of conformers into a non-redundant set within
a specified energetic window prior to clustering. The process is iterated
until no new low-energy clusters are identified.
Here, for all but the peptidic macrocycles (which had been subjected

to iterative search previously), the fgen_deep method was employed to
identify global minima. The lowest-energy 100 conformers from each
respective pool were subjected to unconstrained tweaked minimization
to identify the final estimate of the global minimum. For the PDBBind
Set, the average number of conformers in the final fgen_deep pools was
6,953 (the range was 1−30,866).
For the OPLS4 comparison, the lowest-energy 1,000 conformers

from the fgen_deep procedure were subjected to unconstrained
minimization, with the lowest energy being recorded as the global
minimum. Minimizations were performed in the gas phase, with a
dielectric of 80.0, in order to parallel the xGen protocol.
Ligand Efficiency Definition. Ligand efficiency is an old concept,

dating back at least to Kuntz and Kollman’s discussions about the
maximal affinity of ligands.32 Some controversy has arisen over time
regarding definitions. We define ligand efficiency as follows:
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The above definition follows the treatment of Hopkins et al.,36 where
standard choices for temperature, pressure, and concentration in
thermodynamic systems are 298 K, 1 atm, and 1 M. Common practice
equates pKd with pKi, pIC50, and pEC50, allowing for calculation of LE
for all of the PDBBind data, with the normal caveats about comparisons
of IC50 values across different assay conditions.
Note that Kenny37 has highlighted the arbitrary choice of the

standard concentration C° to be 1 M and that changing that value has
complex effects on the interpretation of ligand efficiency. However, the
choice is uncontroversial, and the definition in eq 7 is widely accepted.
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Deveau, L. M.; Silver, C.; Cao, H.; Newton, A.; Petropoulos, C. J.; et al.
The Molecular Basis of Drug Resistance Against Hepatitis C Virus
NS3/4A Protease Inhibitors. PLoS Pathogens 2012, 8, e1002832.
(24) Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.;
Wang, R. PDB-wide collection of binding data: Current status of the
PDBbind database. Bioinformatics 2015, 31 (3), 405−412.
(25) Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging
the Basis for Developing Protein−Ligand Interaction Scoring
Functions. Acc. Chem. Res. 2017, 50, 302−309.
(26) Venugopal, V.; Datta, A. K.; Bhattacharyya, D.; Dasgupta, D.;
Banerjee, R. Structure of Cyclophilin from Leishmania donovani Bound
to Cyclosporin at 2.6 Å Resolution: Correlation Between Structure and
Thermodynamic Data. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009,
65, 1187−1195.
(27) Shihoya, W.; Nishizawa, T.; Okuta, A.; Tani, K.; Dohmae, N.;
Fujiyoshi, Y.; Nureki, O.; et al. Activation Mechanism of Endothelin
ETB Receptor by Endothelin-1. Nature 2016, 537, 363−368.
(28) Foloppe, N.; Chen, I.-J. Towards understanding the unbound
state of drug compounds: Implications for the intramolecular
reorganization energy upon binding. Bioorg. Med. Chem. 2016, 24,
2159−2189.
(29) Reynolds, C. H.; Tounge, B. A.; Bembenek, S. D. Ligand binding
efficiency: Trends, physical basis, and implications. J. Med. Chem. 2008,
51, 2432−2438.
(30) Meyder, A.; Nittinger, E.; Lange, G.; Klein, R.; Rarey, M.
Estimating Electron Density Support for Individual Atoms and
Molecular Fragments in X-ray Structures. J. Chem. Inf. Model. 2017,
57, 2437−2447.
(31) Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.;
Ross, G. A.; Dahlgren, M. K.; Russell, E.; Von Bargen, C. D.; Abel, R.;
Friesner, R. A.; Harder, E. D. OPLS4: Improving force field accuracy on
challenging regimes of chemical space. J. Chem. Theory Comput. 2021,
17, 4291−4300.
(32) Kuntz, I.; Chen, K.; Sharp, K.; Kollman, P. The Maximal Affinity
of Ligands. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9997−10002.
(33) Reynolds, C. H.; Reynolds, R. C. Group additivity in ligand
binding affinity: An alternative approach to ligand efficiency. J. Chem.
Inf. Model. 2017, 57, 3086−3093.
(34) Cleves, A. E.; Jain, A. N. ForceGen 3D Structure and Conformer
Generation: From Small Lead-Like Molecules to Macrocyclic Drugs. J.
Comput.-Aided Mol. Des. 2017, 31, 419−439.
(35) Jain, A. N.; Cleves, A. E.; Gao, Q.;Wang, X.; Liu, Y.; Sherer, E. C.;
Reibarkh, M. Y. Complex macrocycle exploration: Parallel, heuristic,
and constraint-based conformer generation using ForceGen. J.
Comput.-Aided Mol. Des. 2019, 33, 531−558.
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