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Analysing the nutrition‑disease nexus: 
the case of malaria
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Abstract 

Background:  Motivated by the observation that children suffering from undernutrition are more likely to experience 
disease and are more likely to die if they do contract a disease, mathematical modelling is used to explore the ramifi-
cations of targeting preventive disease measures to undernutritioned children.

Methods:  A malaria model is constructed with superinfection and heterogeneous susceptibility, where a portion of 
this susceptibility is due to undernutrition (as measured by weight-for-age z scores); so as to isolate the impact of sup-
plementary food on malaria from the influence of confounding factors, the portion of the total susceptibility that is 
due to undernutrition is estimated from a large randomized trial of supplementary feeding. Logistic regression is used 
to estimate mortality given malaria infection as a function of weight-for-age z scores. The clinical malaria morbidity 
and malaria mortality are analytically computed for a variety of policies involving supplementary food and insecticide-
treated bed nets.

Results:  The portion of heterogeneity in susceptibility that is due to undernutrition is estimated to be 90.3 %. Target-
ing insecticide-treated bed nets to undernutritioned children leads to fewer malaria deaths than the random distri-
bution of bed nets in the hypoendemic and mesoendemic settings. When baseline bed net coverage for children is 
20 %, supplementary food given to underweight children is estimated to reduce malaria mortality by 7.2–22.9 % as 
the entomological inoculation rate ranges from 500 to 1.0. In the hyperendemic setting, supplementary food has a 
bigger impact than bed nets, particularly when baseline bed net coverage is high.

Conclusions:  Although the results are speculative (e.g., they are based on parameter estimates that do not possess 
the traditional statistical significance level), the biological plausibility of the modelling assumptions and the high 
price-sensitivity of demand for bed nets suggest that free bed net distribution targeted to undernutritioned children 
in areas suffering from both undernutrition and malaria (e.g., sub-Saharan Africa) should be the subject of a rand-
omized trial in a hypoendemic or mesoendemic setting.
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Background
For many transmissible diseases, large individual vari-
ation in infectiousness [1] or susceptibility can be pre-
dicted a priori, which allows for effective targeting of 
preventive interventions, such as condom education for 
sex workers [2], needle exchange for injecting drug users 
[3], and influenza vaccinations in elementary schools and 
nursing homes [4]. However, for children under 5 years 

old in Africa, where pneumonia, malaria and diarrhoea 
cause 17, 15 and 12 % of deaths, respectively [5], identify-
ing groups of highly susceptible children for targeted pre-
ventive interventions is less obvious than in the examples 
above. Motivated by the fact that undernutrition under-
lies ≈45% of deaths in children under five [5], this study 
assesses the potential of using an easily observable under-
nutrition metric—the weight-for-age z score (WAZ)—to 
target preventive resources in the case of malaria, which 
has a less diffuse cause than the other two diseases (e.g., 
diarrhoea can be caused by viruses, bacteria or parasites).
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Two preventive resources are considered: food and 
insecticide-treated bed nets (ITNs). Although ITNs are 
effective at preventing malaria [6], demand is highly 
price-sensitive and is greatly reduced when ITNs are not 
free [7, 8], making them attractive candidates for free tar-
geted intervention. The World Health Organization rec-
ommended a switch from targeted ITN intervention (e.g., 
for children under five and pregnant women) to universal 
ITN coverage in 2008 [9], which led to the distribution of 
over 450M ITNs in sub-Saharan Africa between 2008 and 
2012 [10]. Nonethless, malaria control funding peaked 
in 2012 and has begun to decline, with funding commit-
ments in 2013–2016 estimated to meet just over half of 
demand, yielding a funding gap of ≈374M ITNs [10]. In 
this resource-constrained setting, the targeting of ITNs 
may need to be reconsidered [11].

To assess various targeted and untargeted intervention 
strategies, a mathematical model is needed that captures 
the key interactions between nutrition and infection [12]. 
Some data suggest that (1) children with low nutrition are 
more susceptible to disease [13], (2) infection decreases a 
child’s nutritional status [14–16], and (3) undernutrition 
increases mortality among infected children [13]. Several 
other interactions are also possible: (4) undernutritioned 
children have longer infectious periods [17], (5) infection 
reduces the effectiveness of nutritional interventions, and 
(6) undernutrition lessens the impact of infection con-
trol measures. However, very little or no evidence sup-
port these phenomena [12]. An existing malaria model 
with heterogeneous susceptibility [18] is generalized 
so as to incorporate interactions (1) and (3) [interac-
tion (2) is discussed later]. This is achieved by assuming 
that a portion of the individual variability in susceptibil-
ity is due to undernutrition (as measured by WAZ), and 

assuming that the death rate of infecteds depends on a 
child’s WAZ. After the model is calibrated using existing 
data [13, 18, 19], it is used to estimate the impact on clini-
cal malaria morbidity and malaria mortality from various 
policies that provide food and/or ITNs to children from 
ages 6 months to 5 years with low WAZ.

Methods
The 

∫
SI◦S model

The general model is built in several steps and the model 
parameters and their values are listed in Table  1. The 
starting point is the 

∫

SI◦S model in [18], which was 
found to provide the best (among six models) overall fit 
to malaria data for African children under 15 years old 
from 91 communities. This model relates the entomolog-
ical inoculation rate (EIR), which is the number of bites 
from an infectious mosquito per year per person, and the 
proportion of people who are infected with P. falciparum, 
and allows for a heterogeneous infection rate and super-
infection (i.e., no immunity to re-infection). Let S be the 
random susceptibility within the child (ages 6 months to 
5 years) population, which has probability density func-
tion (PDF) fS(s) that is a gamma with mean 1.0 and vari-
ance 1/k (i.e., shape parameter k and scale parameter 
1/k), denoted by S ∼ Ŵ(k , 1/k). A child with S = s has 
infection rate bsE, where b is the probability that a bite 
from an infectious mosquito leads to an infection and E 
is the annual EIR. Under super-infection (and assuming 
that infections clear independently), the clearance rate 
is g(bsE , r), where g(�, r) = �/(e�/r − 1), and 1/r is the 
expected time to clear each infection. Let x(s) be the pro-
portion of children with susceptibility s that are infected. 
The dynamics of x(s) is described by the differential equa-
tion [Eq. (4) of [18]]

Table 1  Parameter values

Parameter Description Value

a(φN) Biting rate (58) and Additional file 1: Figure 1 [20]

b Proportion of bites that produce human infection b/r = 0.57 year [21]

r Human clearance rate for each infection b/r = 0.57 year [21]

α Proportion of children to adults 0.17 [22]

m(φN) Ratio of female mosquitoes to humans (59) and Additional file 1: Figure 2 [20]

c Proportion of bites that produce mosquito infection 0.5 [23]

µ(φN) Mosquito mortality rate (60) and Additional file 1: Figure 3 [20]

k Susceptibility shape parameter 0.17 [21]

k1 Undernutrition shape parameter 0.153 [19], Additional file 1: Figure 4

µZ , σZ Normal WAZ parameters −1.00, 1.27 [24]

µA , σA Lognormal food parameters −1.56, 0.42 [19]

pc(E) Proportion of infections that are clinical (74), Additional file 1: Figure 6 and §2.4

d(z) Malaria mortality per 1000 children e1.851−0.607z [13, 25], Additional file 1: Figure 8
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Incorporating adults and infected mosquitoes
Equation  (1) needs to be generalised to allow the mos-
quito population to vary over time so as to be able to look 
at the impact of interventions. Following the traditional 
Ross model [26], let y be the proportion of mosquitoes 
that are infected, a be the biting rate, c be the proportion 
of bites by a susceptible mosquito of an infected human 
that lead to the mosquito getting infected, µ be the mos-
quito mortality rate, and m be the number of female mos-
quitoes per human.

Although the analysis focuses on children, adults need 
to be incorporated into the model because they are a 
key reservoir for infection. Let w be the proportion of 
adults that are infected, h be the proportion of humans 
(children and adults) that are infected, and α be the per-
centage of the population under 5 years of age. Assuming 
that the adult population has homogeneous susceptibility 
and noting that E corresponds to amy, the model in the 
absence of nutrition and interventions is

where

Accounting for baseline ITN coverage
Baseline (i.e., pre-intervention) ITN coverage is 
accounted for by dividing the children into two sub-pop-
ulations, one with ITNs and one without. Let φc

0,φ
a
0 rep-

resent the baseline ITN coverage for the child and adult 
population respectively, and assume the baseline alloca-
tion for children is independent of their WAZ scores. 
Assuming that one adult gets ITN coverage for every 
child under the net (in Fig. 4.2 in [27], the ITN coverage 
for children under five is very similar to the ITN coverage 
for women) implies that φa

0 = α
1−α

φc
0.

A simplified version of the feeding cycle model with 
ITNs in [20] is used, which allows the biting rate a, the 
mosquito-human ratio m and the mosquito death rate µ 
to be functions of the ITN coverage in the human popu-
lation, which is φN = αφc

0 + (1− α)φa
0; these functions, 

which are now denoted by a(φN ), m(φN ) and µ(φN ), are 
specified so that they match the model output in [20], as 
described later. In addition, let p be the probability that 
a mosquito finding an ITN-protected human is able to 
successfully bite him. Let x1(s) represent the propor-
tion of unprotected children with susceptibility s that are 

(1)ẋ(s) = bsE(1− x(s))− g(bsE , r)x(s).

(2)ẋ(s) = bsamy(1− x(s))− g(bsamy, r)x(s),

(3)ẇ = bamy(1− w)− g(bamy, r)w,

(4)ẏ = ach(1− y)− µy,

(5)h = α

(

∫ ∞

0

x(s)fS(s)ds
)

+ (1− α)w.

infected and x2(s) be the proportion of ITN-protected 
children that are infected. Similarly, let w1 and w2 repre-
sent the proportion of adults infected without and with 
ITN protection, respectively. The model, accounting for 
baseline ITN coverage, is

where

is now interpreted such that a(φN )h is the biting rate of 
infected humans.

Incorporating nutrition
To incorporate nutrition, let the susceptibility S equal 
U + V , where U is a measure of undernutrition and V is 
the residual portion of susceptiblity that does not depend 
on undernutrition. Assume that U and V are statistically 
independent with PDFs fU (u) and fV (v) and cumulative 
distribution functions (CDFs) FU (u) and FV (v). So as to 
estimate only one additional parameter, it is assumed that 
U ∼ Ŵ(k1, 1/k) and V ∼ Ŵ(k − k1, 1/k), which is con-
sistent with S ∼ Ŵ(k , 1/k). Let Z ∼ N (µZ , σZ) denote 
the random WAZ values in the child population, which 
has PDF fZ(z) and CDF FZ(z). Because higher values of 
S = U + V  and lower levels of Z each lead to higher sus-
ceptibility, a one-to-one transformation is constructed 
between U and Z such that the pth fractile of the distri-
bution of U corresponds to the (1− p)th fractile of the 
distribution of Z for all p ∈ [0, 1]; this transformation is 
u(z) = F−1

U (1− FZ(z)), which is displayed in Additional 
file 1: Figure 8.

Interventions
Four intervention policies are considered (Table  2), 
which all assume prior ITN coverage of φc

0 and φa
0 for 

children and adults: a targeted (i.e., based on WAZ < θ) 
food policy, an untargeted (i.e., random distribution with 

(6)

ẋ1(s) = bsa(φN )m(φN ) y(1− x1(s))

− g(bsa(φN )m(φN )y, r) x1(s),

(7)

ẋ2(s) = bsa(φN )m(φN ) py(1− x2(s))

− g(bsa(φN )m(φN )py, r) x1(s),

(8)

ẇ1 = ba(φN )m(φN ) y(1− w1)

− g(ba(φN )m(φN )y, r)w1,

(9)

ẇ2 = ba(φN )m(φN ) py(1− w2)

− g(ba(φN )m(φN )py, r)w2,

(10)ẏ = a(φN ) ch(1− y)− µ(φN ) y,

(11)

h = α

(

(1− φc
0)

∫ ∞

0

x1(s) fS(s) ds + pφc
0

∫ ∞

0

x2(s) fS(s) ds

)

+ (1− α)
(

(1− φa
0 )w1 + pφa

0 w2

)
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an additional coverage of φ in the unprotected popula-
tion) ITN policy, a targeted ITN policy, and a targeted 
food and targeted ITN policy. The impact of supplemen-
tary food is to change a child’s WAZ from z to z + A, 
where A has a lognormal distribution with PDF fA(a) and 
lnA ∼ N (µA, σA).

The full model
The general model that covers all four intervention poli-
cies divides children into four groups: group 11 does not 
have ITN protection at baseline and does not receive any 
interventions (food or ITNs), group 12 does not have ITN 
protection at baseline and receives intervention, group 
21 has ITN protection at baseline and does not receive 
additional intervention, group 22 has ITN protection at 
baseline and receives additional intervention (food in the 
case of the targeted food and the targeted food and ITN 
policies). Let the groups be indexed by G = 11, 12, 21 
and 22, and let I denote the event that a random person 

is infected. Let xij(s) = P(I |S = s,G = ij) be the propor-
tion of the population in each group that is infected, and 
let f (ij)S (s) be the PDF of the susceptibility of the group 
G = ij. Let G0 = 1 index the sub-population that does not 
have ITNs at baseline and G0 = 2 index the group that 
has ITNs. Defining φ(1)

t ,φ
(2)
t  to be the policy-dependent 

proportion of the population in groups G0 = 1,G0 = 2 
that receives food or ITNs and introducing the policy-
dependent probabilities P(G = ij|Z = z,G0 = i) that are 
specified in Table 2, it follows that

(12)
f
(11)
S (s) =

1

1− φ
(1)
t

∫ ∞

−∞

fV (s − u(z))fZ(z)

P(G = 11|Z = z,G0 = 1) dz,

(13)

f
(12)
S (s) =

1

φ
(1)
t

∫ ∞

−∞

fV (s − u(z + a))

∫ ∞

0

fZ(z)fA(a)

P(G = 12|Z = z,G0 = 1) da dz,

Table 2  Intervention policies

The last column specifies the restrictions on the parameter values in Eqs. (4)–(6), where 1{x} is the indicator function of the event x, and δ(a) is the Dirac delta function

Policy Description Parameter Values

No intervention No food or ITN φc
0 fixed, φ(1)

t = φ
(2)
t = 0,

φ1
a = α

1−α
φc
0 ,φN = 2αφc

0,

Targeted food Food if WAZ < θ pI = 1, φc
0 fixed, φ(1)

t = φ
(2)
t = P(Z < θ),

φ1
a = α

1−α
φc
0 ,φN = 2αφc

0,

P(G = 11|Z = z ,G0 = 1) = 1{z>θ},

P(G = 12|Z = z ,G0 = 1) = 1{z<θ},

P(G = 21|Z = z ,G0 = 2) = 1{z>θ},

P(G = 22|Z = z ,G0 = 2) = 1{z<θ}

Untargeted ITN ITN with probability φ if unprotected pI = p,φc
0 fixed, φ(1)

t = φ,φ
(2)
t = 0, fA(a) = δ(a),

φ1
a = α

1−α
(φc

0 + (1− φc
0)φ),φN = 2α(φc

0 + (1− φc
0)φ),

P(G = 11|Z = z ,G0 = 1) = 1− φ,

P(G = 12|Z = z ,G0 = 1) = φ,

P(G = 21|Z = z ,G0 = 2) = 1,

P(G = 22|Z = z ,G0 = 2) = 0

Targeted ITN ITN if WAZ < θ and unprotected pI = p,φ
(1)
t = P(Z < θ),φ

(2)
t = 0, φc

0 fixed, fA(a) = δ(a),

φ1
a = α

1−α
(φc

0 + (1− φc
0)φ

(1)
t ),φN = 2α(φc

0 + (1− φc
0)φ

(1)
t ),

P(G = 11|Z = z ,G0 = 1) = 1{z>θ},

P(G = 12|Z = z ,G0 = 1) = 1{z<θ},

P(G = 21|Z = z ,G0 = 2) = 1,

P(G = 22|Z = z ,G0 = 2) = 0

Targeted food and food if WAZ < θ, pI = p,φ
(1)
t = φ

(2)
t = P(Z < θ), φc

0 fixed,

Targeted ITN ITN if WAZ < θ and unprotected φ1
a = α

1−α
(φc

0 + (1− φc
0)φ

(1)
t ), φN = 2α(φc

0 + (1− φc
0)φ

(1)
t ),

P(G = 11|Z = z ,G0 = 1) = 1{z>θ},

P(G = 12|Z = z ,G0 = 1) = 1{z<θ},

P(G = 21|Z = z ,G0 = 2) = 1{z>θ},

P(G = 22|Z = z ,G0 = 2) = 1{z<θ}
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Let φ1
a be the proportion of adults protected by ITNs 

post-intervention, assuming one adult is protected for 
every protected child. Let φN  denote the proportion 
of the entire population that is protected by ITNs, and 
let pI be the probability that a mosquito successfully 
bites a human under a net in the case of interventions 
involving ITNs, and be equal to one otherwise. The full 
model is

where

To specify the model for each policy, the parameter val-
ues given in Table 1 are imposed in (16)–(23).

(14)

f
(21)
S (s) =

1

1− φ
(2)
t

∫ ∞

−∞

fV (s − u(z))fZ(z)

P(G = 21|Z = z,G0 = 2) dz,

(15)

f
(22)
S (s) =

1

φ
(2)
t

∫ ∞

−∞

fV (s − u(z + a))

∫ ∞

0

fZ(z)fA(a)

P(G = 22|Z = z,G0 = 2) da dz.

(16)

ẋ11(s) = bsa(φN )m(φN )y(1− x11(s))

− g(bsa(φN )m(φN )y, r)x11(s),

(17)

ẋ12(s) = bspIa(φN )m(φN )y(1− x12(s))

− g(bspIa(φN )m(φN )y, r)x12(s),

(18)

ẋ21(s) = bspa(φN )m(φN )y(1− x21(s))

− g(bspa(φN )m(φN )y, r)x21(s),

(19)

ẋ22(s) = bspa(φN )m(φN )y(1− x21(s))

− g(bspa(φN )m(φN )y, r)x21(s),

(20)

ẇ1 = ba(φN )m(φN )y(1− w1)− g(ba(φN )m(φN )y, r)w1,

(21)

ẇ2 = ba(φN )m(φN )py(1− w2)− g(ba(φN )m(φN )py, r)w2,

(22)ẏ = a(φN )ch(1− y)− µ(φN )y,

(23)

h = α

(

(

1− φc
0

)

((

1− φ
(1)
t

)

∫∞

0
x11(s)f

(11)
S (s) ds

+ pIφ
(1)
t

∫∞

0
x12(s)f

(12)
S (s) ds

)

+ pφc
0

(

(1− φ
(2)
t )

∫∞

0
x21(s)f

(21)
S (s) ds

+φ
(2)
t

∫∞

0
x22(s)f

(22)
S (s) ds

)

)

+ (1− α)

(

(

1− φa
1

)

w1 + pφa
1
w2

)

.

Performance measures
Two performance measures are associated with 
model  (16)–(23): the clinical malaria prevalence Pc (i.e., 
the proportion of children who have clinical malaria) and 
the malaria mortality D (i.e., the proportion of children 
who die from malaria). The analytical derivations of Pc 
and D for the five cases in Table 2 appear in Additional 
file 1: §1, and are briefly outlined here. The equilibrium 
solution to (16)–(23) is given by

where

The pair (ȳ, h̄) are obtained by jointly solving the fixed 
point Eqs. (30)–(31). The prevalence of malaria infection 
in children is then given by

Let pc(E) denote the probability of a child under 5 years 
of age developing clinical disease given malaria infection. 
The model in [28] is used to obtain this probability as a 

(24)x̄11(s) = 1− e−bsa(φN )m(φN )ȳ/r
,

(25)x̄12(s) = 1− e−bspI a(φN )m(φN )ȳ/r
,

(26)x̄21(s) = 1− e−bspa(φN )m(φN )ȳ/r
,

(27)x̄22(s) = 1− e−bspa(φN )m(φN )ȳ/r
,

(28)w̄1 = 1− e−ba(φN )m(φN )ȳ/r
,

(29)w̄2 = 1− e−bpa(φN )m(φN )ȳ/r
,

(30)ȳ =
a(φN )ch̄

a(φN )ch̄+ µ(φN )
,

(31)

h̄ = α

(

(

1− φc
0

)

(

(

1− φ
(1)
t

)

∫ ∞

0

x̄11(s)f
(11)
S (s) ds

+ pIφ
(1)
t

∫ ∞

0

x̄12(s)f
(12)
S (s) ds

)

+ pφc
0

((

1− φ
(2)
t

)

∫ ∞

0

x̄21(s)f
(21)
S (s) ds

+ φ
(2)
t

∫ ∞

0

x̄22(s)f
(22)
S (s) ds

)

)

+ (1− α)

(

(

1− φa
1

)

w̄1 + pφa
1 w̄2

)

.

(32)

P = (1− φc
0
)

((

1− φ
(1)
t

)

∫∞

0
x̄11(s)f

(11)
S (s) ds

+φ
(1)
t

∫∞

0
x̄12(s)f

(12)
S (s) ds

)

+ φc
0

((

1− φ
(2)
t

)

∫∞

0
x̄21(s)f

(21)
S (s) ds

+φ
(2)
t

∫∞

0
x̄22(s)f

(22)
S (s) ds

)

.
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function of the EIR E (which equals a(φN )m(φN )ȳ) in 
Additional file 1: §2.4. The prevalence of clinical malaria 
in children is then given by

Let Z1 represent the post-intervention WAZ score. Let 
pij(z) = P(I |Z1 = z,G = ij) and fZ1|G=ij(z) be the PDF 
of Z1|G = ij for i, j ∈ 1, 2, which are derived in  §1 of 
Additional file 1 for the five cases in Table 2. The malaria 
mortality in each of the groups is given by the prod-
uct of four probabilities: the PDF of post-intervention 
WAZ ( fZ1|G=ij(z)), the probability of being infected with 
malaria if WAZ = z (i.e., pij(z)), the probability of show-
ing clinical symptoms given infection (pc(E)), and the 
probability of death from malaria conditioned on having 
clinical disease and having WAZ = z, which is denoted by 
d(z). The malaria mortality is then given by

Parameter estimates
An update (Table A7.3 in [21]) of the analysis in [18] gives 
k = 1/5.9 = 0.17 and b/r = 0.57 (the results depend on b 
and r only through their ratio). Assume c = 0.5 (Table 4 
in [23]) and p = 0.1 [20]. The sub-Saharan Africa CDF in 
Fig. 2b of [24] was digitized and fit to a normal distribu-
tion to obtain µZ = −1.00 and σZ = 1.27. Data from the 
Population Reference Bureau for the year 2008 [22] yield 
α = 0.17. Data from the only large randomized controlled 
food (500 kCal/day of ready-to-use therapeutic food for 
3 months) trial with a treatment-free control group [19] 
are used to estimate the increase in WAZ due to sup-
plementary food. This trial reported only height-for-age 
z scores (HAZ) and weight-for-height z scores (WHZ), 
and by considering a typical child that was of mean age, 
baseline HAZ and baseline WHZ, and achieved the mean 
increases in HAZ and WHZ from supplementary food, 
the mean increase in WAZ is roughly estimated to be 
0.23 (§2.1 of Additional file 1). For lack of data, the stand-
ard deviation of the WAZ increase is assumed to be 0.1, 
which yields the lognormal parameters µA = −1.56 and 
σA = 0.42.

The functions a(φN ), m(φN ) and µ(φN ) are taken 
from the feeding cycle model in [20] and are specified in 
Eqs. (58)–(60) in Additional file 1 and plotted in Additional 
file 1: Figures 1–3. Because the EIR varies greatly in differ-
ent regions [18], four versions of m(φ) are considered, which 
correspond to pre-intervention EIR values of 1, 10, 100 and 
500 in the absence of baseline coverage (i.e., φc

0 = φa
0 = 0). 

(33)Pc = pc(E)P.

(34)

D =
(

1− φc
0

)

((

1− φ
(1)
t

)

∫∞

−∞
d(z)pc(E)p11(z)fZ1|G=11(z) dz

+φ
(1)
t

∫∞

−∞
d(z)pc(E)p12(z)fZ1|G=12(z) dz

)

+φc
0

((

1− φ
(2)
t

)

∫∞

−∞
d(z)pc(E)p21(z)fZ1|G=21(z) dz

+φ
(2)
t

∫∞

−∞
d(z)pc(E)p22(z)fZ1|G=22(z) dz

)

.

These versions generate examples of hypoendemic, mesoen-
demic and (for EIR = 100 and 500) hyperendemic regions, 
respectively (Table 1 in [29]), and are constructed by chang-
ing the value of the parameter � in Eq. (82) of Additional 
file  1, as explained in Additional file  1: §2.2. The clinical 
fraction pc(E) is estimated using the anti-disease immunity 
model in [28] (Additional file 1: §2.4).

A critical and challenging parameter to estimate is k1 , 
which quantifies the proportion of heterogeneity in suscep-
tibility that is due to undernutrition. To measure the change 
in malaria prevalence due to providing supplementary food, 
the impact of undernutrition on malaria needs to be isolated 
from other confounding factors that may be positively cor-
related with undernutrition, such as family income, home 
location relative to mosquito-breeding areas, and the protec-
tive ability of the home (e.g., window screens). Consequently, 
although there are estimates that quantify the relative risk of 
WAZ < −2 for clinical malaria [13], if these estimates were 
used in the model, the impact of food on malaria would be 
overestimated by implicitly assuming that providing food 
would also improve the level of the confounding variables. 
Hence, to estimate k1, data are used from the only large ran-
domized controlled food trial of children ages 6 months to 5 
years with a treatment-free control group [19], which found 
that the adjusted (after accounting for age, sex, seasonal-
ity, HAZ, and village) odds ratio for post-treatment clinical 
malaria (requiring a fever and an infection as measured by the 
HRP2 rapid diagnostic test, which is very sensitive and spe-
cific [30]) was 0.76. This analysis (Additional file 1: §2.3) yields 
k1 = 0.153 (Additional file  1: Figure  4), which corresponds 
to 90.3 % of the heterogeneity in susceptibility being due to 
undernutrition (i.e., using the mean values, k1/k = 0.903).

The malaria mortality probability for the infected popu-
lation, d(z), is equal to the unconditional malaria mortal-
ity probability divided by the probability of having clinical 
malaria, where all three probabilities are conditioned on 
having a WAZ value of z. In the derivation of d(z) (Addi-
tional file  1: §2.5), the numerator is estimated from 
Table 2.5 of [13], and the denominator is calculated from 
the estimated relative risk of clinical malaria (this estimate 
relies heavily on [25], which required fever and infection 
via microscopy) of 1.31 for WAZ < −2 (Table 2.8 of [13]) 
and an estimate of the underling WAZ PDF for the pop-
ulation upon which this relative risk is based [25]. This 
calculation yields d(z) = e1.851−0.607z per 1000 children 
(Additional file 1: Figure 7).

Results
Main results
Results are reported for all 12 combinations of 20, 50 and 
80 % baseline ITN coverage and pre-intervention (and no 
baseline coverage) EIR of 1, 10, 100 and 500, except for 
the 80 % ITN coverage, EIR = 1 scenario, which achieves 
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malaria elimination in the absence of intervention. To 
place these EIR values in context, the setting of [19] has a 
pre-intervention (and no baseline coverage) EIR value of 
2.65. For these 11 scenarios, two quantities are computed 
for each policy: the normalized clinical malaria preva-
lence (i.e., clinical malaria prevalence divided by inter-
vention-free clinical malaria prevalence, where the latter 
number is shown in the figure legends), and the normal-
ized malaria mortality (i.e., malaria mortality divided by 
the intervention-free malaria mortality). Some represent-
ative results from these scenarios appear in Table 3.

Figures 1, 2, 3 and 4 show results for 20 % baseline cov-
erage for children (φc = 0.2) for pre-intervention EIR = 
1, 10, 100 and 500, respectively. When EIR = 1 and ITN 
coverage = 20 %, the targeted food policy achieves a nor-
malized clinical malaria prevalence of 0.77 when θ = ∞ 
(i.e., every child receives food). This policy experiences 
decreasing returns as the threshold θ increases, with 
the elbow of the curve in Fig. 1a near WAZ = −1.5. The 
reductions in normalized malaria mortality are larger 
than the corresponding reductions in normalized malaria 
prevalence for the targeted food policy, regardless of EIR 
and pre-intervention coverage; i.e., the targeted food pol-
icy curves in Figs.  1b, 2b, 3b and 4b are lower than the 
corresponding curves in Figs.  1a, 2a, 3a and 4a. In par-
ticular, in Fig.  1b the reduction in malaria mortality is 
0.72 when θ = ∞ for the targeted food policy.

The untargeted ITN curve is nearly linear in Fig.  1 
(and in all other figures), while the curves for the three 
targeted policies are all convex. The untargeted ITN 
policy achieves more dramatic morbidity and mor-
tality reductions than the targeted food policy, and is 
capable of eliminating malaria in this low-EIR setting 
when ≈45% children, in addition to the 20  % children 
at baseline, are randomly chosen to receive an ITN. 
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Fig. 1  For the case of EIR = 1 (hypoendemic) and 20 % baseline ITN 
coverage of children, which generates a clinical malaria prevalence 
of 0.049 in children at baseline, (a) the proportion of children with 
clinical malaria for a given coverage of a given policy, divided by the 
proportion of children with clinical malaria in the intervention-free 
case, and (b) the proportion of children who die from malaria for a 
given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)

Table 3  Selected numerical results

The quantity DP is the normalized malaria mortality achieved by policy P

The subscripts TF, UI, TI and TF+I stand for the targeted food policy, the 
untargeted ITN policy, the targeted ITN policy and the targeted food and 
targeted ITN policy, respectively, where the WAZ threshold θ = −2 for the 
targeted policies and the additional ITN coverage φ equals the proportion of 
children with WAZ < −2 without ITN coverage at baseline

Hence, 1− DTF is the reduction in normalized malaria mortality from the 
targeted food policy, DUI − DTI is the reduction in normalized malaria mortality 
due to targeting ITNs (and is negative if targeting is worse than not targeting), 
and DTI − DTF+I is the marginal reduction in normalized malaria mortality due to 
adding targeted food to the targeted ITN policy

NA represents the case where both policies in the metric column eliminate 
malaria

All numbers are taken from Figs. 1b, 2b, 3b, 4b, 5b, 6b and 7b and from 
Additional file 1: Figures 9b, 10b, 11b, 12b

Baseline ITN 
coverage (%)

Metric EIR = 1 EIR = 10 EIR =100 EIR = 500

20 1− DTF 0.23 0.11 0.08 0.07

20 DUI − DTI 0.40 0.08 −0.03 −0.01

20 DTI − DTF+I 0.03 0.12 0.08 0.07

50 1− DTF 0.35 0.14 0.09 0.07

50 DUI − DTI NA 0.08 −0.02 −0.01

50 DTI − DTF+I NA 0.14 0.09 0.07

80 1− DTF NA 0.19 0.10 0.08

80 DUI − DTI NA 0.06 −0.01 −0.01

80 DTI − DTF+I NA 0.18 0.11 0.08
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The targeted ITN policy is even more effective, elimi-
nating malaria when an additional ≈40% of the chil-
dren—those with WAZ < −1.0—receive ITNs. At 30 % 
coverage of the child population (including the 20  % 
at baseline), the targeted ITN policy achieves a 69  % 
reduction in mortality and the untargeted ITN policy 
achieves a 24 % reduction. The policy that targets both 
food and ITNs achieves morbidity and mortality levels 

that are almost indistinguishable in Fig.  1 from those 
achieved by the targeted ITN policy.

As expected (both empirically [6] and because malaria 
prevalence is an increasing concave function of EIR in 
the model), the interventions have less impact on malaria 
morbidity and mortality as EIR increases; e.g., for 20  % 
baseline coverage, the curves in Fig. 1 (EIR = 1) are lower 
than the corresponding curves in Fig. 2 (EIR = 10), which 
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Fig. 2  For the case of EIR = 10 (mesoendemic) and 20 % baseline ITN 
coverage of children, which generates a clinical malaria prevalence 
of 0.354 in children at baseline, (a) the proportion of children with 
clinical malaria for a given coverage of a given policy, divided by the 
proportion of children with clinical malaria in the intervention-free 
case, and (b) the proportion of children who die from malaria for a 
given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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Fig. 3  For the case of EIR = 100 (hyperendemic) and 20 % baseline 
ITN coverage of children, which generates a clinical malaria preva-
lence of 0.580 in children at baseline, (a) the proportion of children 
with clinical malaria for a given coverage of a given policy, divided by 
the proportion of children with clinical malaria in the intervention-
free case, and (b) the proportion of children who die from malaria for 
a given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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are lower than the corresponding curves in Fig.  3 (EIR 
= 100), which in turn are lower than the corresponding 
curves in Fig.  4 (EIR = 500). The clinical malaria prev-
alence curves for the targeted food policy asymptote 
(for θ = ∞) at 0.85, 0.89 and 0.91 in Figs. 2a, 3a and 4a 
respectively, while the mortality curves asymptote at 
0.80, 0.82 and 0.83 in Figs.  2b, 3b and 4b respectively. 

In contrast to the EIR = 1 scenario, malaria elimination 
is not achievable when EIR = 10, 100 or 500, even with 
100 % ITN coverage of the child population (which cor-
responds to 34 % of the entire population).

For the targeted food policy in Figs. 2a, 3a and 4a, the 
normalized prevalence equals 1.0 for very low coverage 
because undernutritioned children (e.g., WAZ < −2 in 
Fig. 3a) get infected even if they receive food. Similarly, 
the targeted ITN policy performs worse than the untar-
geted ITN policy for low coverage in the hyperendemic 
setting (Figs.  3, 4) because children with low WAZ are 
highly likely to get infected regardless of the intervention 
policy. In addition, adding targeted food to targeted ITNs 
has the biggest impact when EIR is intermediate in value 
(i.e., EIR = 10 or 100).

The four scenarios with 50  % baseline coverage are 
qualitatively similar to Figs. 1, 2, 3 and 4 except that the 
horizontal axis ranges from 0 to 0.5 rather than from 0 
to 0.8; the results for 50 % ITN coverage appear in Addi-
tional file  1: Figures  9–12. Finally, under 80  % baseline 
coverage (results for the EIR = 10, 100 and 500 scenarios 
are in Figs. 5, 6 and 7), ITN interventions have very lim-
ited impact when EIR = 100 and 500, and targeted food 
offers larger morbidity and mortality reductions than 
additional ITN interventions.

Sensitivity analysis
Because k1 is the most critical and problematic parameter 
in the model, a sensitivity analysis is undertaken using 
values of k1 = 0.08 and 0.04, which generate k1/k values 
(the portion of susceptibility heterogeneity due to under-
nutrition) of 0.471 and 0.235, respectively, compared to 
the base-case value of k1/k = 0.903. As expected (Addi-
tional file 1: Figures 13–34), as k1 decreases, the impact 
of the targeted policies decreases. Nonetheless, even at 
k1 = 0.04, the qualitative results described earlier still 
hold, particularly for malaria mortality.

Discussion
Intervention results
Eleven scenarios are considered that span a range of 
baseline ITN coverage values and EIR values. Although 
spatial targeting should cause these two quantities to be 
positively correlated in practice, the large funding gap in 
ITNs [10] suggests that the only coverage-EIR combina-
tion considered here that may be rare in practice is the 
80 % coverage, EIR = 10 scenario.

The first of three main results from the model is that 
the targeted food policy achieves a nontrivial reduction 
in malaria mortality; e.g., under 20 % baseline ITN cov-
erage, providing supplementary food to underweight 
children (i.e., those with WAZ < −2) reduces malaria 
mortality by 22.9, 10.8, 7.8 and 7.2 % when EIR = 1, 10, 
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Fig. 4  For the case of EIR = 500 (hyperendemic) and 20 % baseline 
ITN coverage of children, which generates a clinical malaria preva-
lence of 0.680 in children at baseline, (a) the proportion of children 
with clinical malaria for a given coverage of a given policy, divided by 
the proportion of children with clinical malaria in the intervention-
free case, and (b) the proportion of children who die from malaria for 
a given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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100 and 500, respectively. The morbidity reduction in 
the model explicitly incorporates the herd effect of nutri-
tion: children who receive supplementary food become 
less susceptibile to disease, which leads to fewer infected 
mosquitoes, which in turn reduces the likelihood of dis-
ease in children who do not receive supplementary food. 
The mortality reduction is larger than the morbidity 
reduction because the children who receive food are also 

the most likely to die if they do get infected with malaria, 
and so their direct protection via supplementary food 
has a synergistic effect on the overall mortality due to 
malaria. As with ITNs, the impact of the targeted food 
policy is lower in higher EIR settings.

As expected, the untargeted ITN policy has a much 
larger effect than the targeted food policy on clinical 
malaria prevalence, although this effect decreases with 
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Fig. 5  For the case of EIR = 10 (mesoendemic) and 80 % baseline ITN 
coverage of children, which generates a clinical malaria prevalence 
of 0.149 in children at baseline, (a) the proportion of children with 
clinical malaria for a given coverage of a given policy, divided by the 
proportion of children with clinical malaria in the intervention-free 
case, and (b) the proportion of children who die from malaria for a 
given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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Fig. 6  For the case of EIR = 100 (hyperendemic) and 80 % baseline 
ITN coverage of children, which generates a clinical malaria preva-
lence of 0.424 in children at baseline, (a) the proportion of children 
with clinical malaria for a given coverage of a given policy, divided by 
the proportion of children with clinical malaria in the intervention-
free case, and (b) the proportion of children who die from malaria for 
a given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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increasing EIR, which is consistent with results from 
randomized controlled trials [6]. The model predicts 
malaria elimination when EIR = 1 with 60 % ITN cover-
age of the child population, which corresponds to 20  % 
of the total population. It also predicts that 100  % ITN 
coverage of children, which corresponds to 34  % cover-
age of the entire population, is insufficient to eliminate 
malaria when EIR ≥ 10. The model predictions about the 

infeasibility of malaria elimination in many scenarios is 
not inconsistent with results from randomized controlled 
trials [6] or other modelling studies (Table 1 in [31]). A 
cost-effectiveness comparison between supplementary 
food and ITNs has not been performed because supple-
mentary food may also directly reduce mortality from 
wasting and stunting and reduce the lifelong effects of 
stunting, in addition to reducing morbidity and mortal-
ity associated with other diseases such as pneumonia and 
diarrhoea.

The second main result is that in the hypoendemic and 
mesoendemic settings, the targeted ITN policy outper-
forms the untargeted ITN policy (it achieves elimination 
at a lower coverage, and significantly reduces mortality 
over a wide range of sub-elimination coverages). How-
ever, the targeted ITN policy is outperformed by the 
untargeted ITN policy for conventional WAZ thresh-
olds (e.g., WAZ ∈ [−3,−1]) in the hyperendemic set-
ting because undernutritioned children in this case are 
likely to get infected despite being protected by an ITN. 
While ITN targeting is typically performed at the macro 
level based on spatial estimates of transmission inten-
sity [21], these results raise the possibility of additional 
targeting at the micro level in the hypoendemic and 
mesoendemic settings based on easily-obtained anthro-
pometric measures such as WAZ, despite the fact that 
young children are not a major contributor to the infec-
tious reservoir [28]. In addition, targeting based on child 
undernutrition may be more politically feasible and prac-
tically implementable than means-testing, where family 
incomes are the basis for ITN distribution [32]. This tar-
geting approach is particularly appealing for sub-Saharan 
Africa, which incurs 90  % of malarial cases and deaths, 
and where the burden of disease is in young children (and 
pregnant women) [33].

The policy that targets ITNs and food performs nearly 
the same as the targeted ITN policy when EIR = 1. This 
lack of improvement may be due to the positive correla-
tion of the two interventions (i.e., they are targeting the 
exact same children); efficacy of a joint strategy is often 
improved if two interventions are negatively correlated, 
in that they generate higher coverage [28]. However, the 
improvements from adding targeted food to targeted 
ITNs are sizeable in the mesoendemic and hyperendemic 
settings. The third main result is that in a hyperendemic 
setting with 80  % ITN child coverage, food targeting 
offers a larger reduction in malaria morbidity and mor-
tality than increasing the child ITN coverage beyond 
80 %, which is often a logistical challenge.

Overall, the study suggests that much of the heteroge-
neity in susceptibility is observable (in this case, via WAZ 
values) and hence exploitable for purposes of targeting, 
which is sufficient to generate meaningful reductions in 
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Fig. 7  For the case of EIR = 500 (hyperendemic) and 80 % baseline 
ITN coverage of children, which generates a clinical malaria preva-
lence of 0.558 in children at baseline, (a) the proportion of children 
with clinical malaria for a given coverage of a given policy, divided by 
the proportion of children with clinical malaria in the intervention-
free case, and (b) the proportion of children who die from malaria for 
a given coverage of a given policy, divided by the proportion of chil-
dren who die from malaria in the intervention-free case. The bottom 
of both figures gives the WAZ threshold that corresponds to a given 
coverage for the targeted policies (e.g., for the targeted ITN policy, 
ITNs are given to children with WAZ values below the threshold)
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clinical malaria prevalence in some settings. Coupling 
this effect with the dependence of mortality on WAZ 
leads to even larger reductions when considering malaria 
mortality.

Although beyond the scope of this study, a similar anal-
ysis—but with a Susceptible-Exposed-Infected-Removed 
(SEIR) model with heterogeneous susceptibility rather 
than a vector model as in  (2)–(5)—could be performed 
for the cases of diarrhoea (e.g., rotavirus) or pneumonia 
(e.g., respiratory syncytial virus), using either partial dif-
ferential equations [34] or branching processes [1]. Such 
an analysis could quantify the benefits of other targeted 
preventive measures—e.g., rotavirus vaccination—to 
undernutritioned children. The relative risks for mor-
bidity associated with WAZ < −2 are 1.23 and 1.86, 
respectively, for pneumonia and diarrhoea [13], and mor-
tality rates for these two diseases decrease with increas-
ing WAZ (Table 2.5 in [13]).

A possible generalization of the model is to incorporate 
the possibility that children’s nutrition level (e.g., WAZ) 
decreases when they are infected [14–16]. Capturing 
this effect and the subsequent catch-up growth (pages 
182–183 of [35]) would require generalizing Eqs. (4)–(6) 
to a partial differential equation model, where ẋi(s) is 
replaced by ∂xi(s,t)

∂t  for i = 1, 2. This generalization, which 
would be more difficult to analyze, may not yield any new 
qualitative results because of the catch-up growth.

Limitations of the study
The integrated nutrition-malaria model presented here 
simplifies aspects of nutrition and malaria. Undernu-
trition in this model is measured by WAZ (i.e., under-
weight), which can be viewed as a composite measure of 
HAZ (i.e., stunting), which is a long-term micronutrient 
deficiency that is caused by insufficiently balanced diets 
as well as repeated infection and psycho-social depriva-
tion, and WHZ (i.e., wasting), which is an acute under-
supply in energy and proteins (an alternative view is that 
wasting is a composite measure of stunting and under-
weight). Combining these into a single measure tends to 
muddle the interaction of nutrition with malaria. How-
ever, the best malaria mortality data [13] explores its 
relationship only with WAZ and prevents us from devel-
oping a bivariate model using (HAZ,WHZ). If better data 
become available, a bivariate model may lead to a refine-
ment of these findings, although the model would be 
considerably more difficult to analyse.

The malaria model ignores many complexities that 
have been incorporated in other malaria models, such 
as seasonality, spatial structure, age structure, immunity 
to infection (although this aspect did not improve the 
model fit in [18]), and mosquito searching and feeding 
cycle (e.g., [20, 28, 36]), and temporal issues related to 

the relative effectiveness of ITNs and the new generation 
of long-lasting insecticide-treated nets (LLINs). None-
theless, given the research questions being raised (i.e., 
attempting to gain broad insights about targeted inter-
ventions as opposed to accurately predicting morbidity 
and mortality rates), these omissions seem appropriate, 
and the ITN parameters are estimated from the output 
of the more detailed model in [20]. On the other hand, 
the model is more detailed (although much less broad) 
than the Lives Saved Tool [37], which—while invaluable 
for broad resource allocation decisions for maternal and 
child health—is not able to address the type of targeting 
questions and policies considered here.

Despite these modelling limitations, the biggest short-
coming in this analysis relates to the estimation of the 
crucial parameter, k1, which specifies the proportion of 
susceptibility heterogeneity that is due to undernutrition. 
First, the estimation of the total susceptibility heteroge-
neity (i.e., the parameter k in the model and in [18, 21]) 
is extremely difficult [38]. Several modelling choices need 
to be made without supporting data. In [18, 21], it was 
assumed that the susceptibility distribution had a gamma 
distribution. A much bolder assumption is made here 
that the undernutrition random variable is also gamma 
with the same shape parameter as the susceptibility dis-
tribution derived in [21], so that only one new parame-
ter (k1) needs to be estimated. It is further assumed that 
the left tail of the WAZ distribution corresponds to the 
right tail of the undernutrition distribution. In addition, 
the analysis in [18] considers children up to 15 years of 
age, and their results are applied here to children up to 5 
years of age. Turning to the data used to estimate k1, the 
adjusted odds ratio of 0.76 (which gives an adjusted prev-
alence ratio of 0.77) in [19] has a 95 % confidence interval 
(CI) of (0.51,1.13), and a p value of 0.177, and hence is 
not statistically significant at the traditional 0.05 level.

Interestingly, a more recent randomized controlled 
feeding trial [39] of 54 g/day (slightly less than half the 
dose used in [19]) of a lipid-based nutrient supplement 
had very similar results to [19]: pooling the three inter-
vention arms (milk-, soy- and corn-soy-based) and com-
paring to the control arm leads to an incident rate ratio 
of clinical malaria (fever and infection determined via 
microscopy) of 0.81 and a 95 % CI of (0.69, 0.94), which 
is statistically significant (in [39], the three interven-
tion arms were not pooled and did not achieve statisti-
cal significance). The results in [39] cannot be directly 
pooled with those in [19] because of the lower food dose, 
the restricted ages (6–18 months old), the higher pre-
intervention nutrition levels (mean WAZ = −0.8, mean 
WHZ = 0.4), and the higher malaria infection prevalence 
(0.13). Nonetheless, the consistency in results between 
these two studies suggests that this result may be robust.
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If the relative risk of clinical malaria of 1.31 associ-
ated with WAZ < −2 [13]—rather than the feeding trial 
data in [19]—is used to estimate k1, then k1 = 0.0095 
(Additional file  1: §2.5), which corresponds to 5.3  % of 
heterogeneity being due to undernutrition and which 
generates a negligible impact of food on malaria mor-
bidity, although it still reduces malaria mortality. One 
would have expected k1 based on [13] to be larger than 
the k1 = 0.153 estimate based on [19] because the former 
includes the impact of confounding factors; on the other 
hand, the 1.31 estimate may incorporate some reverse 
causality: malaria causes low WAZ and partial immunity 
(although seen more in older children), and so low WAZ 
may also be associated with less malaria. The relative risk 
of 1.31 is based on only two observational studies and 
has a 95 % CI of (0.92,1.88), which also is not quite at the 
level of statistical significance (p value = 0.143). Indeed, 
the relative risk of malaria due to undernutrition is dif-
ficult to estimate from observational studies [40].

Taken together, due to the nature of its design, the trial 
in [19] is believed to offer the best data for estimating the 
impact that undernutrition has on malaria prevalence. 
Although the p value of 0.177 does not allow for the tra-
ditional level of statistical significance, the biological 
plausibility of this hypothesis (e.g., undernutrition down-
regulates immune functioning [41], including the anti-P. 
falciparum antibody response [42])—coupled with the sim-
ilar results achieved in [39] and the important policy impli-
cations if it is true—leads us to believe that this problem is 
worthy of study despite the tenuous nature of the results. 
In summary, the results may not be valid and certainly are 
not robust, but they nonetheless deserve serious consid-
eration. Given that no relevant data to shed more light on 
this issue are likely to be generated in the near future (in 
particular, there are ethical concerns with feeding trials 
that have treatment-free control arms), the most appropri-
ate next step may be a randomized trial. More specifically, 
a design that may be ethically and politically acceptable is 
a cluster (at the village level) randomized control trial in a 
hypoendemic or mesoendemic setting, where the control 
arm offers a partial subsidy of ITNs to all children and the 
treatment arm provides free ITNs to children with WAZ 
< −2 and a partial subsidy to children with WAZ > −2.

Conclusion
In calibrating the malaria-nutrition model, it is not pos-
sible to reliably estimate the proportion of susceptibil-
ity heterogeneity in the child population that is due to 
undernutrition: data from a randomized feeding trial 
generates a point estimate of 90.3  %, data from obser-
vational studies provide a point estimate of 5.3  %, and 
neither estimate is based on study results that are statisti-
cally significant at the traditional 0.05 level. The former 

estimate is assumed to be more reliable than the latter 
estimate due to the randomized nature of the design and 
its adjustment for other factors.

From a policy perspective, the results (Table 3) suggest 
that in a hypoendemic setting (EIR = 1), micro targeting 
of ITNs to undernutritioned children offers the most lev-
erage; although targeting supplementary food offers some 
improvement on its own, the marginal impact of adding 
food to a targeted ITN policy is minimal. In the mesoen-
demic setting (EIR = 10), the impact of targeting ITNs 
is more modest, the impact of the targeted food policy 
increases with baseline ITN coverage, and the targeted 
ITN and food policy performs better than using either 
intervention alone. In the hyperendemic settings (EIR = 
100 or 500), ITN targeting performs worse than the untar-
geted ITN policy, even though supplementary food has a 
larger impact than ITNs in these scenarios. The targeted 
food and ITN policy provides some improvement in these 
scenarios if coverage is high, although ITNs add little to 
this policy when baseline ITN coverage is already high.

The results from this analysis may not turn out to be 
true and are not robust. Nonetheless, the biological plau-
sibility of the assumption underlying this result—coupled 
with the probable lack of new data to further inform this 
issue—leads us to suggest that a randomized cluster trial 
should be undertaken in a hypoendemic or mesoendemic 
setting, where children in the control group receive par-
tially subsidized ITNs and children in the treatment 
group receive free ITNs if WAZ < −2 and partially subsi-
dized ITNs if WAZ > −2.
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