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Abstract. The localization of the protein tyrosine ki- 
nase pp61Y -'~ to the plasma membrane and to the 
membrane of secretory vesicles in neurally derived bo- 
vine chromaliin cells has suggested that tyrosine phos- 
phorylations may be associated with the process of 
secretion. In the present study we have identified two 
cytosolic proteins of ",,42 and 45 kD that become 
phosphorylated on tyrosine in response to secretagogue 
treatment. Phosphorylation of these proteins reached a 
maximum (3 min after stimulation) before maximum 
catecholamine release was observed (5-10 min after 
stimulation). Both secretion and tyrosine phosphoryla- 
tion of p42 and p45 required extracellular Ca 2÷. Tyro- 
sine-phosphorylated proteins of similar Mr have previ- 
ously been identified in 3T3-L1 adipocytes stimulated 
with insulin (MAP kinase; Ray, L. B., and T. W. 
Sturgill. 1987. Proc. Natl. Acad. Sci. USA. 84:1502- 
1506) and in avian and rodent fibroblasts stimulated 

with a variety of mitogenic agents (Cooper, J. A., 
D. E Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 
1982. Cell. 31:263-273; Nakamura, K. D., R. Marti- 
nez, and M. J. Weber. 1983. Mol. Cell. Biol. 
3:380-390). Comparisons of the secretion-associated 
42-kD protein of chromaflin cells with the 42-kD pro- 
tein of Swiss 3T3 fibroblasts and 3T3-L1 adipocytes 
provide evidence that these three proteins are highly 
related. This evidence includes comigration during 
one-dimensional SDS-PAGE, cochromatography using 
ion exchange and hydrophobic matrices, similar iso- 
electric points, identical cyanogen-bromide peptide 
maps, and cochromatography of MAP kinase activity 
with the tyrosine-phosphorylated form of pp42. This 
protein(s), which appears to be activated in a variety 
of cell types, may serve a common function, perhaps 
in signal transduction involving a cascade of kinases. 

OVINE adrenal chromaffin cells, derived from the neu- 
ral crest during embryogenesis, respond to secretory 
agonists by releasing the catecholamines epinephrine 

and norepinephrine in a highly regulated exocytotic process. 
Through studies using cultured bovine chromaffin cells, evi- 
dence has accumulated to suggest that protein phosphoryla- 
tions provide a link in stimulus-secretion coupling (Amy and 
Kirshner, 1981; Lee and Holz, 1986; Michener et al., 1986; 
Creutz et al., 1987; Gutierrez et al., 1988). This finding has 
been supported by analyses of protein phosphorylation as- 
sociated with exocytosis in other secretory tissues, including 
nervous tissue, mast cells, and platelets (Sieghart et al., 
1978; DeLorenzo et al., 1979; Nishikawa et al., 1980; Fer- 
rell and Martin, 1988; Golden and Brugge, 1989). The 
majority ofphosphorylations observed thus far in chromaffin 
Equal contributions were made to this ~ark by Constance M. Ely and Karen 
M. Oddie. 

cells have been related to activations or inactivations of 
cAMP-, Ca2+/calmodulin -, or Ca2+/phospholipid-dependent 
protein kinases (Amy and Kirshner, 1981; Burgoyne and 
Geisow, 1981; Lee and Holz, 1986; Cote et al., 1986; Giesow 
and Burgoyne, 1987; Haycock et al., 1988) and have involved 
phosphorylations primarily on serine or threonine residues 
of proteins thought to be critical for the onset of or recovery 
from secretion. 

Until recently, alteration in the phosphorylation of pro- 
teins on tyrosine residues has been most frequently as- 
sociated with cell mitogenesis and transformation. These in- 
vestigations have focused primarily on intracellular tyrosine 
phosphorylations that are modulated upon infection by onco- 
genic viruses encoding tyrosine kinases or upon cell surface 
binding of mitogenic polypeptide growth factors to their cog- 
nate receptors, which themselves possess tyrosine kinase ac- 
tivity (Cooper and Hunter, 1981; Cooper et al., 1982; Car- 
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penter, 1987; Hunter and Cooper, 1985; Kamps and Sefton, 
1988). 

Our interest in examining nontransformed, postmitotic 
chromaflin cells for secretagogue-dependent tyrosine phos- 
phorylations was prompted by several findings: (a) localiza- 
tion of pp60 ~-'c, a tyrosine-specific protein kinase, to both 
the secretory granule membrane and plasma membrane frac- 
tions of chromaffin cells (Parsons and Creutz, 1986; Gran- 
dori and Hanafusa, 1988); (b) modulation of pp60 ..... activ- 
ity after secretagogue stimulation (Oddie et al., 1989); (c) 
identification of two tyrosine kinase substrates, calpactin I 
and lipocortin I, as members of the chromobindins (Creutz 
et al., 1987), a group of cytosolic proteins that bind to 
chromaffin granule membranes in a Ca2+-dependent man- 
ner (Creutz et al., 1983); and (d) in vitro phosphorylations 
and functional modulation of the nicotinic acetylcholine 
receptor by an endogenous tyrosine-specific protein kinase 
in postsynaptic membranes from the electric organ of Tor- 
pedo californica (Huganir et al., 1984; Hopfield et al., 
1988). Activation of this receptor in chromatlin cells induces 
exoeytosis (for review see Livett, 1984a). 

Using antibodies specific for phosphotyrosine we describe 
in this report the identification of proteins in bovine adrenal 
chromaffin cells with apparent molecular masses of 42 and 
45 kD that are phosphorylated on tyrosine in response to sev- 
eral different secretagogues. Experimental evidence support- 
ing the relevance of these endogenous phosphorylations to 
chromaffin cell secretion includes a dependence of these 
phosphorylations on extracellular calcium, dose response 
optima similar to that required for maximum catecholamine 
release in vitro, and rapid kinetics of phosphorylation after 
stimulation. The phosphorylated forms of these proteins 
were localized to the cell cytoplasm. 

Proteins in the 42-45-kD mass range have also been 
identified as targets for tyrosine kinases in transformed cells 
(Cooper and Hunter, 1981; Kamps and Sefton, 1988), in 
fibroblasts stimulated with a variety of mitogens, such as 
epidermal growth factor or platelet-derived growth factor 
(Cooper et al., 1982; Nakamura et al., 1983; Cooper and 
Hunter, 1985), in 3T3-L1 adipocytes stimulated by insulin 
(Ray and Sturgill, 1987, 1988a), and in Xenopus oocytes un- 
dergoing meiosis (Cooper, 1989). Pp42 from mitogen-stim- 
ulated fibroblasts is a low abundance cytoplasmic protein that 
is highly conserved between species (Cooper and Hunter, 
1985). Analysis of insulin-stimulated tyrosine phosphoryla- 
tions in differentiated, nonproliferating 3T3-L1 adilx~tes 
has revealed another tyrosine-phosphorylated 42-kD pro- 
tein, termed MAP kinase. 1 This protein has been character- 
ized as an insulin-activated serine/threonine kinase capable 
of phosphorylating the substrates, microtubule-associated 
protein 2 (MAP-2), and $6 kinase H in vitro (Ray and Stur- 
gill, 1987, 1988a; Sturgill et al., 1988). Partial purification 
of MAP kinase has been achieved by sequential column 
chromatography using the anion exchange matrix, DEAE, 
followed by the hydrophobic matrix, phenyl-Superose, and 
gel filtration on Superose 12 (Ray and Sturgill, 1988b). Re- 

1. Abbreviations used in this paper: BSSG, balanced salt solution with glu- 
cose; CEF, chicken embryo fibroblast; I-D, one-dimensional; 2-D, two- 
dimensional; KRB Hepes, Krebs-Ringer bicarbonatedHepes buffer; MAP-2, 
microtubule-associated protein 2; MAP kinase, microtubule-associated 
protein 2 kinase; NE, norepinephrine; ptyr antibody, phosphotyrosine- 
specific antibody; TPA, 12-O-tetradecanoylphorbol 13-acetate. 

cent biochemical evidence demonstrates that the mitogenic 
pp42 protein has an associated MAP kinase activity (Ros- 
somando et al., 1989). 

The cytosolic localization, the molecular size, and the 
rapid and transient tyrosine phosphorylation of pp42 from 
chromaffin cells, mitogen-stimulated fibroblasts, and insu- 
lin-stimulated adipocytes (i.e., MAP kinase) suggested that 
these three proteins may be highly related. To determine the 
biochemical and functional relatedness of the secretion-as- 
sociated pp42 protein to both the mitogen-associated pp42 
and insulin-sensitive pp42 (MAP kinase), experiments were 
conducted comparing chromatographic properties, isoelec- 
tric points, phosphoamino acid content, cyanogen bromide 
peptide maps, and MAP kinase activity. The results demon- 
strate that the secretion-associated pp42 protein is highly 
related if not identical to both the insulin-induced and the 
mitogen-associated pp42 proteins. The tyrosine phosphory- 
lation and activation of the pp42 protein, or highly related 
proteins in unique cell types, each coupled to distinct cell 
functions, suggests a central role for this protein, perhaps in 
intracellular communication from a variety of cell surface 
receptors. 

Materials and Methods 

Culturing and Stimulation of  Cells 

Chromatlin cells were prepared from bovine adrenal glands for in vitro cul- 
tore according to the method of Greenberg and Zinder (1982) as described 
by Liveu (1984/7) with modifications noted in Creutz et al. (1987). The pro- 
cedure was further modified by omitting differential plating and maintaining 
the cells in a serum-free medium lacking 5-fluoro-2'-deoxyuridine (N2 
medium) as outlined by Acheson et al. (1984) and Bottenstein and Sato 
(1979). As determined by uptake of neutral red in different preparations, 
chromaflin cells were judged to be 85-92% pure. 2-6-d-old cultures were 
stimulated with 20 tiM nicotine, 300 itM carbachol, 100 ng/ml EGE 100 
ng/ml 12-O-tetradecanoylphorbol 13-acetate (TPA), or 55 mM K +. As 
shown by others (Greenberg and Zinder, 1982; Livett, 1984b), concentra- 
tions of all stimulants except EGF and TPA were chosen for their ability 
to induce maximal release of the catecholamine [3H]norepinephrine 
([3H]NE; for assay, see below). In a dose-response analysis carried out at 
3 min after stimulation, 100 ng/ml EGF, 100 ng/ml TPA, and 10-100 ttM 
nicotine were found to be optimal concentrations for inducing the greatest 
level of tyrosine phosphorylation of the pp42 and pp45 proteins (data not 
shown). The first four agents were added either directly to culture media 
or in a balanced salt solution with glucose (BSSG: 15 mM Hepas, 140 mM 
NaCI, 5 mM KCI, 1 mM MgCi~, 5 mM glucose, 2 mM CaCI2, 0.5 mM 
ascorbate, 1.2 mg/ml NaHCO3, and 1 mg/ml BSA), which was applied to 
the monolayer after a 15-min wash with BSSG at 37"C. TPA was diluted 
to the appropriate concentration from a l-mM stock maintained in absolute 
ethanol. The BSSG buffer was modified to accomodate the increase of KCI 
to 55 mM by decreasing the molarity of NaCI to 90 mM. Cultures were 
stimulated at 37"C in a humidified 5% CO2 atmosphere for the indicated 
times and then processed for analysis of phosphotyrosine-containing pro- 
teins. Where the Ca 2+ dependency of phosphorylation was tested, stimula- 
tions were performed either in BSSG containing 2 mM CaCI2 (as described 
above), or in BSSG lacking CaCI2 and containing 2 mM EGTA. In those 
experiments involving both Swiss 31"3 fibroblasts and chromaflin cells, the 
chromaliin cells were stimulated at 37"C for 3 rain in Krebs-Ringer bicar- 
bonate/Hepes buffer (KRB Hepes: 120 mM NaCI, 4.75 mM KCI, 1.2 mM 
MgSO4, 1.2 mM CaCI2, 24 mM NaHCO3, 10 mM Hepes, pH 7.5 [22"C]). 
Stimulation in KRB Hepes was preceded by a 2-h preitlcubation at 37"C in 
this buffer. 

PCI2 cells (Greene and Tisehler, 1976) were maintained on collagen- 
coated tissue culture dishes in RPMI 1640 medium (Gibeo Laboratories, 
Grand Island, NY) supplemented with 10% heat-inactivated horse serum, 
5 % FCS, and antibiotics. Stimulations were performed in BSSG as de- 
scribed above. Primary cultures of chicken embryo fibroblasts (CEFs) were 
prepared from 10-d-old gs-negative/chf-negative/Marek-negative embryos 
(Spafas, Inc., Norwich, CT) and maintained as previously described (Par- 
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sons et al., 1979). Confluent monolayers of cells were serum-starved in N2 
medium for 24 h before stimulation. The stimulant (EGF or TPA) was added 
directly to the medium. Swiss 3T3 cells were grown to subconfluence in 
DME supplemented with 10% FCS and antibiotics, incubated for 2 h at 
37°C in KRB Hepes, and stimulated in KRB Hepes at 37°C for 10 min with 
100 ng/ml EGF (Collaborative Research, Bedford, MA). 3T3-L1 adipo- 
cytes, differentiated according to the method of Rubin et al. (1978), were 
stimulated in KRB Hepes as described for the 3T3 cells except that 80 nM 
insulin (Eli Lilly and Co., Indianapolis, IN) was used as the stimulating 
agent (Ray and Sturgill, 1987). 

[JH]Norepinephrine Release 
This assay was performed as previously described (Boska and LiveR, 1984; 
Oddie et al., 1989). In those experiments in which the Ca 2+ dependency 
of [3H]NE release was tested, stimulations were performed either in BSSG 
containing 2 mM CaCI2 (as described above), or in BSSG lacking CaCI2 
and containing 2 mM EGTA. 

One-dimensional Antiphosphotyrosine 
Western lmmunoblots 
Stimulated or mock-stimulated cells in 60-mm dishes were lysed directly 
on the plate without washing by addition of 400 #1 (800 #1 for 100-mm 
dishes) ice-cold, modified RIPA (150 mM NaCI, 0.25 % Na deoxycholate, 
0.1% SDS, 1% NP-40, 1 mM Na orthovanadate, 1 mM PMSF, 50 mg/ml 
leupeptin, 0.5% aprotinin, 50 mM Tris, pH 7.2). The dishes were scraped 
with a rubber policeman, and the lysate was transferred to a 1.5-ml micro- 
centrifuge tube and centrifuged for 5 rain ('x,10,000 g) at 4"C. An aliquot 
was removed from the supernatant for protein determination using a modi- 
fied Lowry method (Markwell et al., 1978). Laemmli sample buffer (1970) 
was added to the remainder of the supernatant to attain a Ix  concentra- 
tion; the samples were heated to 100*C for 5 min and then subjected to 
SDS-PAGE or frozen at -70°C. In some experiments, cell lysates were pre- 
pared directly in 95-100*C Laemmli sample buffer, boiled for 5 min, soni- 
cated for 3--4 2-s bursts using a microtip to disrupt the DNA, and processed 
as described below for anti-ptyr Western immunoblotting. Identical re- 
suits were obtained using either method of lysate preparation suggesting 
that the observed phosphorylations did not take place during extract prep- 
aration. Samples (each containing 200/~g protein) were electrophoresed 
through SDS-10.5% polyacrylamide gels, transferred to nitrocellulose ill- 
ters (Schleicber & Schuell, Inc., Keene, NH), and processed as previously 
described (Kamps and Sefton, 1988; Kanner et al., 1989a,b; Reynolds et 
al., 1989). The specificity of the antiphosphotyrosine immunoglobulin has 
been described elsewhere (Kanner et al., 1989a,b). Briefly, it was shown 
that only phosphotyrosine (and not phosphoserine or phosphothreonine) 
completely blocked the binding of antibody to ptyr-containing proteins in 
a Western immunoblot, and that all in vivo 32pi-labeled proteins that were 
immuuoprecipitated with phosphotyrosine antiserum contained phos- 
photyrosine as determined by two-dimensional (2-D) phosphoamino acid 
analysis. However, this antisera (like that described by Kazlanskas and 
Cooper, 1988) was unable to immunoprecipitate either pp42 or plM5 in the 
native or heat-denatured form (data not shown). 

SubceUular Fractionation 
Cultured chromaffin cells in 60-ram dishes were stimulated with nicotine 
and then rinsed twice with cold PBS containing 50 mg/ml leupeptin, 0.5% 
aprotinin, 1 mM PMSF, and 1 mM Na orthovanadate. All buffers used sub- 
sequently in this procedure contained these phosphatase and protease inhibi- 
tors. Fractionations were carried out as described by Kanner et al. (1989a) 
and Reynolds et al. (1989). 

Mono Q Column Chromatography 
Cytosolic fractions obtained from nonstimulated and nicotine-stimulated 
cells were adjusted to 0.1 M NaCI, applied at a concentration of 2 mg pro- 
tein/ml to an anion exchange column (FPLC Mono Q; Pharmacia Fine 
Chemicals, Piscataway, NJ) equilibrated in buffer A (10 mM "Iris, pH 7.4 
[22°C], 1 mM MgCI2, 100 mM NaCI, and 4 mM pNPP) and eluted with 
a continuous salt gradient from 0.1 to 0.5 M NaCI. All columns were run 
at 3°C with a constant flow rate of 0.5 ml/min and a back pressure of no 
more than 1 MPa. Aliquots of l-ml fractions were analyzed by Western im- 
munoblotting using phosphotyrosine-specific antibody (ptyr antibody) to 
detect the presence of plM2. Those fractions containing plM2 were pooled, 

assayed for protein content by the BCA method (Pierce Chemical Co., 
Rockford, IL) and found to contain "-,200 ~g total protein/ml eluate. 

Phenyl-Superose Column Chromatography 
The pooled Mono Q fractions containing pp42 were applied directly to a 
phenyl-Superose column (FPLC; Pharmacia Fine Chemicals) and fraction- 
ated according to the method of Ray and Sturgill (1988b), except that the 
pNPP concentration was reduced to 4 raM. Aliquots of l-ml fractions were 
analyzed for pp42 by the Western immunoblotting technique using ptyr anti- 
body. Pooled fractions were stored at -70°C. 

MAP Kinase Assay 
The MAP kinase assay was performed as described by Ray and Sturgill 
(1987). MAP-2 was purified from bovine brain by the method of Kim et al. 
(1979). 

32p Labeling and 2-D Gel Electrophoresis 
Monolayer cell cultures were washed two times with KRB Hepes at 37°C 
and then labeled for 2 h at this temperature in KRB Hepes containing 1 
mCi/ml carrier free 32pi (New England Nuclear, Boston, MA) before 
stimulation, which was achieved by the addition of each inducing agent 
directly to the labeling media for the indicated times. 32p-labeled plM2 con- 
tained in the cytosolic fraction was purified through the phenyl-Superose 
step described above and prepared for 2-D gel analysis by deoxycholate 
(0.05%)/TCA (6%) precipitation (Rossomando et al., 1989) of 90 ~ti of the 
column fraction containing the peak MAP kinase activity. Pellets were 
resuspended in 70/~1 of nonradiolabeled, EGF-stimulated Swiss 3T3 whole 
cell lysate (0.5-1 mg protein/ml Garrels' sample buffer) according to the 
method of Rossomando et al. (1989) and applied to a tube gel containing 
ampholines of pH 3.5-10, 5-7, and 6-8 (Pharmacia Fine Chemicals) at a 
ratio of 0.5:1:1, respectively, for electrophoresis. 2-D gel analysis was per- 
formed according to the methods of O'Farrell (1975) and Garrells (1979) 
with modifications according to Rossomando et al. (1989). 10% polyacryl- 
amide gels were used for the second dimension. The pH gradient of the first 
dimension was determined by measuring the pH of elnates from slices of 
paired IEF gels eluted in water. 

Phosphoamino Acid Analysis 
For phosphoamino acid analysis the phenyI-Superos¢ column fraction con- 
taining the peak MAP kinase activity was resolved by one-dimansional 
(l-D) SDS-PAGE, and the 32p-labeled pp42 was localized by autoradiogra- 
phy and excised from the gel. Protein was eluted from the gel slice, TCA 
precipitated and washed with ethanol according to the method of Beemon 
and Hunter (1978), and hydrolyzed in 100/~1 5.7 M HCI at II0°C for 1.5 h. 
Hydrolyzed proteins were mixed with 300 ng each authentic phosphotyro- 
sine, phosphoserine, and phosphothreonine, and resolved by 2-D thin layer 
electrophoresis (Cooper et al., 1983). Identification of radiolabeled amino 
acids was made by colocalization with ninhydrin-stained authentic phos- 
phoamino acids. 

Peptide Mapping Using CNBr Digestion 
PbenyI-Superose-purified, 32p-labeled pp42 was resolved by I-D SDS- 
PAGE, eluted, and precipitated by TCA as described for the phosphoamino 
acid analysis. Each pellet was resuspended in 30 ttl of 50 mg/ml CNBr in 
70% formic acid and incubated '~18 h at room temperature. Distilled/ 
deionized water was added to the digestion reaction to a final volume of I ml 
and lyophilized. The peptides were then resuspended in I00/~I Laemmli 
sample buffer, separated by electrophoresis through a 15 % acrylamide gel, 
and detected by autoradiography. 

Results 

T)prosine Phosphorylation of 42- and 
45-kD Proteins in Chromaffin Cells in Response to 
Various Secretagogues 
To determine tyrosine phosphorylations associated with exo- 
cytosis we used antibodies specific for phosphotyrosine. Cul- 
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Figure 1. Secretagogue stimulation of cultured bovine chromatiin cells increases the tyrosine phosphorylation of the 42- and 45-kD proteins. 
Chromaflin cells were cultured from the medulla of fresh bovine adrenal glands and stimulated 5 d later by addition of carbachol, nicotine, 
or K + (at the concentrations indicated in the figure) to the monolayer in BSSG as described in Materials and Methods. At various times 
afterwards, cultures were prepared for antiphosphotyrosine Western immunoblot analysis by removal of the stimulant and replacement with 
detergent containing buffer, supplemented with protease and phosphatase inhibitors as outlined in Materials and Methods. Each lane con- 
tains 200 #g total cell extract protein obtained from cells stimulated for the time indicated. The migrations of pp42 and pp45 were determined 
relative to those of prestained protein standards obtained from Bio-Rad, Inc. (Rockville Centre, NY). 

tured chromaflin cells were stimulated for various lengths of 
time with several different secretagogues (nicotine, car- 
bachol, or K÷), and detergent extracts, prepared in the pres- 
ence of a phosphotyrosine phosphatase inhibitor (sodium 
vanadate), were subjected to SDS-PAGE and Western immu- 
noblot analysis using rabbit ptyr antibody as described in 
Materials and Methods. Fig. 1 shows that phosphotyrosine- 
containing proteins were present in resting, nonstimulated 
chromaflin cells, and that multiple polypeptides of 120, 80, 
65, 45, and 42 kD appeared to become more extensively 
phosphorylated on tyrosine in response to secretagogues. 
The most prominent among them were two phosphoproteins 
with molecular masses of 42 and 45 kD (pp42 and pp45). 
Enhanced phosphorylation on both proteins could be de- 
tected as early as 1 min after stimulation. As determined by 
densitometric analysis of the immunoblots, tyrosine-specific 
phosphorylation reached a maximum ("~30-fold over non- 
stimulated levels for pp42 and 15-fold over nonstimulated 
levels for pp45) at 3 min after stimulation and returned to 
nonstimulated levels within 30-180 min. 

Dependence of p42 and1745 7yrosine Phosphorylation 
on ExtraceUular Ca 2÷ 
Since secretion in chromaffin cells is dependent upon an 
influx of extracellular Ca 2÷ (for review see Livett, 1984a), 
we wished to determine if tyrosine phosphorylation of the 
42- and 45-kD proteins was also dependent upon high con- 
centrations of Ca 2÷. Cultured cells were stimulated with 

nicotine in the presence or absence of extracellular Ca 2÷, 
and p42 and p45 phosphorylation was monitored as a func- 
tion of time by Western immunoblot analysis using ptyr anti- 
body. Concomitantly, secretion of catecholamines was as- 
sessed by following the release of [3H]NE. As shown in 
Fig. 2, densitometric analysis of autoradiographs of Western 
immunoblots revealed that, like the release of pH]NE, 
tyrosine phosphorylation of p42 was dependent upon Ca 2÷. 
Similar kinetics and dependency on Ca 2+ of the tyrosine 
phosphorylation of p45 were also observed (data not shown). 
The Ca 2÷ dependency of phosphorylation of both p42 and 
p45 was apparent whether nicotine or K ÷ was used as 
secretagogues. The Ca 2÷ dependency and rapid kinetics of 
these phosphorylations (which slightly preceded secretion), 
together with the fact that the optimal dose of nicotine 
(10-100 #M) that induced these phosphorylations was simi- 
lar to the optimum for 3H[NE] release in vitro (20 #M) 
(data not shown), suggested a role for the phosphorylated 
forms of p42 and p45 in the early stages of exocytosis. 

SubceUular Localization of pp42 and pp45 
To determine the subcellular localization of pp42 and pp45, 
nicotine- and mock-stimulated chromaftin cells were lysed in 
hypotonic buffer, and the cytosolic and crude membrane 
fractions were obtained as described in Materials and Meth- 
ods. Cell equivalents of the total starting lysate, cytosolic, 
and membrane fractions were analyzed for phosphotyrosine- 
containing proteins. As shown in Fig. 3 A, the majority of 
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Figure 2. Comparison of the kinetics and Ca 2÷ dependency of 
secretion and p42 tyosine phosphorylation in nicotine-stimulated 
chromatfin cells. Freshly prepared chromatfin cells were seeded at 
a density of l@/cm 2 in collagen-coated 24-well cluster dishes or 
60-mm tissue culture dishes. 5 d later, cells in cluster dishes were 
assayed for secretory activity in response to 20 t~M nicotine in 
BSSG containing either 2 mM Ca z÷ (o) or 2 mM EGTA (o) by the 
[3H]NE release assay as described in Materials and Methods. 
Amounts of [3H]NE released as a function of time after stimula- 
tion are plotted as a percent of maximal release (22.4 % of total cel- 
lular content, corrected for spontaneous release), which occurred 
at 10 min. Cells in 60-mm dishes were stimulated in the presence 
(a) or absence (A) of Ca 2+ as described above, and cell extracts 
were analyzed by the antiphosphotyrosine Western immunoblotting 
procedure as described in the legend to Fig. 1. Relative levels of 
pp42 tyrosine phosphorylation were determined from densitometry 
tracings of the autoradiograms. 

the phosphotyrosine-containing forms of p42 and p45 parti- 
tioned with the cytosolic fraction. Addition of 2 mM CaCI2 
(Fig. 3 B) or 2 mM EGTA (Fig. 3 C) to the hypotonic buffer 
in which the cells were lysed did not alter the subcellular lo- 
calization. These results indicate that neither the presence of 
high concentrations of Ca 2+ nor the depletion of Ca 2÷ (by 
EGTA addition) in the lysis buffer induced the association 
of phosphotyrosine-containing pp42 and pp45 to mem- 
branes, where the majority of pp60 ~-~ has been shown to 
reside (Parsons and Creutz, 1986; Grandori and Hanafusa, 
1988). 

Identical Migration o f  the Secretion-associated, the 
Mitogen-associated, and the Insulin-sensitive pp42 and 
pp45 Proteins on 1-D Gels 

The rapid tyrosine phosphorylation in response to receptor 
activation, the molecular size, and the cytosolic location of 
plM2 and plM5 are properties shared with a family of pro- 
teins previously described by Cooper et al. (1982), Bishop 
et al. (1983), Nakamura et al. (1983), Gilmore and Martin 
(1983), Cooper et al. (1984), Kohno (1985), Cooper and 
Hunter (1985), Isacke et al. (1986), Kohno and Pouyssegur 
(1986), Contor et al. (1988), Vila and Weber (1988), Ray and 
Sturgill (198% 1988a), and Rossomando et al. (1989). In mu- 
rine fibroblasts and CEFs and in murine adipocytes these 
proteins become transiently phosphorylated on tyrosine 
residues in response to various agents, such as platelet- 
derived growth factor, EGE TPA, thrombin, and insulin. To 
investigate the possibility that pp42 and pp45 of chromaffin 
cells may be related to proteins of similar size in different cell 
types stimulated with a variety of agents, we examined ex- 
tracts of the following cells for phosphotyrosine-containing 
proteins by the Western immunoblot technique: (a) neurally 
derived PC12 cells stimulated with the secretory agent, 55 
mM K+; (b) 3T3-L1 adipocytes stimulated with insulin: (c) 
Swiss 3T3 fibroblasts stimulated with EGF; and (d) CEFs 
and chromatiin cells stimulated with EGF and TPA. Fig. 4 
A shows that two proteins with electrophoretic migrations 
identical to those observed in the chromaffin cells became 
phosphorylated on tyrosine when PC12 cells (a cell line de- 

Figure 3. Subcellular localization of pp42 and pp45 in bovine chromatlin cells. Paired cultures of cells were either nonstimulated (NS) 
or stimulated (S) for 3 min with 20 #M nicotine in BSSG, and crude membrane (M) and cytosolic (C) fractions were prepared in hypotonic 
lysis buffer containing (A) no extra additives, (B) 2 mM CaC12, or (C) 2 mM EGTA as described in Materials and Methods. All fractions 
were brought to equal volume in Laemmli sample buffer, and 50 t~l of each of the appropriate samples was loaded into the C and M lanes, 
while lanes marked T (total extract) contained 50 ~1 each of the cytosolic and membrane fractions. Phosphotyrosine-containing proteins 
were detected by the Western immunoblotting technique as described in the legend to Fig. 1. The cytosolic protein in extracts from nonstimu- 
lated cells which exhibited a Mr of '~40 kD was not consistently observed in repeat experiments. 
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Figure 4. I-D PAGE comigration of pp42 and pp45 from PCI2 pheochromocytoma cells, 3T3-L1 adipocytes, Swiss 3T3 fibroblasts, CEFs, 
and chromaffin cells. In A-C, samples were subjected to antiphosphotyrosine Western immunoblot analysis as described in the legend to 
Fig. 1. (A) Logarithmically growing cultures of PC12 cells were stimulated with 55 mM K + for 3 min in BSSG as outlined in Materials 
and Methods, and the migrations of tyrosine-containing proteins were compared to those from chromaffin cells stimulated with 20/zM 
nicotine for 3 min. 200 #g extract protein was analyzed per lane. [3H]NE release in this experiment reached a maximum of 15.7% of total 
cellular content (corrected for spontaneous release) 60 min after addition of K +. (B) Cytosols were obtained as described in Materials 
and Methods from 3T3-L1 adipocytes stimulated with 80 nM insulin, Swiss 3I"3 fibroblasts stimulated with 100 ng/ml EGE and chromaflin 
cells stimulated with 20 #M nicotine. Stimulations took place for times indicated in the figure. For each cell type equal amounts of protein 
from nonstimulated (0 time) and stimulated samples were analyzed; 600 #g from 3T3-L1 adipocytes, 250 #g from Swiss 3T3 fibroblasts, 
and 200 #g from chromatfin cells. (C) Cultured chromaffin cells were stimulated with 100 ng/ml EGE 20 #M nicotine, or 100 ng/ml 
TPA for the indicated time. Confluent monolayers of secondary cultures of CEFs were starved of serum in N2 medium for 18 h before 
the addition of 400 ng/ml EGF or 50 ng/ml TPA in fresh N2 medium for 10 min at 37°C before analysis of 200 #g/lane total cellular protein. 

rived from a rat pheochromocytoma, which releases NE in 
response to secretory stimulation [Greene and Rein, 1977; 
see also legend to Fig. 4 A]) were treated with 55 mM K +. 
The kinetics of phosphorylation and dephosphorylation of 
these two proteins in PC12 cells were also similar to those 
in the chromatfin cells. Furthermore, three additional pro- 
teins (Mr = ,x,50, 48, and 35), not seen in the chromaflin 
cells, were tyrosine phosphorylated in a stimulation-depen- 
dent fashion. These results indicate that tyrosine phosphory- 
lation of p42 and p45 was enhanced in at least two different 
cell populations which responded to secretory stimuli. 

Similarly, cytosolic fractions obtained from 3T3-L1 adipo- 
cytes treated with insulin (Fig. 4 B), from Swiss 3T3 fibro- 
blasts treated with EGF (Fig. 4 B) and from CEFs treated 
with EGF or TPA (Fig. 4 C), contained two proteins which 
exhibited enhanced tyrosine phosphorylation in response to 
stimulation and identical electrophoretic migration in 1-D 
gels as did pp42 and plM5 from nicotine-, EGF-, or TPA- 
stimulated chromaflin cells. Phosphorylation in all cell types 
took place within comparable times after stimulation. Cellu- 
lar fractionation experiments (performed as described in 
Materials and Methods) confirmed the cytosolic localization 
of the ptyr-containing proteins in EGF- and TPA-stimulated 
chromaflin cells (data not shown). These experiments show 
that two proteins of 42 and 45 kD became phosphorylated 
on tyrosine in chromatfin cells not only in response to se- 
cretagogues, but also in response to the fibroblast growth- 
promoting agents EGF and TPA. Furthermore, these two 
proteins exhibited electrophoretic mobilities in 1-D PAGE 
analyses identical to proteins whose phosphorylation on 
tyrosine could be induced in a variety of other systems. 

Although the contribution of the nonchromaffin cells 
(fibroblasts) in chromaflin cell cultures to the tyrosine phos- 
phorylation oflM2 and IM5 in response to EGF and TPA can- 
not be entirely eliminated, several lines of evidence indicate 
that the majority of the tyrosine phosphorylation of these 
proteins observed in response to either secretagogues or 
mitogens was induced in the chromatlin cells. First, we have 
detected no tyrosine phosphorylations of either 1342 or 1345 
in pure murine fibroblast cultures (Swiss 3T3 and C3H10T1/ 
2) treated with nicotine (data not shown). Second, the inten- 
sity of p42/IM5 labeling observed in Western immunoblots 
of chromaflin cells treated with either EGF or TPA was com- 
parable to, or slightly greater than, the intensity seen in 
preparations of cells stimulated with secretagogues. Third, 
the level of p42 and 1345 tyrosine phosphorylations induced 
by EGF or TPA treatment of a pure culture of fibroblasts was 
nearly equal to the level of p42 and p45 tyrosine phosphory- 
lation induced by nicotine, EGF, or TPA treatment of an 
equal number of chromaflin cells (data not shown). And 
lastly, repeated visual examinations and staining of prepara- 
tions with neutral red have confirmed the low fibroblast con- 
tent (<15%) of the cell cultures, which were maintained in 
serum-free medium to minimize fibroblast growth. Thus, it 
is unlikely that the contaminating fibroblasts or other non- 
chromaffin cells (which amount to 8-15 % of the population) 
were solely responsible for the EGF and TPA responses. 

Lack of Requirement for ExtraceUular CaZ+ for the 
EGF- and TPA-induced ~rosine Phosphorylations of 1742 
and 1745 from Chromaj~in Cells 
To compare the Ca 2+ dependency of the mitogen- and secre- 
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Figure 5. Calcium-independent tyrosine phosphorylation of plM2 
and pp45 induced by EGF and TPA in chromaflin cells. Cultured 
chromaflin cells were either nonstimulated (NS, fluid changed) or 
stimulated for 3 min at 37°C with 20 #M nicotine, 100 ng/ml EGF, 
or 100 ng/ml TPA in the presence (+2 mM CaClz) or absence (+2 
mM EGTA) of calcium as described in Materials and Methods. 200 
/zg extract protein was electrophoresed through an SDS-8.5 % poly- 
acrylamide gel, transferred to nitrocellulose, and probed with ptyr 
antibody. 

tagogue-induced tyrosine phosphorylations on p42 and p45, 
cultured chromaflin cells were stimulated with EGF, TPA, 
or nicotine in the presence or absence of extracellular Ca ~+, 
as described in Materials and Methods. Fig. 5 depicts a 1-D 
anti-ptyr Western immunoblot analysis of the cell lysates. 
While the enhanced tyrosine phosphorylation of p42 and p45 

in response to nicotine stimulation required extracellular 
Ca 2÷ (lanes 3 and 4), the phosphorylations of p42 and p45 
in response to EGF and TPA did not exhibit such a strict de- 
pendence (lanes 5-8), suggesting that at least two different 
signaling pathways could mediate the tyrosine phosphoryla- 
tion of cytosolic proteins with similar molecular mass, ki- 
netics of phosphorylation, and subcellular localization. 

Chromatographic Characteristics of the Chromaffin 
CeU pp42 

Previous investigations by Ray and Sturgill (1988b) showed 
that the MAP kinase protein binds to the anion exchange ma- 
trix DEAE and elutes at '~0.2-0.3 M NaCI. In addition, this 
protein was shown to have a high affinity for the hydrophobic 
matrix, phenyl-Superose, eluting as the only alkali-stable 
phosphoprotein at '~37 % ethylene glycol. More recently, it 
was observed that the mitogen-associated pp42 in Swiss 3T3 
fibroblasts shared identical chromatographic characteristics 
with MAP kinase (Rossomando et al., 1989). To determine 
the chromatographic behavior of the secretion-associated 
pp42 and plM5 proteins, two FPLC columns were tested for 
the binding and elution of these proteins, the anion exchange 

Figure 6 Antiphosphotyrosine Western immu- 
noblot analysis of chromotographic fractions of 
extracts from nicotine-stimulated chromaflin 
cells. (A) Mono Q chromatography. 2 x 10 a 
cells were stimulated for 3 min in culture 
medium containing 20/~M nicotine. Cells were 
lysed in hypotonic buffer, and the cytosolic (C) 
fraction was obtained by differential centrifuga- 
tion. The cytosol was further fractionated on an 
FPLC Mono Q column as described in Mate- 
rials and Methods. 100 td of each 1-ml fraction 
was analyzed for pp45 and pp42 by the an- 
tiphosphotyrosine Western immunoblotting 
technique as in Fig. 1. Fractions 1-6 contained 
the flow through (FT). (B) Phenyl-Superose 
chromatography. Mono Q column fractions 
13-17 were pooled (P) and applied directly to 
the phenyl-Superose column. 200 #1 of each 
l-ml fraction was analyzed for plM2 and pp45 
as in A. Fractions 1-6, flow through (FT). 
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Figure 7. Cochromatography of pp42 and MAP kinase from nico- 
tine-stimulated chromaflin cells. Autoradiograms of Western im- 
munoblots prepared from Mono Q (A) and phenyl-Superose (B) 
column fractions were analyzed by densitometry for the amount of 
phosphotyrosine contained in the 42-kD band. The data are ex- 
pressed as arbitrary densitometry units. MAP kinase activity con- 
mined in the Mono Q (C) and phenyl-Superose (D) column frac- 
tions was determined as described in Materials and Methods. 

identical chromatographic properties on phenyl-Superose as 
the MAP kinase protein and pp42 from EGF-stimulated Swiss 
3T3 cells. Therefore, subsequent efforts were focused on the 
further characterization of pp42 from chromaffin cells and 
its relationship to MAP kinase and the mitogen-sensitive pp42. 

MAP Kinase Activity of Partially Purified ChromaJ~in 
Cell pp42 
To examine chromaffin cell preparations for MAP kinase ac- 
tivity, column fractions containing peak pp42 tyrosine phos- 
phorylation were tested for their ability to phosphorylate 
MAP-2, isolated from bovine brain (Kim et al., 1979). 
Column fractions from nonstimulated samples were tested in 
parallel. Fig. 7 shows that MAP kinase activity eluted in a 
pattern similar to the tyrosine-phosphorylated plM2 protein 
from both anion exchange (,4 and C) and hydrophobic ma- 
trices (B and D), Furthermore, MAP kinase activity was 
elevated in nicotine-stimulated cells when compared to non- 
stimulated cells, particularly in the more purified phenyl- 
Superose fractions. 

Identical Migration of the Secretion-associated and 
Mitogen-associated pp42 Proteins in 2-19 Gels 
To verify that the electrophoretic migrations of partially 
purified plM2 from both mitogen- and secretagogue-stimu- 

column Mono Q, and the phenyl-Superose column men- 
tioned above. All fractions eluted were tested by the Western 
immunoblotting technique with ptyr antibody. The results in 
Fig. 6 A show that both plM2 and pp45 bound to the FPLC 
Mono Q column at low ionic strength and eluted in a continu- 
ous salt gradient at '°0.2-0.3 M NaCI. This result is consis- 
tent with the step elution of MAP kinase and Swiss 3T3 
mitogen-associated pp42 from a DEAE matrix using 0.35 M 
NaCl. The plM2/pp45-containing fractions from chromaffin 
cells that had been eluted from the Mono Q column were 
pooled, applied directly to an FPLC phenyl-Superose col- 
umn, and eluted under conditions used for the MAP kinase 
protein (Ray and Sturgill, 1988b), except that the pNPP con- 
centration was reduced to 4 mM. The results in Fig. 6 B show 
that the secretion-associated pp42 bound with high affinity 
to this column and eluted at 37 % ethylene glycol as the major 
protein in these fractions detected by the ptyr antibody, whereas 
the pp45 protein was only slightly retained on the column 
and eluted at 5-10% ethylene glycol along with several other 
phosphotyrosine-containing proteins. These results demon- 
strate that pp42 (but not pp45) from chromaffin cells exhibited 

Figure 8. 2-D gel analysis of pp42 from nicotine-stimulated chro- 
marlin cells and EGF-stimulated Swiss 3T3 fibroblasts. 32P-labeled 
pp42 from each cell type was purified through the phenyl-Superose 
step and subjected to 2-D gel analysis as described in Materials and 
Methods. (Top) Nicotine-stimulated chromaflin cell proteins (1,543 
cpm applied); (bottom) EGF-stimulated Swiss 3T3 cell proteins 
(926 cpm applied). Exposure was for 6 h. 
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Figure 9. Phosphoamino acid analysis of pp42 from nicotine-stimulated chromaffin cells and EGF-stimulated Swiss 3T3 fibroblasts. 
32p-labeled plM2 from each cell type was purified through the phenyl-Superose step and resolved by 1-D SDS-PAGE. plM2 bands were 
excised from gels, eluted, and resolved by 2-D electrophoresis as described in Materials and Methods. 1,000 cpm of chromaffin cell plM2 
and 1,500 cpm of 3T3 cell pp42 were applied to thin layer plates. Exposure was for 3 d. Y, phosphotyrosine; T, phosphothreonine; S, 
phosphoserine. 

lated cells were the same, a comparative analysis of their mo- 
bility in 2-D gels was undertaken. Swiss 3T3 and chromaffin 
cells were labeled in vivo with 32pi and stimulated with ei- 
ther EGF or nicotine, respectively, and the phosphorylated 
42-kD proteins were partially purified through the phenyl- 
Superose step in preparation for 2-D electrophoretic analysis 
as described in Materials and Methods. The migrations of 
these proteins in two dimensions are shown in Fig. 8. Acidic 
and basic forms of pp42 (Cooper et al., 1984) with nearly 
identical migrations were observed in both cell types, pro- 
viding another criterion for their relatedness. 

Phosphoamino Acid Analysis of EGF-stimulated 
Swiss 313 pp42 and Nicotine-stimulated ChroraaJ~fn 
Cell pp42 
The phosphoamino acid analysis of the in vivo 32P-labeled, 
phenyl-Superose-purified plM2 protein excised from 1-D 
SDS-polyacrylamide gels showed that both the EGF-stimu- 
lated Swiss 3T3 pp42 and the nicotine-stimulated chromaffin 
cell pIM2 proteins were phosphorylated predominantly on 
tyrosine and threonine with minor phosphorylation on serine 
(Fig. 9). These results are consistent with the previously 
reported phosphoamino acid content of MAP kinase (Ray and 
Sturgill, 1988a). In addition, peptides resulting from partial 
acid hydrolysis during this procedure showed an identical 
pattern of fragments (Fig. 9). 

Peptide Mapping of pp42 by Cyanogen 
Bromide Digestion 
Cyanogen bromide digestion of pp4 2 proteins from stimu- 
lated chromaflin cells or Swiss 3T3 fibroblasts, which had 
been labeled in vivo with 32Pi, purified through the phenyl- 
Superose step, and excised from 1-D SDS-polyacrylamide 

gels, generated peptides of virtually identical size as deter- 
mined by comigration during I-D SDS-PAGE. These results 
provide further evidence for the relatedness of the pp42 pro- 
teins from chromaflin cells and Swiss 3T3 fibroblasts (Fig. 10). 

Discussion 

Analysis of phosphotyrosine-containing proteins in chro- 
maffin cells has revealed that the most striking changes in 
phosphotyrosine content in response to secretagogues oc- 
curred in two proteins of 42 and 45 kD. These proteins un- 
derwent a simultaneous increase in phosphotyrosine content, 
which reached maximum levels (30- and 15-fold above con- 
trol, respectively) 3 min after stimulation with three different 
classes of secretagogue: carbachol, which activates both 
muscarinic and nicotinic acetylcholine receptors; nicotine, 
which stimulates the nicotinic acetylcholine receptor alone; 
and K ÷, which functions through membrane depolarization 
and activation of Ca 2÷ channels (reviewed in Livett, 1984b). 
A common effect of all three secretagogue treatments is an 
increase in the intracellular Ca 2÷ concentration, derived in 
large part from extracellular sources. Indeed, efficacious re- 
lease of catecholamines is dependent upon such an influx 
(Livett, 1984a,b; Creutz, 1984; Fig. 2). The dependency of 
p42 and IM5 tyrosine phosphorylations upon extracellular 
Ca 2÷ (Fig. 2) suggests that these proteins may be considered 
candidates for mediating some event(s) associated with secre- 
tion. Although characteristics of chromaflin cell pp42 and 
pp45 are shared with one another (kinetics and Ca 2÷ depen- 
dency of tyrosine phosphorylation and subcellular localiza- 
tion), whether they are unique proteins with similar proper- 
ties or identical proteins with different posttranslational modi- 
fications, or products of differentially spliced mRNAs, re- 
mains to be determined. 
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Figure 10. Cyanogen bromide 
peptide maps of pp42 from 
nicotine-stimulated chromaf- 
fin cells and EGF-stimulated 
Swiss 3T3 fibroblasts. 32p-la- 
beled and phenyl-Superose- 
purified pp42 from each cell 
type was resolved by 1-D SDS- 
PAGE, eluted from the gel 
slice, and digested with cyano- 
gen bromide as described in 
Materials and Methods. The 
resulting peptides were sepa- 
rated by 1-D SDS-PAGE. 828 
cpm of 3T3 pp42 and 1,380 
cpm of chromaflin cell pp42 
were loaded into the appropri- 
ate wells. The mix contained 
828 cpm of 3T3 pp42 and 
1,380 cpm of chromaflin cell 
pp42. Exposure was for 4 d. 

Studies supporting a possible role for protein phosphory- 
lation in chromattin cell exocytosis include analysis by l- and 
2-D PAGE of total cell phosphoproteins (Gutierrez et al., 
1988) or of the chromobindin fraction of cytosolic proteins 
which have been labeled in vivo with 32p~ before stimulation 
(Michener et al., 1986), or in vitro with -y-p2P]-ATP in 
permeabilized cells (Lee and Holz, 1986). Further in vitro 
studies have followed the endogenous phosphorylations of 
cytosolic (Wise and Costa, 1985) and membrane fractions 
(Wise and Costa, 1985; Burgoyne and Geisow, 1981; Geisow 
and Burgoyne, 1987) in the presence or absence of Ca 2+. 
While virtually all reports have specified a Ca 2÷ depen- 
dency for the phosphorylation of proteins in the 40-45-kD 
range, including those that partitioned to both soluble and 
particulate fractions, few of these studies have specified a 
role for tyrosine phosphorylations. The majority of the in- 
vestigations have emphasized phosphorylations mediated by 
protein kinase C, cAMP-dependent protein kinases, and 
Cae+/calmodulin-dependent kinases, all of which are spe- 
cific for the phosphorylation of serine or threonine residues. 
However, Grandori and Hanafusa (1988) have described a 
chromaflin cell membrane-associated protein of 38 kD, which 
can be found in stable complex with pp6(Y-s% and which 
becomes tyrosine phosphorylated in vitro in a pp60 ~ ..... spe- 
cific immune complex. R is not yet known whether this pro- 
tein is associated with the process of secretion in these cells. 

From an independent study (data not shown) we have con- 
cluded that pp42 and pp45 are unlikely to be the chromo- 
bindins calpactin I (36) and lipocortin I. This conclusion is 

based on (a) the inability of rabbit antibovine calpactin, 
which recognizes both calpactin and lipocortin (Drust, D., 
and C. Creutz, manuscript in preparation) to immunoblot ei- 
ther pp42 or pp45; (b) the distinct migration of pp42 and 
pp45 in 1-D gels when compared to purified bovine lung cal- 
pactin; (c) different chromatographic properties of the four 
proteins on DEAE; and (d) the inability of pp42 and pp45 
to associate with cell membranes in the presence of calcium 
as has been demonstrated for calpactin, lipocortin, and other 
chromobindins (Creutz et al., 1983; Drust and Creutz, 
1988). However, the possibility still remains that unphos- 
phorylated p42 or p45 may exhibit many of the characteris- 
tics of calpactin and/or lipocortin. The availability of im- 
munological reagents to pp42 and pp45 will allow for their 
further characterization as well as aid in the identification of 
the kinase(s) responsible for their tyrosine phosphorylations. 

The results of the present studies do suggest, however, that 
secretagogue-treated chromaftin cells contain a 42-kD tyro- 
sine kinase substrate(s) that is highly related to proteins 
found in mitogen-stimulated Swiss 3T3 fibroblasts and in 
insulin-stimulated 3T3-L1 adipocytes. The principal lines of 
evidence supporting this conclusion can be summarized as 
follows: (a) pp42 proteins from each of the three cell lines 
exhibited nearly identical chromatographic properties on an- 
ion exchange and hydrophobic matrices (Figs. 6 and 7; Ray 
and Sturgill, 1988b; Rossomando et al., 1989); (b) all three 
proteins exhibited an agonist-depdendent activation of a 
MAP kinase activity and an enhanced tyrosine phosphoryla- 
tion of a 42-kD protein (Figs. l, 4, and 7; Ray and Sturgill, 
1987, 1988b; Rossomando et al., 1989); (c) MAP kinase ac- 
tivity from each stimulated cell type cochromatographed 
with a tyrosine-phosphorylated pp42; and (d) pp42 proteins 
from the three cell types contained predominantly phos- 
phothreonine and phosphotyrosine and possessed nearly 
identical isoelectric points (Figs. 8 and 9; Ray and Sturgill, 
1988a; Rossomando et al., 1989). Furthermore, V-8 partial 
proteolytic peptide analysis revealed that the major peptides 
generated from partially purified MAP kinase were present 
as a subset of peptides in digests of pp42 from EGF-stimu- 
lated Swiss 3T3 cells (Rossomando et al., 1989). In addition 
we show that partial acid hydrolysis and CNBr digestion of 
purified pp42 proteins from stimulated chromaflin cells and 
Swiss 3T3 fibroblasts generated indistinguishable peptide pro- 
files (Figs. 9 and 10). Based on these criteria, it appears that 
pp42 is common to several different species and cell types 
and can be found in cells programmed to carry out specific 
functions in response to different stimuli, e.g., secretagogue- 
stimulated exocytosis, EGF-induced proliferation, and insu- 
lin-stimulated glucose uptake. 

In this paper we have referred to the pp42 bands that copu- 
rify with MAP kinase as MAP kinase. This is a working hy- 
pothesis that is supported by evidence outlined in detail by 
Ray and Sturgill (1987, 1988a,b) and Rossomando et al. 
(1989) and briefly summarized above. The data presented 
here also favor this hypothesis. However, definitive proof of 
the identity of these proteins awaits the availability of specific 
antibody reagents and isolation of the gene. 

Nicotine stimulated the phosphorylation on tyrosine of a 
45-kD protein as well as a 42-kD protein in chr0maftin cells. 
Fig. 6 shows that pp45 and pp42 exhibited nearly identical 
chromatographic properties on Mono Q, but significantly 
different properties on phenyl-Superose, pp45 isolated from 
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insulin-stimulated 3T3-L1 adipocytes and EGF-stimulated 
Swiss 3T3 cells also exhibited a chromatographic profile that 
was virtually identical to that of pp45 from chromaffin cells 
(data not shown). While these data, together with the identi- 
cal comigration during 1-D SDS-PAGE (Fig. 4), suggest that 
the pp45 proteins from chromaffin cells, 3T3-L1 adipocytes, 
and Swiss 3T3 fibroblasts may be related, the extent of the 
similarity between the three proteins awaits further investi- 
gation. 

Although the three pp42 proteins from chromaffin cells, 
3T3-L1 adipocytes, and Swiss 3T3 fibroblasts appear to pos- 
sess MAP kinase activity in vitro, the relevance of this activ- 
ity in vivo, if any, is unknown. If MAPs are physiologically 
relevant substrates of MAP kinase, perhaps a common cyto- 
skeletal alteration accompanies the onset of secretion, glu- 
cose uptake, and mitogenesis, This would be consistent with 
existing data which have indicated that the cytoskeleton plays 
a significant role in secretory granule mobilization (Kondo 
et al., 1982; Trifaro et al., 1985; Burgoyne et al., 1986; Per- 
rin et al., 1987; Matter et al., 1989), in vesicular transloca- 
tion of glucose transporters (Blok et al., 1988), as well as 
in endocytic vesicle movement accompanying mitogen re- 
ceptor activation and down modulation (Herschman, 1985; 
Schroer and Kelly, 1985; Brodsky, 1988; Kasaian and Neet, 
1988). The work of Sturgill et al. (1988) has suggested that 
$6 kinase II may also be an in vivo substrate for MAP kinase. 
Such a finding would associate this protein with the process 
of protein synthesis, which is known to be required for cell 
division (Todaro et al., 1965; Coffino and Groppi, 1981) and 
thought to be involved in the regeneration of secretory pep- 
tides after exocytosis (Livett, 1984a,b). Regardless of the pre- 
cise substrate for this protein, it appears that pp42 acts as one 
member of a series of kinases which may serve to transduce 
membrane-induced signals throughout the cell and/or to reg- 
ulate intracellular processes, such as organelle movement or 
protein synthesis. 

We have found that both EGF and the tumor promoter, 
TPA, induced the tyrosine phosphorylation of a 42-kD protein 
in chromaffin cells that comigrated with the secretagogue- 
sensitive protein, yet neither of these agents was capable of 
inducing proliferation or secretion in chromaffin cells (data 
not shown). In contrast to secretagogue treatment, neither 
EGF- nor TPA-induced tyrosine phosphorylation of p42 or 
p45 appeared to be dependent on extracellular Ca 2÷ (Fig. 
5). Furthermore, it is unclear what biological effect EGF and 
TPA might have on adult chromaffin cells. The phosphoryla- 
tions induced by these agents may represent vestigial or ab- 
lated signals for the transmission of proliferative or differen- 
tiative messages during early embryogenesis or neurological 
differentiation. Identity of the secretagogue-stimulated pp42 
with the mitogen-stimulated pp42 (as indicated by the work 
presented in this communication) implies that the tyrosine 
phosphorylation of this protein is not a sufficient signal for 
either the process of secretion or cell proliferation. Perhaps 
cellular context and specific substrates of MAP kinase are the 
important factors in determing the cell function ultimately 
triggered by different cell surface receptor-activated pathways 
that converge on this protein. 
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