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Visual scoring of murine EEG signals is time-consuming and subject to low inter-observer reproducibility.
The Racine scale for behavioral seizure severity does not provide information about interictal or sub-clinical
epileptiform activity. An automated algorithm for murine EEG analysis was developed using total signal
variation and wavelet decomposition to identify spike, seizure, and other abnormal signal types in
single-channel EEG collected from kainic acid-treated mice. The algorithm was validated on multi-channel
EEG collected from c-butyrolacetone-treated mice experiencing absence seizures. The algorithm identified
epileptiform activity with high fidelity compared to visual scoring, correctly classifying spikes and seizures
with 99% accuracy and 91% precision. The algorithm correctly identifed a spike-wave discharge focus in an
absence-type seizure recorded by 36 cortical electrodes. The algorithm provides a reliable and automated
method for quantification of multiple classes of epileptiform activity within the murine EEG and is tunable
to a variety of event types and seizure categories.

A
nimal studies of epilepsy have relied upon the Racine scale for seizure classification and quantification1.
However, the Racine scale does not allow for identification of the seizure focus and does not sufficiently
measure partial seizure activity that involves areas not relevant to movement and behavior. Likewise, as a

discrete measurement based upon subjective interpretation of mouse behavior, the Racine scale has limited
sensitivity to small changes in seizure activity associated with therapeutic testing.

Intracranial electroencephalography (EEG) in rodents permits the monitoring of seizure evolution and the
localization of seizure foci within the brain. As a continuous measurement, the EEG provides greater sensitivity
than behavioral scoring for the detection of small changes in seizure activity. Unfortunately, primary analysis of
EEG is typically performed by visual inspection of the signal by expert observers, with emphasis on the frequency,
voltage, amplitude, regularity of the waveforms, and spatial range and temporal persistence of the signal events2.
Visual analysis and scoring of EEG signals is time-consuming and subject to observer bias and error. Indeed,
studies of inter-observer reliability among expert scorers show highly variable levels of agreement on scoring of
epileptic and arousal-related signal types3–5.

Automated EEG event detection algorithms overcome the problems of visual inspection. The primary focus of
such algorithms has been the detection of either interictal spikes6,7 or seizure onset8–11. A number of computa-
tional methods have been used for EEG analysis, including Fourier transforms12, artificial neural networks13,14,
logistic regression15, and time-frequency analysis16. Line length, or total variation of the signal, was originally
proposed for EEG analysis as a computationally efficient method for real-time seizure detection10. Line length is
defined as the sum of the absolute values of the differences between neighboring data points over a specified time
interval. The line length per unit time of a baseline EEG recording remains generally constant while a spike or
seizure event transiently increases the line length.

Wavelet transformation isolates different frequency components of the EEG signal and permits analysis of the
individual components at a scale-matched resolution that detects transient, inhomogeneous events localized by
both time and frequency17. The wavelet is an analytical alternative to methods with poor time resolution such as
Fourier transformation or poor frequency resolution such as windowed or short-time Fourier transformation.
The Daubechies family of wavelets18 has been used for seizure analysis by several groups2,11,13,19–22.
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Here we present an automated method for EEG signal analysis in
mice that detects and quantifies seizures, spikes, and other abnormal
signal events based on total variation following wavelet decomposi-
tion of the signal. Our method returns event classification, count, and
duration within the timeline of the recording. We also introduce an
automated signal cleanup algorithm that removes movement arti-
facts based on signal amplitude in an empty channel.

Results
Racine scoring does not predict EEG events. KA is a widely-used
seizure-induction agent in rodent models of temporal lobe epilepsy
(TLE) and triggers a hippocampus-specific injury similar to patterns
observed in human TLE patients23–25. Behavior was assessed in KA-
treated mice by blinded, off-line analysis of video and categorized as
non-convulsive or convulsive. Simultaneous EEG recordings were
manually scored by expert observers and events were categorized
as spikes, seizures, or other abnormal events. Comparison of
total behavioral analysis (83% normal, 7% convulsive, 10%

non-convulsive) and manual EEG analysis (82% normal, 8%
spikes, 7% seizures, 4% other abnormal) revealed similar scoring
(Supplemental Figure 1A). A clear difference between baseline and
KA-treated EEG recordings was also identified in all scoring
categories using this method (Supplemental Figure 1B). However,
when manual EEG and behavioral scores were compared on a
second-by-second basis, we found that there was little predictive
value between the EEG signal score and the behavior score
(Figure 1A). Indeed, the odds ratio for a relationship between
video events and EEG events was 1.017 (X2 5 0.139, P 5 0.709)
indicating only a random interaction between the measurements. Of
particular interest is that mice behaved normally for a majority of all
EEG events (no Racine scoreable behavior) and convulsive and non-
convulsive behaviors could not be used to predict spikes, seizures, or
EEG abnormalities at the recording electrode (Figure 1B, 1C). Visual
comparison of the EEG signals associated with normal behaviors
such as grooming and exploring (Supplemental Figure 1C) and
abnormal EEG signals associated with non-convulsive behavior

Figure 1 | Behavioral analysis does not adequately predict local EEG activity in the hippocampus. (A) The behavioral and signal analysis scores (colored

bars) superimposed upon the corresponding raw EEG signal demonstrate that the behavioral scores are not predictive of the signal at this recording

electrode. Of particular interest is the transition from non-convulsive to convulsive behavior during a period of time scored as seizure in the EEG.

Additionally, a period of normal EEG is associated with convulsive behavior. Behavior: non-convulsive 5 blue, convulsive 5 green; Signal: seizure 5

orange, spike 5 yellow, other abnormal 5 red. (B) The signal and behavioral scores were compared on a second-by-second basis to assess concordance.

The horizontal axis represents the EEG category. The vertical axis represents the amount of each particular EEG signal category that is associated with a

given behavioral score. The predominant behavioral state associated with all four signal types (normal, spiking, seizure, other abnormal) is normal

behavior (white). (C) Contigency matrix of the data shown in panel B. Overall, there is little to no predictive power for behavior (video analysis) on the

EEG. n 5 normal (behavior or EEG), c 5 convulsive behavior, nc 5 non-convulsive behavior, sp 5 spiking signal, sz 5 seizure signal, abn 5 other

abnormal signal.

www.nature.com/scientificreports
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(Supplemental Figure 1D) or convulsive behavior (Supplemental
Figure 1E) confirmed the variability and overlap of signal types
associated with different behaviors.

Automated signal analysis. Automated EEG signal cleanup. To
determine which portions of the raw, bulk signal were noise, we
calculated a representative average signal standard deviation
(ThreshA) using an empty channel simultaneously recorded with
the EEG. The electrode for the empty channel terminated in the
dental cement of the headmount and did not record any brain or
muscle activity. Major signal events that deviated from the baseline
within this channel were therefore attributed to movement or other
noise artifacts at the headmount or in the recording system. Ten,
one-minute segments of signal were randomly selected from the
empty channel data, and the average standard deviation of the
signal within these segments was calculated and used to set the
threshold (ThreshA) for cleanup. The standard deviation of the
entire raw EEG signal was then computed within non-overlapping
250-msec windows and compared to ThreshA. A 250 msec window
was selected based on the observation of many short bursts of noise
in the empty channel that lasted 100 to 300 msec and were associated
with similar events in the recording channel. A 250 msec window
provided optimal removal of the majority of these noise events
without excessive loss of otherwise normal signal. Windows with a
standard deviation greater than twice ThreshA were set to zero across
all channels (Supplemental Figure 2A and 2B). This cleanup method
identified and deleted movement artifacts within the recording that
might otherwise be identified as epileptiform activity by the algori-
thm (for example, physical manipulation of the recording wires by
the investigator during drug delivery). The average total time re-
moved by this method was small compared to the overall signal
length (Supplemental Table 1) and visual inspection of the auto-
matically removed segments confirmed that none were seizure-like.

Determination of baseline line length parameters. To establish
analytical parameters, the Daubechies db4 wavelet was used to

decompose the cleaned baseline EEG signals into details at four
different scales (D1-D4) and an approximation (A4)2,18. The A4
approximation was chosen for further analysis because it retained
spike and seizure features (Supplemental Figure 2C) across the
physiologically relevant frequency band from 0 to 25 Hz2,13. Line
length was calculated in A4 over a sliding window corresponding
to 240 msec (15 data points) using equation (1):

LLw~
XN{1

i~1

abs xiz1{xið Þ ð1Þ

where i is the index of the data point within the window, x is the
voltage within the signal at index i, abs is absolute value, N is the total
number of data points within the window, and w is the window
number10,13. The median (LLmed) and standard deviation (LLstdev)
of the line lengths across the entire baseline A4 approximation were
calculated and used below to analyze experimental recordings.

Bulk signal analysis by comparison to baseline. A thresholding factor,
TFbase, was derived by iteratively analyzing the baseline EEG record-
ing of an individual mouse. TFbase was initially set to 1 and the
number of "events" in which the line length of the individual baseline
recording varied from the median baseline line length (LLmed) was
calculated using equation (2):

LLhits~
XW
w~1

Ew

E~1,
LLw{LLmed

TFbase|LLstdev
§1

E~0,
LLw{LLmed

TFbase|LLstdev
v1

8>><
>>:

ð2Þ

where E is an event, LLw is the line length for the wth window within
the actual baseline recording, LLmed is the median baseline line length
calculated above, LLstdev is the standard deviation of the baseline line
lengths calculated above, TFbase is the threshold factor, W is the total
number of windows in the recording, and w is the window number. If
LLhits was $ 1, TFbase was increased by 0.5 and the process was
repeated until LLhits 5 0.

Figure 2 | Overall algorithm performance characteristics. (A) To analyze the performance of the algorithm, area under the curve (AUC) was calculated

from the receiver-operator characteristic (ROC) curve of the algorithm-based EEG categorization calls. ROC curves were calculated using a threshold

from 0.5 to 10 times the standard deviation of the median line length. The AUC was calculated for all events, spikes only, seizures only, and other abnormal

only. (B) The optimal threshold for event identification was determined by ROC curve analysis and determination of trade-off between algorithm

performance characteristics. The final threshold used for all experimental analyses (Equation (3), with TFcat 5 2.0) is noted on the ROC curves in panel A

by the orange dot.
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Next, the A4 approximation was calculated for each experimental
recording for the same mouse and the line length for each 240 msec
sliding window across the entire experimental A4 was calculated
using equation (1). Using the TFbase calculated above, the experi-
mental line lengths (LLw) were evaluated with equation (2). If
LLhits was $ 1, the experimental recording was considered different
than baseline. We found that 16 of 31 total recordings collected from
KA-treated mice were not different from baseline. Manual scoring
confirmed the bulk analysis, as these 16 recordings exhibited only
1.0% of the signal as spikes, 0.04% as seizures, and 0.03% as abnormal
signal. In contrast, for the 15 recordings identified as different than
baseline, manual scoring identified 4.7% of the signal as spikes, 8.5%
as seizures, and 4.5% as abnormal signal. Finally, when behavior was
simultaneously analyzed by video in ten EEG recording sessions, no
convulsive behavior was observed in five sessions that were identified
as not different than baseline by bulk analysis. We conclude that the
bulk analysis algorithm effectively identifies overall EEG signal pat-
terns as the same as or different than baseline.

Automated categorization of EEG events. Electroencephalographi-
cally relevant events were identified in individual sliding windows
across the A4 approximation of each experimental recording using
equation (3):

Ew~

1,
LLw{LLmed

TFcat|LLstdev
§1

0,
LLw{LLmed

TFcat|LLstdev
v1

8>><
>>:

ð3Þ

where LLw is the line length for the wth window within the experi-
mental recording, LLmed is the median baseline line length calculated
above, LLstdev is the standard deviation of the baseline line lengths
calculated above, TFcat is the categorization threshold factor (see
below), and w is the window number. A vector E of binary Ew values
from all windows across the recording was constructed. E was eroded
and dilated using a half-window of 1 (equivalent to 40 ms) to remove
isolated hits that were not part of a seizure, spike, or other abnormal
event. E was restored to the original signal length by four rounds of
dyadic upsampling at odd indices. The vector was dilated and eroded
again using a half-window of 8 (equivalent to 20 ms) in order to fill in

the events following the dyadic upsampling. These steps produced a
final vector of the correct length with discrete events occurring as
contiguous sequences of ones separated by non-event sequences of
zeros. The start, end, and length of each discrete event in E were
identified and used to categorize the event based on duration. Any
event lasting longer than five seconds was defined as a seizure. E was
then mapped back to a vector containing the EEG signal amplitudes.
Event durations shorter than five seconds with an average amplitude
during the event greater than 250 mV were defined as spikes. Any
other event patterns were defined as abnormal other.

The automated event classifications were compared to manual
EEG signal analysis to identify an optimal threshold. Threshold
values (TFcat) from 0.5 to 10, increasing by 0.5, were tested using
equation (3) and algorithmically identified events were compared to
manual calls using receiver-operator characteristic (ROC) curves26

(Figure 2). The area under the curve (AUC)27 for the algorithm
overall (combined identification of all three event types) was 0.923
(perfect score 5 1.0) (Figure 2A). The AUC was also calculated for
spikes (0.988) (Figure 2B), seizures (0.987) (Figure 2C), and other
abnormal events (0.824) (Figure 2D). Contigency tables (2 3 2) at all
threshold values were also constructed by comparing manually iden-
tified normal and event calls (pooled spike, seizure, and abnormal) to
automated algorithm calls. These tables were then used to determine
precision, accuracy, recall, and F characteristics for the algorithm
(see further details in the methods section)26. Graphing these mea-
surements against threshold value revealed an optimal threshold
range from 1.5 to 2.5 (Figure 2E), based on a tradeoff between
precision and accuracy (TFcat 5 1.5) and a tradeoff between
precision, recall, and F characteristic (TFcat 5 2.5). TFcat 5 2.0
was selected as the optimal threshold for all subsequent event
identification.

Mapping E (calculated using TFcat 5 2.0) against the actual EEG
recording provided visual confirmation of event calls (Figure 3A,
blue-green ticks). Events were clearly differentiated as seizures
(Figure 3A, orange), spikes (Figure 3A, yellow), and abnormal other
(Figure 3A, red). One-second examples of each identified signal type
(baseline, abnormal, spike, and seizure) are shown in Figure 3B,
confirming the accuracy of the algorithm. Note that, while both spike
and seizure events showed signals with high amplitude, the spikes

Figure 3 | Automated event identification. (A) The algorithm identifies line lengths greater than the threshold set by the same animal’s baseline EEG

signal. Events are identified as strings of neighboring hits (blue-green lines) and are sorted according to duration and amplitude. Seizures (sz, orange) are

defined as events longer than five seconds. Spikes (sp, yellow) or spike clusters are defined as events shorter than five seconds with a maximum amplitude

of more than 250 mV. Other abnormal signal (abn, red) is defined as events shorter than five seconds with a maximum amplitude of less than 250 mV.

(B) The algorithm returns three signal score types: spikes, seizures, and other abnormal. Examples are shown for these signal types as well as baseline

(normal) signal. Dotted line boxes indicate one second windows.

www.nature.com/scientificreports
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were isolated, while seizure events generally contained more than
one spike-like event per second and persisted longer than the one-
second window shown (Figure 3B, gray dotted outline).

Algorithm performance. Finally, the automated results were analyzed
on a second-by-second basis and contingency matrices were pro-
duced to measure the performance of the algorithm against manual
EEG signal analysis (Figure 4). For the first contigency table, spikes,
seizures, and abnormal other signals were grouped into "events"
versus "normal" EEG signal (Figure 4A). The odds ratio for a rela-
tionship between automated and manual scoring was 34.893 (X2 5

55214.223, P,0.001), indicating that the algorithm performed
exceptionally well. Further analysis of the individual event categories
revealed that the predominant contribution to false positives (events
identified by the algorithm that were not identified by eye) and false
negatives (events identified by eye that were not identified by the
algorithm) arose in the abnormal category (Figure 4B and 4C). In
contrast, the algorithm correctly identified 77% of spikes and 78% of
seizures and recategorized 10% of spikes and 7% of seizures as other
events. Overall, the algorithm identified 17% false positive spikes and
10% false positive seizures. In summary, the automated algorithm
provided 87% accuracy and 63% precision for all three event categor-
ies (sp, sz, abn) and 99% accuracy and 91% precision for spike and
seizure classification.

Validation of algorithm on multi-channel SWD recordings. To
validate the algorithm under different experimental conditions, we
tested the event detection component on multi-channel EEG data
acquired via a polyimide-based microelectrode (PBM) extracranial
array28. The PBM array has been used to identify the cortical foci of
absence seizures, identified within the EEG signal as spike-wave
discharges (SWDs). The SWD is characterized by 3–5 Hz high-
voltage negative spikes followed by a high-voltage positive wave
lasting .1 s29. This type of seizure is significantly different from
the tonic-clonic seizure signal induced by KA treatment, and thus
serves as an excellent test for the power and flexibility of our
algorithm. The SWD data were collected using a 38-channel PBM
array (where channels 8 and 38 were bad, leaving 36 good recording
channels) in mice treated with 50 mg/kg c-butyrolacetone (GBL) to
induce absence-type seizures. Seizures were identified by visual
signal analysis and confirmed by decreased activity in the EMG
channel28.

The following adjustments were made to the algorithm to identify
SWD events. First, the sampling rate for these recordings was
1000 Hz, which necessitated use of the signal approximation at the
fifth decomposition (A5) rather than the A4. For this sampling rate,
A5 corresponds to a frequency band from 0 to 31.25 Hz, which
overlaps with the frequency band used for the KA experiments
(400 Hz sampling rate, A4 5 0 to 25 Hz). Similarly, the number of
data points within the line length sampling window was adjusted to
correspond to approximately 250 ms under the new sampling rate
(224 ms, 7 data points at A5). Second, seizures were identified as
events lasting longer than one second based on the characteristics of
SWD, and events less than 250 ms in duration were discarded as
noise. Finally, each channel was analyzed independently, and all
thresholds were calculated based on the corresponding baseline for
that individual channel.

Visual analysis of the EEG revealed 20 canonical SWD events
occuring during a 340 second period. The algorithm identified all
20 SWD events (concordant calls) in 11 of 36 channels and 17 or
more of the 20 events were identified in 23 of 36 channels. Of note,
the algorithm identified additional SWD events within the EEG from
the GBL-treated mouse that were not originally characterized by
visual inspection (Figure 5A). None of these events were identified
across all channels, suggesting that they were not the result of move-
ment artifacts. The rate of events per 100 seconds (including con-
cordant and additional calls) was compared between baseline and
GBL-treated recordings (Figure 5B) and the fold difference in event
rate was calculated (Figure 5C). GBL treatment led to an increase in
the event rate compared to baseline in channels 1 through 26 and a
decrease in event rate in the remaining channels. Mapping electrode
location against the fold increase in event rate revealed a probable
SWD focus at or near channel four (Figure 5D). The relative differ-
ence in event rate decreased as the distance from electrode four
increased, and the channels that showed event rate suppression fol-
lowing GBL treatment were located farthest from electrode four
(Figure 5D). This conclusion is in agreement with the determination
of a frontal-predominant event locus based on visual analysis of the
EEG.

Discussion
Here we present an automated algorithm for EEG signal comparison
and event identification in mice that is based on signal line length10

after wavelet decomposition13. An ad hoc baseline signal is used to

Figure 4 | Algorithmic event categorization performance characteristics. Using a threshold of 2.0 (TFcat in equation (3)), the automated results were

compared on a second-by-second basis to manual EEG scoring. (A) Spikes, seizures, and abnormal other calls were combined into "events" versus

"normal" EEG in both the algorithm output and the manual analysis and a contingency table was constructed. At this level, the algorithm correctly

captured 85% of the events identifed by eye and mis-identified 14% of normal signal as an event. (B) Further analysis of the individual event categories

shows that the majority of false positives and false negatives occurred in the abnormal category. (C) Showing the percent concordance graphically reveals

that most spikes (77%) and seizures (78%) were captured by the algorithm but a large portion of manually scored abnormal EEG was categorized as

normal by the algorithm.

www.nature.com/scientificreports
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create a threshold for whole signal quantification and event iden-
tification. Local line lengths calculated from wavelet-decomposed
experimental EEG signals are compared to the baseline-dependent
threshold, and line lengths above threshold are summed into events.
These events are categorized based on duration and amplitude as
seizures, spikes, or other abnormal. This is, to our knowledge, the
first use of line length and wavelet decomposition for identification
of multiple EEG event types by a single detector.

The detection algorithm is tunable to a variety of EEG features that
result in increased line length, and several parameters within the
algorithm can be adjusted depending on the event type of interest.
In addition to parameters related to differences in sampling rate and
event duration as mentioned above, modifications to the decomposi-
tion level and line length window size may identify different classes of
events, based on the event frequency or magnitude. For example,
modification of the wavelet decomposition level from A4 to A5
and adjustment of the sampling window from 15 datapoints to 7
allowed us to accurately detect absence seizures in a unique data
set generated by a multi-electrode array with a high sampling fre-
quency. Similarly, a wavelet other than Daubechies db4 can be app-
lied to the signal prior to line length calculations. The Daubechies
db4 wavelet was selected for spike and seizure identification based on
previous reports of its appropriateness for EEG analysis2, but a sys-
tematic application of other wavelets might reveal additional event
clusters or provide further refinement of our algorithm.

Because the digitization of EEG records and the miniaturization of
recording equipment allows for chronic and long-term recordings in
mice that follow the evolution of seizures and epilepsy, new conclu-
sions are being made regarding the contribution of interictal activity
to seizures and epileptogenesis30–32. Spikes have been closely assoc-
iated with epileptic foci and used for guiding surgical decisions

regarding resection33–36. Notably, our algorithm is able to monitor
the development of both spikes and seizures and can therefore
rapidly process signals for the analysis of the impact of spikes on
seizures and vice versa over long recordings.

A unique aspect of the algorithm is the inclusion of an empty
channel (i.e. one that is not connected to an electrode) for signal
cleanup. The automated signal cleanup strategy was originally inten-
ded to remove high amplitude electrical noise or movement artifacts.
Preliminary visual examination of the signal showed that movement-
associated artifacts did not increase with the onset of seizure activity.
Instead, the primary contribution to "noise" arose from physical
disturbance of the recording wires by the investigator during manip-
ulations of the animal (for example, during drug delivery) or were
associated with spontaneous events uncorrelated to mouse move-
ment. Qualitatively, direct comparison of video footage and the
raw EEG signal showed that normal seizure-related movements of
the instrumented animal did not produce the high-amplitude chaotic
noise that is removed via the empty channel. Furthermore, visual
inspection of the segments of raw signal removed by the automated
cleanup algorithm showed that these removed signals were not seiz-
ure-like. Comparison of the amount of signal removed between
baseline recordings and KA recordings and visual inspection of the
type of signal removed from both groups also revealed no difference,
indicating that the automated cleanup is not selectively removing
convulsive events in the KA mice. Inadvertant removal of convulsive
events would, at worst, underestimate spike and seizure events – but
this is not compatible with the performance characteristics described
extensively in Figure 4. If there was a systematic loss of convulsive
events with biological relevance, the accuracy and precision measure-
ments would have been considerably lower and the odds ratio would
not have been significant at P,0.001. Finally, analysis of the empty

Figure 5 | Validation of event identification using a novel multi-channel EEG data set. Multi-channel EEG was recorded from c-butyrolacetone-

(GBL-) treated mice using a polyimide-based microelectrode array for extracranial multichannel recording. The event detection portion of the algorithm

was applied to the recording to identify SWD events. (A) The algorithm identified 20 of 20 visually-identified SWD events, including the sample SWD

outlined by the grey dotted line and marked by heavy orange tracing. Additional SWD-like events were also identified by the algorithm (heavy red tracing)

in all but one channel. Channels one through seven (of 36 recording channels) are shown. (B) The average event rate/100 seconds was calculated for each

channel during baseline (blue) and GBL-treated (red) recordings. (C) The fold change in GBL signal versus baseline at each channel (ratio of GBL event

rate to baseline event rate) revealed that the predominant event rate increase occurred in channels 1 through 20. In contrast, channels 27 through 37

experienced a decrease in event rate per 100 seconds relative to baseline, indicating possible suppression or inhibition in this region of the brain in

response to GBL-treatment. (D) To identify the brain region of interest, the fold-change in average event rate per 100 seconds was plotted against the

location of the associated electrode. The color indicates the fold increase as indicated in the legend (red-orange 5 high, blue-grey 5 low). The greatest

fold-change was found at electrode 4 and decreased as the relative distance from electrode 4 increased. We conclude that the seizure focus was at or near

the position of electrode 4. Of note, electrodes 27 through 37 showed a decrease in events per 100 seconds and were farthest away from electrode 4.

NR 5 non-recording electrode.

www.nature.com/scientificreports
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channel signal revealed the following characteristics: within non-
event domains (i.e. signal segments that are kept by the algorithm)
the amplitude ranged from 14.4 to 216.2 mV on the empty channel;
during the same time domain, the EEG signal ranged from 177.7 to
267.0 mV. Furthermore, within the signal segments removed by the
algorithm, the emtpy channel signal ranged from 1316.0 to
2788.8 mV, vastly exceeding the normal range of EEG signals (across
the EEG signal the range was approximately 1100 to 2150 mV).
This indicates that the empty channel is normally very "quiet" but
is punctuated by periods of extremely high amplitude noise. In con-
trast, the true EEG channel does not exhibit such massive amplitude
events, perhaps due to overall electronic suppression associated with
the presence of a tissue-resident electrode. Regardless, the empty
channel algorithm removes any timeframes that may be associated
with spurious noise, especially noise in the EEG channel that may be
visually indistinguishable from biological events.

In conclusion, we have generated an algorithm for automated
analysis of the murine EEG based on the line length feature and
wavelet decomposition. Our algorithm will help to reduce the time
of analysis for quantification of seizure and spike activity by provid-
ing an accurate and reproducible method for processing large EEG
data sets automatically.

Methods
Animal use and care. Animal use and care was performed in accordance with
guidelines established by the National Institutes of Health and all experiments and
procedures were approved by the Mayo Clinic Institutional Animal Care and Use
Committee.

Anesthesia and Stereotaxic surgery. Female C57BL/6 mice (Jackson Labs, Bar
Harbor, ME) were 40 days old (range 33–47) and weighed 16.8 g (range 14.3–19.2) at
the time of surgery. Mice were anesthetized by intraperitoneal injection of ketamine
(100 mg/kg), xylazine (10 mg/kg), and acepromazine (3 mg/kg). Upon reaching a
surgical plane of anesthesia37, fur on the head was trimmed and mice were
immobilized in a stereotaxic frame (Stoelting, Chicago, IL, USA). Screw electrodes
(0.1’’ length) with 1 mm wire-loops (Pinnacle Technologies, Lawrence, KS) were
implanted at the following stereotactic coordinates relative to bregma (caudal, lateral,
ventral; in mm): recording electrode (right hippocampus): 2.0, 1.7, 1.0; reference
electrode (left somatosensory cortex, hind limb region): 0.5, 21.5, 1.5; ground
electrode (preculminate fissure, cerebellum): 5.8, 0.0, 1.0. Electrodes were secured in
the skull with dental cement (A–M Systems, Sequim, WA). Standardized six-pin
surface-mount adaptors (Pinnacle Technologies) were connected to the electrodes via
short lengths (less than 5 mm) of wire-wrapping wire (Radio Shack, Fort Worth, TX).
Only one true recording electrode was placed, leaving three unoccupied pins on the
headmount. One of these empty channels was used for the automated cleanup
algorithm, as described above. Colloidal silver (Ted Pella, Inc., Redding, CA) was
applied to the electrode-adaptor connection to ensure electrical conduction. The
electrodes and the base of the adaptor were buried in dental cement to stabilize and
insulate the connections. The skin was sutured closed around the head mount and
triple-antibiotic ointment was applied to the wound to prevent infection.
Buprenorphine (0.075 mg/kg) was administered prior to recovery from anesthesia
and the morning following surgery. Acetaminophen was added to the water bottle for
48 hours prior to surgery and was maintained in the cage for seven days after surgery.
Mice were euthanized by inhalation of isofluorane.

EEG and video recording and manual seizure scoring. EEG and video recordings
were initiated seven to 14 days after surgery. The EEG recording apparatus consisted
of a 103 pre-amplifier configured to record two EEG channels, a low-torque swivel,
and a data acquisition and conditioning system connected to a PC running PAL-8200
EEG software (Pinnacle Technologies). Data were sampled at 400 Hz and 14-bit
resolution on each channel, with 1.0 Hz high pass filtering and 100 Hz low pass
filtering. Custom nine inch-diameter plastic cylindrical recording cages were
produced by the Engineering Department of the Mayo Clinic (Rochester, MN).
Simultaneous video was recorded using high resolution color cameras and VistaPro 6
server software (Lorex Technology, Inc., Markham, Ont). EEG signals were collected
in European Data Format (.edf) and were converted to text files using the Prana
Software Suite (Phi Tools, France). At least one session of one hour of video and EEG
was collected prior to experimental manipulation. These were used as the baseline
control for signal and behavioral analysis. Videos were observed by a blinded observer
for scoring according to Racine1 and Borges38 with the following modifications: stages
1 and 2 (including mouth and facial movements, head nodding, and immobility) were
classified as ‘‘non-convulsive,’’ and stages 3, 4, 5, and 6 (including forelimb clonus,
rearing, rearing and falling, loss of posture, or jumping) were classified as
‘‘convulsive.’’ Visual inspection of the EEG signal was carried out in EEGLab39. Signal
was characterized as normal (similar in amplitude and frequency to the average
baseline recording for each specific mouse), spiking (transient, isolated bursts of

high-amplitude activity at less than one event per second), seizure (greater than five
seconds of sustained, high-frequency and high-amplitude, high frequency, or high
amplitude activity), or other abnormal (signal that appeared significantly and
identifiably different in frequency or amplitude from the average baseline recording
for that specific mouse but did not fall into the category of spike or seizure). For the
manual analyses, simultaneous video and EEG recordings were edited to remove
artifacts related to animal manipulations (injections) prior to examination in
approximately one-hour segments. A total of 31 recordings collected from 7 mice
were used for the primary signal analyses and algorithm development. Of these
recordings, ten were baseline (no treatment) and 21 were collected following injection
of kainic acid. For the explicit side-by-side comparison of video analysis and raw EEG,
a subset of ten video recordings (collected simultaneously with EEG) from two mice
was used. Three of these video recordings were baseline and seven were collected
following injection of kainic acid.

Seizure induction by kainic acid. To induce seizures, 1 mg/mL (-)- (a)-Kainic Acid
(KA) (Cayman Chemical, Ann Arbor, MI) in PBS was injected into the peritoneum at
10 mg/g body weight at 60 minute intervals (up to five doses) until Racine stage 4, 5, or
6 seizures were observed1,38. Mice were euthanized after two hours of status
epilepticus or if seizures were not observed after five KA doses.

Algorithm. The algorithm and all algorithm-related data analysis was written and
performed in the Matlab (Mathworks, Natick, MA) computing environment. The
annotated code can be found within the supplemental materials. The algorithm
consists of four blocks applied to each individual animal: 1) automated signal
clean-up; 2) determination of baseline line length parameters; 3) bulk signal analysis
to categorize experimental recordings as equal to or different than baseline; 4) event
identification, categorization, and quantification in the experimental recordings. The
data from these calculations were compiled into a Matlab structure, including the file
name, recording length, individual event identification with time index and duration,
total event count, total event duration, and bulk signal score (0 5 not different from
baseline), to provide a summary file of the EEG signal analysis.

Algorithm performance analysis. The automated algorithm was objectively
compared to manual EEG signal analysis using the receiver-operator characteristic
(ROC)26, a curve-fitting strategy that determines the balance of false positives and true
positives. The more steeply the curve rises to a true positive rate of 1.0, the better the
performance of the algorithm under analysis. An algorithm that performs at chance
would rise at a 45u angle (50550 odds of a correct call). A quantitative measure of
performance arises by measuring the area under the ROC curve (AUC)27. A perfectly
performing algorithm would show 1.0 true positive rate and 0.0 false positive rate,
yielding an area of 1.0 under the ROC curve. A randomly performing algorithm
would yield an AUC of 0.5. Further performance analysis is provided by constructing
a 2 3 2 contingency matrix of true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN). From this, precision is calculated as the ratio of TP to
TP1FP; recall (or sensitivity) is the ratio of TP to TP1FN; accuracy is the ratio of
TP1TN to TP1FP1FN1TN; and the F characteristic is 2 divided by
(precision)211(recall)21. Precision is interpreted as the optimal identification of true
positive events, relative to total positive calls. Accuracy is interpreted as the optimal
identification of both true positives and true negatives, relative to the total calls made.
Hence, at low thresholds, precision is high because most true postives are identified,
but accuracy is low because the number of true negatives is greatly underestimated. As
the threshold increases, precision is lost but accuracy improves as the balance of true
positive and true negative calls reaches an optimal relationship. At peak accuracy, the
algorithm is correctly identifying the most true positives and true negatives and the
least false positives and false negatives. Increasing the threshold further decays both
precision and accuracy because true positives are missed.
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