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a b s t r a c t

In 2020, a novel coronavirus disease became a global problem. The disease was called COVID-19, as
the first patient was diagnosed in December 2019. The disease spread around the world quickly due
to its powerful viral ability. To date, the spread of COVID-19 has been relatively mild in China due to
timely control measures. However, in other countries, the pandemic remains severe, and COVID-19
protection and control policies are urgently needed, which has motivated this research. Since the
outbreak of the pandemic, many researchers have hoped to identify the mechanism of COVID-19
transmission and predict its spread by using machine learning (ML) methods to supply meaningful
reference information to decision-makers in various countries. Since the historical data of COVID-19 is
time series data, most researchers have adopted recurrent neural networks (RNNs), which can capture
time information, for this problem. However, even with a state-of-the-art RNN, it is still difficult to
perfectly capture the temporal information and nonlinear characteristics from the historical data of
COVID-19. Therefore, in this study, we develop a novel dendritic neural regression (DNR) method
to improve prediction performance. In the DNR, the multiplication operator is used to capture the
nonlinear relationships between input feature signals in the dendrite layer. Considering the complex
and large landscape of DNR’s weight space, a new scale-free state-of-matter search (SFSMS) algorithm
is proposed to optimize the DNR, which combines the state-of-matter search algorithm with a scale-
free local search. The SFSMS achieves a better global search ability and thus can effectively reduce
the possibility of falling into local minima. In addition, according to Takens’s theorem, phase space
reconstruction techniques are used to discover the information hidden in the high-dimensional space
of COVID-19 data, which further improves the precision of prediction. The experimental results suggest
that the proposed method is more competitive in solving this problem than other prevailing methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The novel coronavirus disease is a global problem. Because
he first patient was diagnosed in December 2019, the disease
as been called COVID-19. Due to the irregularity of viral trans-
ission that occurred during the initial stage of the COVID-19
andemic, information on this novel coronavirus and medical
acilities were insufficient; therefore, the pandemic was initially
ot well controlled [1]. On January 20, 2020, it was officially
nnounced that COVID-19 could be passed from person to per-
on [2]. Soon after, COVID-19 spread around the world. The new
isease was defined as a Public Health Emergency of International
oncern by the World Health Organization (WHO) on January 30,
020 [3,4].

∗ Corresponding author.
E-mail address: jijunkai@szu.edu.cn (J. Ji).
ttps://doi.org/10.1016/j.asoc.2021.107683
568-4946/© 2021 Elsevier B.V. All rights reserved.
COVID-19 itself is not a large threat, but COVID-19 patients
often have other complex and severe symptoms that can lead to
death [5]. As of November 1, 2020, there were approximately 46
million diagnosed patients and 1.2 million deaths worldwide [6].
From the COVID-19 Data Hub [7], a COVID-19 open research
dataset, we learned that the COVID-19 pandemic has been con-
trolled in some areas, such as China, Burkina Faso, and Comoros,
but is still severe in many other countries. In addition, even in
areas where the outbreak is contained, there is still a possibility
of re-outbreaks due to factors such as colder temperatures. As
a result, countries still have a substantial need for COVID-19
prevention and control strategies. Good decisions can help reduce
the spread of an pandemic, improve survival rates and reduce
mortality. It is imperative to study the transmission trend of the
COVID-19 pandemic and identify the mechanism of transmission.

For the above reasons, this paper aims to study the historical
transmission trend of the COVID-19 pandemic in various coun-
tries and determine the transmission mechanism of COVID-19 to

https://doi.org/10.1016/j.asoc.2021.107683
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2021.107683&domain=pdf
mailto:jijunkai@szu.edu.cn
https://doi.org/10.1016/j.asoc.2021.107683


M. Dong, C. Tang, J. Ji et al. Applied Soft Computing 111 (2021) 107683

p
e
g
p
m
m
m
p
f
t
s
w
i
t

d
s
e
C
t
t
a
t
l
i
r
i
p
p
c
f
a

s
f
c
n
l
t
T
o
a
p
c
p
I
o
L
t
e
t
s
n
f
f
s
b

d
c
s
n
t
h
o
n
3

rovide important reference information for decision-makers in
very country. When pandemics and major public health emer-
encies occur, pandemic models are usually built to analyse and
redict the development trend of the disease. There are two
ain methods for building pandemic models. The first one is the
athematical method. There have been practical cases in which
athematical models have been applied to epidemiology in the
ast [8]. For example, Sharomi utilized a regression model to
orecast the spread trend of tuberculosis [9], and in [10,11], a
ransmission model was built for malaria. A model that takes
usceptible, infectious, and recovered individuals as factors (SIRS)
as improved and applied to study the syncytial virus in infants

n [12], and in [13], mathematical models were adopted to control
he dengue outbreak.

To more effectively detect the transmission pattern of the new
isease and obtain more information to help develop prevention
trategies after the WHO declared the emergency, various math-
matical methods have been used at varying degrees to model
OVID-19 transmission. In [14–17], researchers tried to use sta-
istical or mathematical models to analyse and predict COVID-19
ransmission trends. However, the fitting results of these methods
re relatively poor, and the accuracy is low. The main reason is
hat statistical or mathematical modelling methods are mostly
inear, whereas the transmission trend of the COVID-19 pandemic
s a nonlinear regression problem with temporal factors. Some
esearchers have taken these features into account and proposed
mproved mathematical models that can be applied to nonlinear
roblems [17–20]. However, most of these models need to im-
ose a certain environmental assumption on the data, which may
ause the loss of some important information. These methods also
ail to consider temporal characteristics and are thus unable to
chieve satisfactory results.
To overcome the shortcomings of mathematical methods, re-

earchers began to adopt machine learning (ML) technology to
orecast the transmission trend of the COVID-19 pandemic. Ac-
ording to previous studies, the powerful ability of a recurrent
eural network (RNN) [21] to describe the temporal and non-
inear characteristics of data can be effectively used to predict
he spread trend of COVID-19 and achieve high-level accuracy.
herefore, state-of-the-art RNNs, including long short-term mem-
ry (LSTM) [22], bidirectional long short-term memory (BiLSTM)
nd gated recurrent units (GRUs), have been widely employed to
redict the transmission trend. In addition, a hybrid method that
ombined LSTM and natural language processing (NLP) was pro-
osed to predict the COVID-19 transmission trend in China [23].
n [24], LSTM was utilized by Chimmula to estimate the endpoint
f the Canadian COVID-19 pandemic. An improved convolution
STM model was adopted by Shastri [25] to perform spread
rend prediction for India and the United States and achieved
xcellent results. Other researchers have used RNNs to predict
he transmission trend of the COVID-19 pandemic on other data
ets [26–29]. Although RNNs can effectively extract temporal and
onlinear features from data, they still have some disadvantages;
or instance, the temporal information cannot be fully extracted
rom the data by only applying a simple RNN model. RNNs also
uffer from overfitting issues and unstable performance caused
y different random weight initializations [30].
To further improve the precision of prediction, a modified

endritic neuron model (DNM) is developed and applied to fore-
ast the transmission trend of the COVID-19 pandemic in this
tudy. The computation of DNM mimics the process of biological
eurons transferring information. Due to the nonlinear charac-
eristics of synapses and the plasticity of dendrites, the DNM
as a strong ability to fit complex nonlinear functions. Previ-
us studies have used the DNM to solve multifarious linearly
onseparable problems and achieved satisfactory results [31–
3]. However, the original DNM was specifically designed for
2

classification problems. The architecture is simplified to seek
high classification speed by neglecting the thickness of dendritic
branches, which will influence the signal strengths [34]. This
study proposes dendritic neural regression (DNR), which can
enhance model regression ability by considering the thickness of
dendritic branches.

Moreover, since DNR’s weight has a complex and large search
space, a novel scale-free state-of-matter search (SFSMS) algo-
rithm that combines the state-of-matter search (SMS) algorithm
[35] with the scale-free local search method is utilized to op-
timize the neural architecture of DNR. The SMS algorithm is
a recently proposed evolutionary algorithm that has powerful
search capabilities and can effectively avoid local optima. The
scale-free method searches in a paradigm of complex networks,
which are similar to a variety of real-world networks. In SFSMS,
the scale-free local search is a new component that improves the
quality of the solutions.

Additionally, Takens’s phase space reconstruction (PSR) the-
orem [36] is employed as a module to preprocess the raw data
in this study. The original one-dimensional time series hides
some information in the high-dimensional space, which leads
to intermittent behaviour and randomness. This information can
be extracted through PSR so that we can greatly improve the
prediction performance. Two components are imperative when
we employ PSR techniques to describe high-dimensional informa-
tion: the time delay and the embedding dimension. The details of
how to obtain these two components are described in Section 3.
Experiments for predicting COVID-19 transmission trends in sev-
eral countries show that DNR-SFSMS is more accurate and robust
than other commonly used ML algorithms.

The remainder of this article is organized as follows. Section 2
introduces the structure of DNR and how to use the SFSMS algo-
rithm to optimize DNR. The whole process of data preprocessing
is introduced in Section 3. Section 4 presents the experimen-
tal results and discussion. Finally, a conclusion is provided in
Section 5.

2. Model structure and optimization algorithm

In this study, we employed DNR to forecast the transmission
trend of the COVID-19 pandemic in several countries. The left
part of Fig. 1 shows the structure of DNR. DNR consists of four
layers: the synaptic layer, the dendrite layer, the membrane layer
and the soma layer. The synaptic layer is the entry point of the
model and is used to receive input signals. The signal received
by the synaptic layer is processed by an activation function and
then flows to all branches of the dendrite layer. Each branch of
the dendrite layer gathers all the signals in the branch and sends
them to the membrane layer. The membrane receives signals
from all branches of the dendrite layer and integrates them to
transmit to the soma layer. Finally, the soma layer processes the
signal through a sigmoid function and outputs it.

2.1. Synaptic layer

The synaptic layer mimics the synaptic part of the nervous
system; it is the portal of the neuron and receives signals from
external inputs. The signals received by the synaptic layer are
processed by the following equation:

Dij =
1

1 + e−α(wijxi−θij)
, (1)

where xi is the ith input signal and Dij denotes the value of the
ith synapse transfer to the jth dendritic branch. α is a positive
constant parameter in the synaptic layer. wim and θim are two
alterable parameters in terms of different tasks.
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Fig. 1. Description of the DNR architecture.
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Depending on the different values of wim and θim, DNR can
e further simplified. This operation mimics synapses that can
ecome excitatory synapses or inhibitory synapses in terms of
he received ions in the nervous system [32]. The detailed state
hanging rule is given as follows: (1) Constant 1 connection (wij <
< θim or 0 < wij < θim): the value of the synaptic layer output

o the dendritic layer is fixed at 1; (2) Constant 0 connection
wij < θim < 0 or θim < 0 < wij): the value of the synaptic
ayer output to the dendritic layer is fixed at 0; (3) Excitatory
onnection (0 < θim < wij): the output of the synaptic layer
emains the original value; (4) Inhibitory connection (wij < θim <
): the output of the synaptic layer is the inverse of the original
alue.

.2. Dendrite layer

The dendrite layer is responsible for aggregating signals from
ynapses distributed on each branch. The nonlinear relationship
mong these signals is thought to play an important role in neural
nformation processing for some sensory systems, such as the
isual and auditory systems, in biological networks [37,38]. The
onlinear relationship is described by multiplication operations
n DNR, which can be expressed as follows:

j =

I∏
i=1

yij, (2)

here Mj denotes the output value of the mth dendritic branch.

.3. Membrane layer

The duty of the membrane layer is to integrate the signals
rom all branches of the dendrite. The integrated operation is im-
lemented through a summation, which can be given as follows:

=

J∑
j=1

(µj ∗ Mj), (3)

here µj denotes the strength of each dendritic branch and
represents the input to the soma layer. µj is a parameter

hat differentiates DNR from DNM. In DNM, since µj is fixed
t 1, further simplification can be performed to obtain a faster
alculation speed [39]. In DNR, µm is a variable parameter, and
t can adapt to different tasks by constantly changing its value to
etter cope with regression problems.
 s

3

.4. Soma layer

A sigmoid function is employed as the activated function in the
oma layer, and the cell body is fired when the potential from the
embrane exceeds the threshold. The process can be defined as

ollows:

=
1

1 + e−α(S−v) , (4)

where R denotes the output of the soma layer and α and v are
wo positive constants.

.5. Learning algorithm

Since DNR captures the nonlinear relationship among features
y means of the multiplication operation in the dendrite layer,
he parameter space is tremendous and complex. In addition, in
NR, we add additional weights to describe the thickness of the
endrite branches, which further increases the difficulty of model
ptimization. The search abilities of traditional back propagation
BP) algorithms have some limitations in such a parameter space,
ncluding a tendency to fall into local optima and sensitivity of
he initialized weights. Thus, the SFSMS algorithm is utilized to
ptimize DNR instead. The SFSMS algorithm is composed of an
MS algorithm and a scale-free local search approach, where the
cale-free local search is used as an additional strategy to improve
he whole population in the process of evolution. In the rest of
his section, the whole process of the SFSMS algorithm will be
ntroduced specifically.

.5.1. SMS algorithm
In nature, substances vary among gases, liquids and solids in

erms of temperature. The SMS algorithm refers to this princi-
le [35]. The process of the SMS algorithm can be regarded as a
rocess of substantial change from gas to liquid to solid. First, in
he gas state, the molecules are long distances from each other
nd have weak attractions, but they have a large space of motion
nd easily collide. When the distance between the molecules is
ufficiently reduced, the substance changes from the gas state
o the liquid state. In the liquid state, the attraction among the
olecules increases compared with the gas state, and the space
f motion of the molecules and the possibility of collision are
educed. When the distance between molecules is very small, a
ubstance becomes solid. The attraction among the molecules in
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Fig. 2. Evolution process of the SMS algorithm.
he solid state is close to the maximum, the motion space is very
mall, and there are almost no collisions between molecules.
There are three major phases in the process of searching

or the best solution, as shown in Fig. 2; the three operations
nclude the direction vector operation, the collision operation and
andom behaviour. Their specific definitions are shown below.

Direction vector operation: Similar to the molecules in a sub-
tance, in SMS algorithms, the current best individual attracts
ther individuals in the population to raise the level of the entire
opulation. The purpose of the direction vector operation is to
ove the other individuals towards the best one. Let Pi be the

th individual vector and p̄ be the current optimal individual.
ccording to the rules of the SMS algorithm, other individuals are
iased towards P̄ when moving. Let di be the direction vector of
he ith individual; its formula can be expressed as follows:

m+1
i = dmi ∗ (1 −

t
Ita

) ∗ 0.5 +
P̄ − Pi

∥P̄ − Pi∥
, (5)

where Ita and m denote the maximum iteration number and the
current number of evolutionary iterations, respectively. Then, we
can calculate the velocity vector in terms of Di. The equation is
defined as follows:

vi = di

∑n
j=1(b

high
j − blowj )

n
∗ η, (6)

where η is a positive constant and n is the dimension of the indi-
vidual vectors. bhighj and blowj represent the upper bound and the
lower bound of the jth member of individual vectors, respectively.
The last step of this operation is to update the individual vectors,
which is given as follows:

Pm+1
i,j = pmi,j + vj ∗ R1 ∗ (bhighj − blowj ) ∗ ρ, (7)

where R1 is a random number and ρ is a positive constant. Both
are in the range of [0,1].

Collision operation: The collision operation aims to solve the
problem of population diversity loss and premature convergence
in the evolution process. In this operation, a threshold is em-
ployed to determine whether two individuals have collided. When
the distance between two individuals is less than the threshold,
they are considered to have collided. The direction vectors of
collided individuals are exchanged. The equation of the threshold
is defined as follows:

κ =

∑n
j=1(b

high
j − blowj )

n
∗ λ, (8)

where κ is the threshold and λ is a constant positive between 0
and 1. The collision operation formula is defined as follows:

temp = dj, dj = di, di = temp; (9)

Random behaviour: Random behaviour is another measure
to maintain the diversity of the population, and it can effec-
tively prevent the population from falling into local optima. Com-
pared with the other two operations, random behaviour is not
4

necessary. Each individual may or may not perform a random
behaviour. Random behaviour is expressed as follows:

Pm+1
i,j =

{
blowj + R2 ∗ (bhighj − blowj ), with probability H;

Pm+1
i,j , with probability (1-H),

(10)

where R2 is a random number similar to R1 and H denotes the
occurrence probability of random behaviour.

The whole solution search process in the SMS algorithm needs
to go through three major phases: the gas phase, liquid phase
and solid phase. The parameters η, λ, ρ and H are set to different
values in the different phases. In this study, these parameters are
set to the defaults according to [35].

2.5.2. Scale-free local search and the BA algorithm
The scale-free local search has a complex topological structure.

Fig. 3 shows a schematic diagram of a scale-free network. In such
a scale-free network, there are fewer nodes with a high vertex
degree than nodes with a low vertex degree, and the distribution
follows a power law, which can be expressed by the following
equation [40]:

P (l) ∝ l−γ , (11)

where p(l) denotes the probability of a node possessing degree
l and γ represents a scaling exponent that is commonly in the
range of [2,3]. Notably, p(l) and l−γ are positively correlated. To
intuitively observe such a law, the curve of its distribution is
plotted in Fig. 4. As shown in Fig. 4, when the degree increases,
the number of nodes decreases. In addition, the distribution is
presented as a straight line in the coordinate axes of the loga-
rithmic scale. Previous studies have shown that it is difficult to
map complex networks in the real world with only a scale-free
network [41]. To solve this problem, the Barabasi–Albert (BA)
algorithm, proposed by Barabasi and Albert [40], is adopted to
construct the scale-free network. The BA algorithm is inspired
by the links formed between the new nodes and the original
nodes in a real-world network, which can better reflect the real
environment. In the BA algorithm, the newly generated nodes are
connected to the old nodes with a particular preference.

The detailed process of the BA algorithm is as follows: (1)
Initialize the scale-free network with a fully connected network
with M0 nodes. Set the total number of nodes N . (2) Generate
a novel node j and calculate the probability Pi for all existing
nodes with the equation Pi = δ(i)/

∑
j δ(j), where δ(i) represents

the degree of node i. (3) Generate a new link between novel
node j and existing node i with probability Pi. (4) Repeat steps
(1)–(3) until all nodes are connected to the network. Moreover,
by proving that P(l) is proportional to l−3, Barabasi and Albert
identified that the scale-free network in the BA algorithm still
abides by the power-law distribution. In such a distribution space,
links are more likely to appear between low-degree nodes and
high-degree nodes. γ is also utilized to denote the extent to
which low-degree nodes link to high-degree nodes. The equation
for γ can be expressed as follows [42]:

γ =
N−1 ∑

n pnqn − (N−1 ∑
n(pn + qn)/2)2

−1
∑

2 2 −1
∑

2 (12)

N n(pn + qn)/2 − (N n(pn + qn)/2)
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Fig. 3. Schematic diagram of the scale-free network.

Fig. 4. The degree distribution curve of a scale-free network.

Fig. 5. Degree–degree correlation coefficients γ of different networks.

here N denotes the number of links in the scale-free network
architecture. pn and qn are the degrees of the two adjacent nodes
at both ends of the nth link. When the value of γ is high,
links between nodes with a high degree are more likely to be
generated. In addition, we also investigate the effect of the initial
node number M0 on γ . The experimental result is shown in Fig. 5.
It should be emphasized that we conducted 30 experiments for
all networks. As shown in Fig. 5, the values of γ are lower in the
cale-free networks than in the random network, and the value of
increases asM0 increases. WhenM0 is 2, the value of γ achieves

he lowest value.

.5.3. Scale-free local search
In this study, we use a scale-free local search as a new com-

onent of the SMS algorithm (termed SFSMS) to further enhance
he solution searching capability. First, a corresponding scale-free
 T

5

network is generated using the BA algorithm in terms of the size
of the population. Second, we number each node in the network.
According to the rules of the BA algorithm, there are more low-
degree nodes and fewer high-degree nodes in the network. Third,
in each iteration, we rank the individuals in terms of their fitness
in the population after the SMS operations. Then, we put each
individual into a network node with the same number and rank.
As a result, high-degree nodes store excellent individuals, and
low-degree nodes store poor individuals. Finally, we update each
individual utilizing the following equation:

Y i
j+1 = Y i

j + rand(0, 1)(Y neighbour
j − Y i

j ), (13)

here Y i
j represents the weight vector of the ith individual in

he jth generation after the SMS operation. Y neighbour
j denotes an

rbitrary node in the scale-free network that is linked to the
ode of Y i

j . There are two main advantages in using the scale-free
etwork. On the one hand, high-quality individuals are always
tored in the high-degree nodes, and the power-law distribution
educes the number of high-degree nodes. Thus, most individuals
re close to excellent individuals after updating, which improves
he level of the whole population and accelerates the convergence
f the model. On the other hand, since the value of γ is rela-
ively low in the BA algorithm, the probability of a link between
igh-degree nodes is low; namely, excellent individuals are less
ikely to attract each other, which ensures the diversity of the
opulation and prevents falling into locally optimal situations.
he detailed content of the SFSMS algorithm is introduced in
lgorithm 1, and the flowchart for the overall methodology is
emonstrated in Fig. 6.

. Study of the chaotic time series

Before applying DNR to forecast the transmission trend of
he COVID-19 pandemic, the raw data should be preprocessed.
ccording to Takens’s theorem [36], the hidden information of
he time series can be revealed by the time delay and the em-
edding dimensions. Utilizing these two components, we can
econstruct the phase space of the data, which can greatly en-
ance the precision of forecasting. In addition, it is necessary to
se the maximum Lyapunov exponent (λmax) to determine that
he dataset is a chaotic time series when we use this method. The
econstructed dataset is available only when λmax exceeds zero.

.1. Phase space reconstruction technique

In this study, the PSR technique proposed by Takens is adopted
or data preprocessing. It is very difficult to predict the trend
f a one-dimensional chaotic time series because of its random-
ess and intermittency. The characteristics of a one-dimensional
haotic time series are distinctive because there is some high-
imensional information that can hardly be described in one
imension. Even with ML methods, it is difficult to effectively
escribe high-dimensional information. Through PSR, we recon-
truct the representations of the one-dimensional data so that
heir hidden laws can be revealed. Then, through ML methods
o fit the representations, we can achieve a satisfactory effect.
ccording to Takens’s theorem, the reconstruction operation re-
uires two key parameters, i.e., the time delay σ and embedding
imension ω. Suppose {y(i)|i = 1, 2, . . . ,N} is the raw one-
imensional chaotic time series. In terms of the two parameters
and ω, the reconstructed data can be expressed as follows:

i = (yi, yi+σ , yi+2σ , . . . , yi+(ω−1)σ )T , (14)
i = yi+(ω−1)σ−1, (15)
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here Yi is the ith input vector and Ti is the ith target for
he neural model. When the two parameters σ and ω are set
easonably, Yi can clearly describe the laws of the chaotic time
eries. The process for creating Yi refers to the PSR technique.
Obviously, the key of the PSR technique is to choose suitable

pproaches to obtain the time delay and embedding dimensions.
owever, since the time series always carry different kinds of
oise, there is no method that can effectively calculate σ and
for every time series. In most cases, we have to choose the

ppropriate method based on experience. After a certain trial,
he mutual information (MI) algorithm [43] and the false nearest
eighbour (FNN) algorithm [44] are employed to obtain the time
elay and embedding dimensions, respectively.

.2. Mutual information algorithm

In this study, the time delay is obtained using the MI algo-
ithm, which is one of the most effective algorithms for such a
roblem. Let H(X), which is called the information entropy, be
he degree of uncertainty of X . The function of H(X) is given as
ollows:

(X) = −

n∑
i=1

P(xi)logP(xi), (16)

here X is a condition set, xi denotes the ith condition, P(xi)
epresents the probability of condition xi, and n is the length of
, i.e., the number of conditions. Let H(X |Y ) be the conditional
nformation entropy, which can be expressed as follows:

(X |Y ) = −

n∑
i=1

m∑
j=1

P(yj)P(xi|yj)logP(xi|yj), (17)

here Y is another condition set, m denotes the length of Y ,
P(yj) is the probability of the jth condition in Y, and P(xi|yj) is
he probability of the ith condition in X occurring under the jth
ondition in Y. Suppose I(X, Y ) is the mutual information entropy
nd is calculated as follows:

(X, Y ) = H(X) + H(Y ) − H(X, Y ), (18)
6

where H(X, Y ) is called the joint formation of X and Y and is
defined as follows:

H(X, Y ) = −

n∑
i=1

m∑
j=1

P(xi, yj)logP(xi, yj). (19)

According to the rule of the MI algorithm, let {z(i)|i = 1, 2,
. . ,N} represent the time series. Therefore, the mutual informa-
ion entropy I(zp, zp+σ ) can be given as follows:

(σ ) = I(zp, zp+σ ) = H(zp) + H(zp+σ ) − H(zp, zp+σ ). (20)

The components of this function were introduced previously.
When the value of I(σ ) reaches a local minimum for the first time,
the value of σ is the required time delay.

3.3. False nearest neighbours algorithm

The embedding dimension is an important component of PSR.
If the embedding dimension is not selected properly, the hidden
information in the high-dimensional space can hardly be exhib-
ited in the one-dimensional space, and the laws in the time series
cannot be extracted effectively. In this study, the FNN algorithm
proposed by Kennel [43] is employed to obtain the embedding
dimension for the COVID-19 pandemic data. In terms of the
theory of the FNN algorithm, false nearest neighbour points are
defined as two adjacent points that are a large distance apart in
high-dimensional space. It is difficult to utilize these two points
to demonstrate the hidden laws in the data. Thus, we gradually
increase the embedding dimensions so that the trajectory in the
high-dimensional space is clearer, which can help in obtaining
a highly accurate prediction. When the embedding dimension
reaches a certain value, the trajectory in the higher dimension is
fully exhibited; this is the value that we seek. Let ω be the number
of embedding dimensions and hi(ω) = (x(i), x(σ + i), . . . , x((ω −

)σ + i)) be an ω-dimensional vector in the phase space. Suppose
j(ω) is the nearest neighbour point of hi. Then, the distance
etween hi(ω) and hj(ω) can be expressed as follows:

isi(ω) = ∥hi(ω) − hj(ω)∥. (21)

It is obvious that the value of Disi(ω) varies with increasing ω.
hen ω is increased by one, the updated Dis (ω+1) can be given
i
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Algorithm 1: Pseudocode for the SFSMS algorithm.
Input: Population size N , number of dimensions n, maximum

number of iterations Ita, initial number of nodes M0.
Result: Best individual P̄ .
begin

Initialize the population X = {P1, . . . , PN}, the direction
vector set D0

= {d01, . . . , d
0
N}, the maximum number of

iterations Ita = 1000, the state count phase = 1, and the
current iteration number m = 1;
repeat

if phase == 1 then
η = 0.8, ρ = 0.8, λ = 0.9, H = 0.9, PD = Ita ∗ 0.5;

if phase == 2 then
η = 0.4, ρ = 0.2, λ = 0.5, H = 0.2, PD = Ita ∗ 0.9;

if phase == 3 then
η = 0.1, ρ = 0.0, λ = 0.0, H = 0.0, PD = Ita;

for m,m <= PD,m = m + 1 do
Calculate the fitness function of the population
F(X ) = {f (P1), . . . , f (PN )};
Set the current best individual to P̄;
/* Perform direction vector operations */
Calculate the new direction vector set Dt with Eq. (5);
Utilize Dt to obtain the velocity vector set
V = {v1, . . . , vN} with Eq. (6);
Update the population with Eq. (7);
/* Perform the collision operations */
Calculate the threshold κ in terms of Eq. (8);
Calculate the distance between each pair of
individuals; if the distance is less than r , exchange
the direction vectors of the individuals by Eq. (9);
/* Perform random behaviour */
Obtain a random number r̄ in the range of [0,1]; if H
exceeds r̄ , random behaviour is executed with
Eq. (10);
/* Utilize the scale-free network component*/
Generate a scale-free network with the BA algorithm
and number each node;
Calculate the fitness function of the population
F(X ) = {f (P1), . . . , f (PN )};
Rank each individual by fitness;
Put each individual into a network node with the
same number and rank;
Update each individual by Eq. (13);

phase=phase+1;
until phase > 3;

return The best individual P̄ .

as follows:

Dis2i (ω + 1) = Dis2i (ω) + ∥hi(i + ω ∗ σ ) − hj(j + ω ∗ σ )∥. (22)

These two points are regarded as false nearest neighbour
points when Disi(ω) is much less than Disi(ω + 1). This function
can be expressed in another form as follows:

Disσ =
∥hi(i + ω ∗ σ ) − hj(j + ω ∗ σ )∥

Disi(ω)
. (23)

Let θ be a threshold in the range of [10,50]. The two points can
e considered false nearest neighbour points when θ is less than
isσ . In this study, the initial number of embedding dimensions
is set to 2. Then, ω is increased until the proportion of false

earest neighbour points is less than 5%, which is the value of ω

hat we require. It should be emphasized that in some cases, the
roportion of false nearest neighbour points cannot reach 5%. To
7

solve this problem, we set an upper bound of ω. In this study, the
upper bound of ω is set to 8.

3.4. Maximum Lyapunov exponent

The maximum Lyapunov exponent (λmax) is utilized to identify
he chaotic characteristics of the historical COVID-19 data. Only
hen the chaotic characteristics are confirmed can the recon-
tructed data be used for the ML methods. According to [45],
hen λmax of the reconstructed data exceeds zero, the data can be
een as chaotic. In this study, Wolf’s method [46], one of the most
ffective methods for calculating λmax, is employed to obtain the
alue.
Suppose the vector Y (t) = (y(t), y(σ + t), . . . , y((ω −1)σ + t))

s a reconstructed series through the PSR technique. Let Y (ti)
nd Y (tj) be the two closest points, and their distance can be
xpressed as follows:

i = ∥Y (tj) − Y (ti)∥. (24)

Then, we can use the component to calculate λmax, and the
quation is defined as follows:

max =
1

tM − t0

M∑
i=0

ln
Ri

R′

i
,M = N − (ω − 1)σ , (25)

where t0 is the initial time and tM is the final time. In addition,
the recommended length for the time series prediction can be
expressed as follows [47,48]:

∆t =
1

λmax
. (26)

4. Experiment and discussion

This section is mainly divided into the following contents:
First, the relevant data and environment of the experiment are
presented. Second, we introduce in detail the steps of the nor-
malization operation and the special treatment of this operation
in this problem. Third, the evaluation indicators and charts are
described. Finally, the experimental results are presented and
discussed.

4.1. Benchmark datasets

In this study, DNR, a novel data-driven method trained by the
SFSMS algorithm (DNR-SFSMS), is utilized to forecast the trans-
mission trend of the COVID-19 pandemic. The whole process is
shown in Fig. 7. The variation in the number of confirmed COVID-
19 cases in six countries from March 1, 2020, to March 12, 2021,
is collected as experimental data for analysing DNR performance.
The six countries include India, Angola, Indonesia, Ethiopia, Azer-
baijan and Israel. These data are available for free at https://
datahub.io, a website called Datahub that is dedicated to dis-
covering and sharing high-quality data sets, which was accessed
in March 14, 2021. The data were collected by Johns Hopkins
University through various public approaches, and the collated
data were uploaded to GitHub. The variation in the number of
confirmed COVID-19 cases in six countries is shown in Fig. 8.

These datasets were first processed by the PSR technique and
converted into a group of new feature vector sets and target sets.
It should be emphasized that the lengths of the feature vector sets
and target sets may differ for each country because the selected
σ and ω may differ in the process of reconstruction. The recon-
structed data from each country were split into two portions. The
first portion contained 300 pieces of data utilized as the training
data, and the rest of the data were employed as the test data.
Then, the model was trained via the normalized training data, and
its performance was evaluated via the normalized test data. All
experiments were conducted on a personal PC with an Intel(R)
Core i7, 2.90 GHz, and 16 GB memory using MATLAB R2020a.

https://datahub.io
https://datahub.io
https://datahub.io
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Fig. 7. The flowchart of the transmission trend of COVID-19 pandemic prediction.
Fig. 8. The growth curves of the numbers of COVID-19 cases diagnosed in each country.
Table 1
Results for the time delay, embedding dimensionality and maximum Lyapunov exponents of the time series confirmed COVID-19 case data from six countries.
Country Time delay Embedding Maximum Lyapunov Chaotic Training data Test data

(τ ) dimensionality (m) exponent (λmax) size size

India 1 2 0.0182 Yes 300 75
Angola 1 6 0.0332 Yes 300 71
Indonesia 1 4 0.0198 Yes 300 73
Ethiopia 1 3 0.0252 Yes 300 74
Azerbaijan 5 4 0.0152 Yes 300 61
Israel 3 2 0.0226 Yes 300 73
4.2. Normalization

The purpose of the normalization operation is to reduce the
omputational time and increase the accuracy of prediction. Nor-
alization is performed not only on the training data but also
n the test data. There are several approaches to perform a
8

normalization operation, such as mean and variance normaliza-
tion and simple normalization [49,50]. In this study, the normal-
ization function can be expressed as follows:

ȳ =
y − MIN(y)

(b − a) + a, (27)

MAX(y) − MIN(y)
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Fig. 9. The results of the MI algorithm and FNN algorithm on the time series confirmed COVID-19 case data from six countries.
Fig. 10. Training and prediction results of DNR-SFSMS for six countries.
b
U

here y is a member of the reconstructed feature vectors or a tar-
et value. ȳ is the normalized value of y. MAX(y) and MIN(y) are
he maximum value and the minimum value of y, respectively.
 s

9

and a are the upper bound and the lower bound, respectively.
sually, b defaults to 1, and a defaults to 0. Since DNR employs a
igmoid function as the activation function in the last layer, the
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Fig. 11. Convergence curves of DNR-SFSMS for transmission trend prediction of the COVID-19 pandemic.
Fig. 12. Comparison of the four error metrics of prediction methods on the data from the six countries. From the top, the methods are DNR-SFSMS, DNR-BP, EDNM,
GRU, BiLSTM, LSTM, SVR-s, SVR-r, SVR-p, SVR-l, MLP and ENN, respectively.
Table 2
Results for the time delay, embedding dimensionality, maximum Lyapunov exponents and the specific allocation of training data and test data of the dataset of the
COVID-19 pandemic in different countries.
Country k M qs epoch Normalization popsize Learning rate

range (EDNM,DNR-SFSMS) (DNR-BP)

India 5 6 0.5 1000 [0.3,0.65] 100 0.03
Angola 6 3 0.5 1000 [0.2,0.5] 100 0.05
Indonesia 5 5 0.5 1000 [0.4,0.469] 100 0.01
Ethiopia 6 7 0.5 1000 [0.1,0.19] 100 0.01
Azerbaijan 6 4 0.5 1000 [0.15,0.255] 100 0.05
Israel 5 4 0.5 1000 [0.3,0.313] 100 0.12
10
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Fig. 13. Box-and-whisker plots for the MAPE of DNR-SFSMS for six countries.
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able 3
arameter settings of the algorithms for the transmission trend prediction of
he COVID-19 pandemic.
Algorithm Parameters

MLP HiddenLayer = 10, learningRate = 0.01, epoch = 1000
ENN learningRate = 0.01, epoch = 1000
SVR linear, polynomial, RBF and sigmoid kernels
LSTM, BiLSTM, GRU HiddenUnits = 200, epoch = 1000

output of DNR is in the range of [0,1]. Thus, the normalization
operation is an imperative step when applying DNR. In addition,
for the monotonically increasing problem of predicting the trans-
mission trend of the COVID-19 pandemic, the selected values of
the upper bound and lower bound strongly influence the results.

4.3. Evaluation metrics

To fairly compare the performance differences between DNR-
FSMS and other algorithms, several evaluation approaches were
tilized in this study:
(1) Evaluation metrics: In this study, four commonly used

valuation metrics were adopted for our experiments: the mean
quare error (MSE), the root mean square error (RMSE), the mean
bsolute percentage error (MAPE), and the mean absolute error
MAE). Their equations can be expressed as follows:

SE =
1
n

n∑
i=1

(L − L̄)2, (28)

MSE =

√1
n

n∑
(L − L̄)2, (29)
i=1

11
MAPE =
1
n

n∑
i=1

|
L̄ − L
L̄|

, (30)

AE =
1
n

n∑
i=1

|L̄ − L|, (31)

where L̄ represents the desired values and L denotes the pre-
diction outputs. MSE, RMSE, MAPE and MAE are all error-based
metrics; thus, lower values of these metrics indicate better per-
formance of the algorithm.

(2) Relative charts: The charts plotted during the experiments
can help to intuitively observe the performance of each algorithm
and more easily draw a conclusion for the result. Several com-
monly used charts were generated to compare the performance of
all algorithms. First, fitting charts were drawn to show the differ-
ence between the desired curve and the prediction curve. Second,
a convergence chart was plotted to demonstrate the convergence
effect and speed of DNR-SFSMS on all datasets. Third, histograms
were generated to reveal the metric differences. Finally, boxplots
were produced to display the entire situation in the experiments.

(3) Nonparametric statistical test: The purpose of the test is to
determine whether there is a significant difference between DNR-
SFSMS and other ML methods. The Wilcoxon rank-sum test [51,
52] was adopted in this study and implemented in terms of the
KEEL software [53]. The significance level was set to 5%, which
indicates that there is a significant difference in performance
between the DNR-SFSMS and another algorithm when the p-value
s less than 5%.

.4. Experimental results and discussion

In terms of the methods mentioned above, the three com-
onents σ , ω and λ of PSR for the time series of confirmed
max
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able 4
rediction performance for confirmed COVID-19 cases in India, Angola and Indonesia.
India

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 5.33E+08 ± 3.80E+08 1.33E−01 2.12E+04 ± 9.16E+03 1.21E−01 1.61E−03 ± 7.23E−04 2.05E−01 1.76E+04 ± 7.95E+03 1.83E−01
MLP 4.78E+12 ± 4.98E+12 9.13E−07 1.89E+06 ± 1.09E+06 9.13E−07 1.71E−01 ± 1.01E−01 9.13E−07 1.85E+06 ± 1.09E+06 9.13E−07
SVR-l 1.28E+12 ± 0.00E+00 9.13E−07 1.13E+06 ± 0.00E+00 9.13E−07 1.05E−01 ± 0.00E+00 9.13E−07 1.13E+06 ± 0.00E+00 9.13E−07
SVR-p 1.34E+13 ± 0.00E+00 9.13E−07 3.65E+06 ± 0.00E+00 9.13E−07 3.29E−01 ± 0.00E+00 9.13E−07 3.57E+06 ± 0.00E+00 9.13E−07
SVR-r 1.88E+12 ± 0.00E+00 9.13E−07 1.37E+06 ± 0.00E+00 9.13E−07 1.26E−01 ± 0.00E+00 9.13E−07 1.36E+06 ± 0.00E+00 9.13E−07
SVR-s 6.90E+14 ± 0.00E+00 9.13E−07 2.63E+07 ± 0.00E+00 9.13E−07 2.41E+00 ± 0.00E+00 9.13E−07 2.60E+07 ± 0.00E+00 9.13E−07
LSTM 5.16E+10 ± 4.73E+10 9.13E−07 1.99E+05 ± 1.09E+05 9.13E−07 1.80E−02 ± 1.01E−02 9.13E−07 1.95E+05 ± 1.11E+05 9.13E−07
BiLSTM 7.73E+10 ± 3.27E+10 9.13E−07 2.71E+05 ± 6.41E+04 9.13E−07 2.48E−02 ± 5.87E−03 9.13E−07 2.68E+05 ± 6.42E+04 9.13E−07
GRU 6.23E+10 ± 3.81E+10 9.13E−07 2.35E+05 ± 8.50E+04 9.13E−07 2.13E−02 ± 7.85E−03 9.13E−07 2.31E+05 ± 8.58E+04 9.13E−07
EDNM 8.24E+10 ± 2.69E+11 1.85E−06 1.70E+05 ± 2.31E+05 1.67E−06 1.35E−02 ± 1.82E−02 3.02E−06 1.48E+05 ± 1.99E+05 3.02E−06
DNR-BP 9.64E+10 ± 4.56E+10 9.13E−07 3.01E+05 ± 7.55E+04 9.13E−07 2.68E−02 ± 6.79E−03 9.13E−07 2.91E+05 ± 7.36E+04 9.13E−07
DNR-SFSMS 4.62E+08 ± 5.20E+08 – 1.85E+04 ± 1.09E+04 – 1.48E−03 ± 9.54E−04 – 1.60E+04 ± 1.04E+04 –

Angola

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 1.92E+06 ± 3.30E+06 1.07E−04 9.85E+02 ± 9.77E+02 1.47E−04 4.04E−02 ± 3.99E−02 2.75E−04 8.24E+02 ± 8.15E+02 2.54E−04
MLP 1.17E+07 ± 1.27E+07 9.13E−07 2.93E+03 ± 1.78E+03 9.13E−07 1.38E−01 ± 8.65E−02 9.13E−07 2.76E+03 ± 1.73E+03 9.13E−07
SVR-l 4.36E+06 ± 0.00E+00 9.13E−07 2.09E+03 ± 0.00E+00 9.13E−07 1.05E−01 ± 0.00E+00 9.13E−07 2.08E+03 ± 0.00E+00 9.13E−07
SVR-p 1.17E+08 ± 0.00E+00 9.13E−07 1.08E+04 ± 0.00E+00 9.13E−07 5.07E−01 ± 0.00E+00 9.13E−07 1.02E+04 ± 0.00E+00 9.13E−07
SVR-r 1.09E+07 ± 0.00E+00 9.13E−07 3.30E+03 ± 0.00E+00 9.13E−07 1.61E−01 ± 0.00E+00 9.13E−07 3.21E+03 ± 0.00E+00 9.13E−07
SVR-s 3.03E+09 ± 0.00E+00 9.13E−07 5.50E+04 ± 0.00E+00 9.13E−07 2.69E+00 ± 0.00E+00 9.13E−07 5.36E+04 ± 0.00E+00 9.13E−07
LSTM 2.06E+05 ± 1.44E+05 4.99E−04 4.13E+02 ± 1.89E+02 4.99E−04 2.02E−02 ± 9.59E−03 2.54E−04 4.01E+02 ± 1.93E+02 3.45E−04
BiLSTM 2.06E+05 ± 5.06E+04 2.04E−06 4.50E+02 ± 5.61E+01 1.51E−06 2.26E−02 ± 2.81E−03 9.13E−07 4.46E+02 ± 5.60E+01 1.01E−06
GRU 1.64E+05 ± 9.53E+04 5.37E−04 3.82E+02 ± 1.33E+02 7.16E−04 1.89E−02 ± 6.72E−03 1.47E−04 3.73E+02 ± 1.35E+02 1.87E−04
EDNM 2.27E+07 ± 4.14E+07 4.03E−06 3.32E+03 ± 3.41E+03 3.66E−06 1.33E−01 ± 1.29E−01 3.02E−06 2.72E+03 ± 2.66E+03 3.02E−06
DNR-BP 2.22E+08 ± 3.63E+08 9.13E−07 8.78E+03 ± 1.20E+04 9.13E−07 4.40E−01 ± 6.11E−01 9.13E−07 8.71E+03 ± 1.20E+04 9.13E−07
DNR-SFSMS 7.17E+04 ± 6.97E+04 – 2.42E+02 ± 1.16E+02 – 1.07E−02 ± 5.26E−03 – 2.14E+02 ± 1.07E+02 –

Indonesia

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 8.10E+10 ± 9.01E+10 9.13E−07 2.32E+05 ± 1.64E+05 9.13E−07 1.56E−01 ± 1.11E−01 9.13E−07 1.91E+05 ± 1.36E+05 9.13E−07
MLP 2.04E+11 ± 1.90E+11 9.13E−07 4.08E+05 ± 1.92E+05 9.13E−07 3.13E−01 ± 1.54E−01 9.13E−07 3.64E+05 ± 1.79E+05 9.13E−07
SVR-l 2.22E+10 ± 0.00E+00 9.13E−07 1.49E+05 ± 0.00E+00 9.13E−07 1.30E−01 ± 0.00E+00 9.13E−07 1.45E+05 ± 0.00E+00 9.13E−07
SVR-p 9.54E+12 ± 0.00E+00 9.13E−07 3.09E+06 ± 0.00E+00 9.13E−07 2.12E+00 ± 0.00E+00 9.13E−07 2.57E+06 ± 0.00E+00 9.13E−07
SVR-r 2.77E+11 ± 0.00E+00 9.13E−07 5.26E+05 ± 0.00E+00 9.13E−07 3.85E−01 ± 0.00E+00 9.13E−07 4.57E+05 ± 0.00E+00 9.13E−07
SVR-s 5.43E+13 ± 0.00E+00 9.13E−07 7.37E+06 ± 0.00E+00 9.13E−07 5.77E+00 ± 0.00E+00 9.13E−07 6.70E+06 ± 0.00E+00 9.13E−07
LSTM 5.96E+08 ± 6.34E+08 1.42E−01 1.90E+04 ± 1.53E+04 3.33E−01 1.68E−02 ± 1.38E−02 1.01E−01 1.82E+04 ± 1.53E+04 1.62E−01
BiLSTM 5.17E+08 ± 5.06E+08 9.13E−07 1.98E+04 ± 1.11E+04 9.13E−07 1.74E−02 ± 1.06E−02 9.13E−07 1.89E+04 ± 1.14E+04 9.13E−07
GRU 4.20E+08 ± 3.63E+08 3.18E−01 1.81E+04 ± 9.54E+03 4.19E−01 1.59E−02 ± 9.24E−03 1.01E−01 1.73E+04 ± 9.88E+03 1.77E−01
EDNM 2.54E+11 ± 1.08E+12 1.85E−06 2.43E+05 ± 4.42E+05 1.67E−06 1.43E−01 ± 2.55E−01 1.67E−06 1.80E+05 ± 3.25E+05 1.67E−06
DNR-BP 1.49E+10 ± 3.61E+10 2.04E−06 8.07E+04 ± 9.13E+04 3.02E−06 6.87E−02 ± 8.16E−02 2.25E−06 7.69E+04 ± 8.97E+04 2.48E−06
DNR-SFSMS 3.78E+08 ± 3.34E+08 – 1.78E+04 ± 7.81E+03 – 1.33E−02 ± 5.68E−03 – 1.54E+04 ± 6.76E+03 –
COVID-19 cases in six countries were calculated. The results of
PSR operation and the specific allocation of training data and test
data are displayed in Table 1. The maximum Lyapunov exponents
of the six countries exceed zero, which indicates that these time
series are chaotic. Thus, the reconstructed datasets can be used
in the prediction. In addition, the results of the time delays and
the embedding dimensions calculations are plotted in Fig. 9.

For a comprehensive evaluation, several commonly used ML
ethods are adopted for comparison with the DNR-SFSMS. These
ethods include the multilayer perceptron (MLP) [54]; the Elman
eural network (ENN) [55]; support vector regression with a
inear kernel (SVR-l), a polynomial kernel (SVR-p), an RBF ker-
el (SVR-r) and a sigmoid kernel (SVR-s) [56]; RNN variants,
ncluding LSTM, BiLSTM and GRU; the DNM trained by L-SHADE
EDNM) [57]; and the original DNM. In addition, the random
earch method [58] is utilized to adjust the hyperparameters
f the algorithms in this study. The range of normalization is
lso regarded as one of the hyperparameters of the DNM-based
ethods since it severely influences the prediction accuracy. The
yperparameter settings of the DNM-based methods and other
lgorithms are shown in Tables 2 and 3, respectively. All the
xperiments for each algorithm were independently conducted
0 times for each dataset.
Fig. 10 shows the fitting charts for the COVID-19 trend fore-

asts in six countries. For the four SVR-based algorithms, SVR-l,
hich has the best performance, is selected as the representative.
or the three RNN-based algorithms, GRU is selected as the repre-

entative since it has a better result than the other two. It should

12
be emphasized that the reconstructed time series of the number
of confirmed COVID-19 cases in each country were divided into a
training dataset comprising the first 300 pieces of data and a test
dataset comprising the remaining data. As shown in Fig. 10, in the
training dataset, namely, the first 300 days, all algorithms except
SVR-l have a very good fitting effect. However, for the test dataset,
the difference between the curve generated by DNR-SFSMS and
the original curve is significantly smaller than those of the other
algorithms. Fig. 11 shows the convergence effect of DNR-SFSMS
when trained on the six datasets. As shown in Fig. 11, although
the maximum iteration number is set to 1000, DNR-SFSMS always
converges within 100 generations, and the convergence effects
are outstanding. The results indicate that the SFSMS algorithm
has excellent performance in optimizing the weight of DNR and
that DNR has good generalization for this type of problem.

The results of the four performance metrics on the six datasets
for each algorithm in the form of ‘‘average ± standard deviation’’
are reported in Tables 4 and 5. For each metric, we present the
best results in bold. As shown in Tables 4 and 5, DNR-SFSMS
achieves the best results for any dataset, which implies that
DNR-SFSMS has greater effectiveness and stability in regard to
COVID-19 trend prediction. Moreover, comparing DNR-SFSMS,
EDNM and the original DNM, we can find that, on the one hand,
adding a weight on the dendrite layer to describe the strength
of the dendrite branches is indeed conducive to the regression
ability. In addition, compared with the traditional BP and L-
SHADE algorithms to optimize the model, the SFSMS algorithm

has better adaptability with the DNM-based models, the SFSMS
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rediction performance for confirmed COVID-19 cases in Ethiopia, Azerbaijan and Israel .
Ethiopia

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 3.70E+07 ± 8.43E+07 2.77E−05 4.74E+03 ± 3.81E+03 3.03E−05 2.06E−02 ± 1.60E−02 3.71E−04 3.22E+03 ± 2.52E+03 2.75E−04
MLP 1.14E+09 ± 1.09E+09 9.13E−07 2.93E+04 ± 1.67E+04 9.13E−07 1.78E−01 ± 1.11E−01 9.13E−07 2.62E+04 ± 1.61E+04 9.13E−07
SVR-l 2.84E+08 ± 0.00E+00 9.13E−07 1.69E+04 ± 0.00E+00 9.13E−07 1.15E−01 ± 0.00E+00 9.13E−07 1.66E+04 ± 0.00E+00 9.13E−07
SVR-p 1.21E+10 ± 0.00E+00 9.13E−07 1.10E+05 ± 0.00E+00 9.13E−07 6.49E−01 ± 0.00E+00 9.13E−07 9.66E+04 ± 0.00E+00 9.13E−07
SVR-r 8.58E+08 ± 0.00E+00 9.13E−07 2.93E+04 ± 0.00E+00 9.13E−07 1.82E−01 ± 0.00E+00 9.13E−07 2.68E+04 ± 0.00E+00 9.13E−07
SVR-s 2.16E+11 ± 0.00E+00 9.13E−07 4.65E+05 ± 0.00E+00 9.13E−07 2.98E+00 ± 0.00E+00 9.13E−07 4.36E+05 ± 0.00E+00 9.13E−07
LSTM 8.21E+06 ± 5.07E+06 2.75E−03 2.68E+03 ± 1.01E+03 1.25E−03 1.73E−02 ± 6.44E−03 2.54E−04 2.49E+03 ± 9.88E+02 7.69E−04
BiLSTM 1.02E+07 ± 5.35E+06 6.00E−05 3.06E+03 ± 8.94E+02 2.54E−05 2.05E−02 ± 5.66E−03 6.49E−06 2.93E+03 ± 8.73E+02 1.03E−05
GRU 3.82E+07 ± 4.39E+07 7.16E−04 4.92E+03 ± 3.74E+03 4.31E−04 2.13E−02 ± 1.63E−02 6.41E−03 4.89E+03 ± 3.75E+03 9.08E−05
EDNM 5.33E+09 ± 2.44E+10 2.74E−06 3.04E+04 ± 6.64E+04 2.25E−06 1.22E−01 ± 2.39E−01 3.02E−06 1.91E+04 ± 3.82E+04 3.02E−06
DNR-BP 7.59E+08 ± 2.08E+09 9.13E−07 1.89E+04 ± 2.00E+04 9.13E−07 1.23E−01 ± 1.41E−01 9.13E−07 1.78E+04 ± 2.01E+04 9.13E−07
DNR-SFSMS 3.72E+06 ± 4.55E+06 – 1.62E+03 ± 1.04E+03 – 9.28E−03 ± 6.31E−03 – 1.38E+03 ± 9.39E+02 –

Azerbaijan

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 1.01E+07 ± 1.25E+07 1.12E−01 2.67E+03 ± 1.71E+03 1.38E−01 1.05E−02 ± 6.84E−03 1.94E−01 2.44E+03 ± 1.59E+03 1.83E−01
MLP 1.08E+09 ± 1.12E+09 1.01E−06 2.80E+04 ± 1.73E+04 1.01E−06 1.19E−01 ± 7.52E−02 1.01E−06 2.76E+04 ± 1.74E+04 1.01E−06
SVR-l 8.86E+06 ± 0.00E+00 6.79E−03 2.98E+03 ± 0.00E+00 5.38E−03 1.23E−02 ± 0.00E+00 4.50E−03 2.85E+03 ± 0.00E+00 5.70E−03
SVR-p 2.75E+09 ± 0.00E+00 9.12E−07 5.24E+04 ± 0.00E+00 9.12E−07 2.23E−01 ± 0.00E+00 9.12E−07 5.17E+04 ± 0.00E+00 9.12E−07
SVR-r 7.57E+08 ± 0.00E+00 9.12E−07 2.75E+04 ± 0.00E+00 9.12E−07 1.18E−01 ± 0.00E+00 9.12E−07 2.74E+04 ± 0.00E+00 9.12E−07
SVR-s 4.08E+08 ± 0.00E+00 9.12E−07 2.02E+04 ± 0.00E+00 9.12E−07 8.69E−02 ± 0.00E+00 9.12E−07 2.01E+04 ± 0.00E+00 9.12E−07
LSTM 1.61E+07 ± 2.52E+07 5.97E−01 2.87E+03 ± 2.81E+03 6.13E−01 1.22E−02 ± 1.22E−02 5.41E−01 2.83E+03 ± 2.83E+03 5.41E−01
BiLSTM 4.89E+07 ± 4.46E+07 1.87E−04 5.92E+03 ± 3.73E+03 2.02E−04 2.55E−02 ± 1.62E−02 1.73E−04 5.91E+03 ± 3.74E+03 1.87E−04
GRU 3.21E+07 ± 1.62E+07 1.01E−06 5.49E+03 ± 1.39E+03 1.01E−06 2.36E−02 ± 6.02E−03 1.01E−06 5.48E+03 ± 1.39E+03 1.01E−06
EDNM 2.37E+08 ± 6.90E+08 8.59E−06 1.06E+04 ± 1.12E+04 7.82E−06 4.37E−02 ± 4.53E−02 1.03E−05 1.02E+04 ± 1.05E+04 1.03E−05
DNR-BP 1.53E+10 ± 5.03E+10 9.13E−07 6.54E+04 ± 1.05E+05 9.13E−07 2.82E−01 ± 4.53E−01 9.13E−07 6.53E+04 ± 1.05E+05 9.13E−07
DNR-SFSMS 7.08E+06 ± 7.79E+06 – 2.33E+03 ± 1.29E+03 – 9.49E−03 ± 5.60E−03 – 2.21E+03 ± 1.30E+03 –

Israel

Model MSE (Mean ± Std) p-value RMSE (Mean ± Std) p-value MAPE (Mean ± Std) p-value MAE (Mean ± Std) p-value

ENN 2.20E+10 ± 1.80E+10 1.01E−06 1.35E+05 ± 6.22E+04 1.01E−06 1.51E−01 ± 7.31E−02 1.12E−06 1.09E+05 ± 5.26E+04 1.12E−06
MLP 1.07E+11 ± 1.07E+11 9.13E−07 2.89E+05 ± 1.53E+05 9.13E−07 3.90E−01 ± 2.24E−01 9.13E−07 2.65E+05 ± 1.50E+05 9.13E−07
SVR-l 7.61E+09 ± 0.00E+00 9.13E−07 8.72E+04 ± 0.00E+00 9.13E−07 1.30E−01 ± 0.00E+00 9.13E−07 8.51E+04 ± 0.00E+00 9.13E−07
SVR-p 3.18E+12 ± 0.00E+00 9.13E−07 1.78E+06 ± 0.00E+00 9.13E−07 2.11E+00 ± 0.00E+00 9.13E−07 1.50E+06 ± 0.00E+00 9.13E−07
SVR-r 1.11E+11 ± 0.00E+00 9.13E−07 3.33E+05 ± 0.00E+00 9.13E−07 4.23E−01 ± 0.00E+00 9.13E−07 2.95E+05 ± 0.00E+00 9.13E−07
SVR-s 1.36E+13 ± 0.00E+00 9.13E−07 3.69E+06 ± 0.00E+00 9.13E−07 4.84E+00 ± 0.00E+00 9.13E−07 3.34E+06 ± 0.00E+00 9.13E−07
LSTM 3.11E+08 ± 2.39E+08 3.31E−03 1.53E+04 ± 8.71E+03 1.54E−02 2.38E−02 ± 1.41E−02 1.17E−03 1.49E+04 ± 9.02E+03 2.92E−03
BiLSTM 2.87E+08 ± 2.50E+08 1.46E−02 1.43E+04 ± 9.12E+03 4.79E−02 2.21E−02 ± 1.50E−02 6.41E−03 1.39E+04 ± 9.34E+03 1.01E−02
GRU 2.09E+08 ± 1.78E+08 5.66E−02 1.25E+04 ± 7.34E+03 2.00E−01 1.94E−02 ± 1.22E−02 1.46E−02 1.21E+04 ± 7.53E+03 2.79E−02
EDNM 8.59E+09 ± 1.75E+10 1.85E−06 6.62E+04 ± 6.48E+04 1.85E−06 8.34E−02 ± 8.14E−02 1.51E−06 5.79E+04 ± 5.70E+04 1.67E−06
DNR-BP 4.43E+10 ± 8.07E+10 1.01E−06 1.45E+05 ± 1.52E+05 1.01E−06 2.17E−01 ± 2.28E−01 1.12E−06 1.42E+05 ± 1.49E+05 1.01E−06
DNR-SFSMS 1.42E+08 ± 1.27E+08 – 1.09E+04 ± 4.78E+03 – 1.36E−02 ± 5.13E−03 – 9.13E+03 ± 3.80E+03 –
algorithm can search the global optimal solution more effectively,
and its searching ability is more stable. Moreover, most of the
p-values in the tables are less than 5%. According to the rules
of the nonparametric statistics test, we can determine that the
precision of DNR-SFSMS is significantly better than those of the
other algorithms.

In Fig. 12, the performance metrics are presented in the form
f bar charts. On each chart, we use a black dotted line to
ighlight the performance differences between DNR-SFSMS and
he other algorithms. From Fig. 12, we can intuitively observe
hat DNR-SFSMS yields the best results on all datasets. Through
urther observation, we find that the predictions are more accu-
ate for countries with more infections, that is, countries with
ore severe outbreaks such as India, than for countries with less
evere outbreaks. The situation is mainly reflected in the fact that
he MAPE values are smaller. We speculate that this is because,
or countries with mild outbreaks, the country has effectively
uppressed the transmission of the disease through some policies,
o it does not conform to the law of natural transmission of the
isease, resulting in a decline in the prediction accuracy of the
odel. Since MAPE is more of a reference than the other per-

ormance metrics for such large numerical prediction problems,
e employ box plots to show the results of MAPE in Fig. 13.
he box plots can help us visualize the detailed circumstance of
ach dataset and each algorithm in 30 runs. In the box plots, the
rdinate represents the MAPE value, and the rectangle represents

he range of the overall MAPE values of the algorithms in the

13
experiment. A rectangle with a large area denotes great fluctua-
tions and poor stability of the algorithm. In addition, the red plus
sign indicates the algorithm fell into a local optimum. The more
signs there are, the more times the experiment falls into a local
optimum. It should be noted that due to the nature of SVR-based
algorithms, the results of each run of all SVR-based algorithms are
the same, so they are represented as a line in box plots. Fig. 13
shows that DNR-SFSMS has almost the minimum rectangular area
on all datasets, the positions of the rectangles on the coordinate
axis are the lowest, and it has the least number of red plus signs.
These situations suggest that the forecasting precision of DNR in
COVID-19 disease trend prediction is superior to the forecasting
precision of other commonly used ML methods. In conclusion, the
above experimental results suggest that DNR-SFSMS can be used
as a competitive tool for COVID-19 trend prediction.

5. Conclusion

Since the outbreak of the novel COVID-19 pandemic, machine
learning techniques have played a vital role in pandemic pre-
vention, contact tracing, rapid screening and the development of
vaccines and drugs. In this study, a novel DNR approach is ap-
plied to forecast the transmission trend of COVID-19 pandemics.
The regression capability of DNR is enhanced by employing the
combination of the SMS algorithm and scale-free local search.
The SMS algorithm is a recently proposed evolutionary algo-
rithm with strong optimization ability, and the scale-free local
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earch can improve the quality of the population during evo-
ution. Since the COVID-19 pandemic dataset can be deemed a
ime series, Takens’s theorem is applied to the data to improve
he prediction accuracy. We utilize the time delay calculated
y the MI algorithm and the embedding dimensions calculated
ia the FNN algorithm to implement the PSR operation. Then,
he maximum Lyapunov exponent is calculated to determine the
haos of the reconstructed data, which affirms the availability of
he reconstructed data. To fairly evaluate the proposed method,
everal commonly used ML methods are employed as competi-
ors. The experimental results show that DNR-SFSMS is more
ompetitive than the other methods for forecasting the COVID-19
ransmission trend in terms of various evaluation metrics. DNR-
FSMS can be regarded as a powerful prediction approach. Our
uture research will focus on applying DNR-SFSMS to forecast the
ransmission of COVID-19 in more countries and simultaneously
alidate its forecast performance on other infectious diseases.
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