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Application of the Transcriptional 
Disease Signature (TDSs) to Screen 
Melanoma-Effective Compounds in 
a Small Fish Model
Yuan Lu1, William Boswell1, Mikki Boswell1, Barbara Klotz2,3, Susanne Kneitz2,3, 
Janine Regneri2,3, Markita Savage1, Cristina Mendoza1, John Postlethwait   5, 
Wesley C. Warren6, Manfred Schartl   2,3,4 & Ronald B. Walter1

Cell culture and protein target-based compound screening strategies, though broadly utilized in 
selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects 
and/or safety concerns until late in the drug developmental process. Phenotype screening using intact 
research animals is attractive because it can help identify small molecule candidate compounds that 
have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules 
were identified from phenotypic screening. However, phenotypic screening using rodent models is labor 
intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we 
have been developing gene expression disease profiles, termed the Transcriptional Disease Signature 
(TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that 
can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals 
may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of 
action. To establish proof of concept for this screening strategy, we employed a transgenic strain of 
a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver 
gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, 
melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, 
we established a screening system that employs the NanoString nCounter platform to quantify gene 
expression within custom sets of TDS gene targets that we had previously shown to exhibit differential 
transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression 
was identified using an internet-accessible custom-built data processing pipeline. The effect of a given 
drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS 
using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that 
target common signaling pathways that include proliferation, development, toxicity, immune function, 
metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for 
potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present 
the logistics of using medaka to screen compounds, as well as, the development of a user-friendly 
NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.

The cost of creating and bringing a single new drug to clinical use is estimated to be ≈$5 billion dollars. This 
high cost is due to the fact that 95% of experimental medicines ultimately fail in human trials due to poor effi-
cacy and/or safety concerns1. Late failure occurs because most current drug discovery pipelines focus on protein 
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targets thought to play a key role in disease etiology without consideration of collateral cellular, organ-level, 
or whole-body changes2. This target-based strategy (i.e., identifying substances that alter a specific biochemical 
activity in vitro) has the advantage that it is hypothesis driven, amenable to computational modeling, and is 
suitable for high-throughput screening of compound libraries, often coupled with cell culture. The number of 
innovative, FDA-approved medicines, however, has not increased commensurate with monetary investment and 
most potential compounds fail before approval3,4 and exhibit a correlation with a decreased reliance on pheno-
typic screens5,6.

In contrast to target based drug discovery, phenotypic screens have the advantage of not requiring prior 
understanding of the molecular mechanism of disease, and can therefore cast a broad net, far beyond our cur-
rent knowledge of disease etiology. A recent analysis of agents approved by the FDA between 1999 and 2008 
showed that among first-in-class small molecule drugs, 62% came from phenotypic screens and only 38% from 
target-based tactics7. The success of phenotypic screens compels a renewed emphasis on their development and 
use for screening potential therapeutic molecules. Although cell-based, target-based discovery assays have rapid 
throughput they do not adequately predict the compound’s absorption, distribution, metabolism, excretion and 
toxicity (ADMET). Alternatively, phenotypic screens that employ intact organisms have the great advantage of 
immediately uncovering ADMET problems, the step at which most potential drugs frequently fail7.

In spite of the advantages of using phenotypic screens with intact animal, this strategy is expensive given 
the cost of housing mammals at numbers required for such assays. However, the use of small aquarium fish can 
address this barrier for identifying potentially therapeutic drugs. Numerous studies have proven fish to be good 
vertebrate disease models and small fish models have been utilized to successfully identify drugs that are currently 
in clinical trials or already in the marketplace8–35. Unfortunately, current technologies generally limit fish screens 
to embryonic stages and restrict incubation times to a few days, while most human diseases may occur in fully 
developed individuals and often intensify with age. Moreover, chronic diseases, such as diabetes, heart disease, 
schizophrenia, and cancer require long-term studies and are thus not amenable to current embryo screening tac-
tics. Additionally, although sophisticated automated screening systems exist for certain disease models (e.g., bone 
mineralization disorders, neurological disorders, stress, amyotrophic lateral sclerosis, cardiovascular disease, 
mental illness)8,30,35–40, traditional phenotypic screens using fish embryos or juveniles require manual scoring of 
phenotypic changes. This time-consuming process limits throughput of this strategy. Therefore, with the goal of 
improving the drug development pipeline, we have proposed to improve phenotypic drug screening by a novel 
approach; (1) to utilize disease-related gene expression patterns or signatures – termed Transcriptional Disease 
Signatures, or TDSs – as a phenotype to be scored, and (2) to identify compounds that are able to shift gene the 
expression signature toward a different state as a first pass screen.

This proposed strategy has several advantages over other methods. First, aquarium fish models (i.e., medaka, 
zebrafish) are small (i.e., ~10 mm at 4 weeks of age), allowing them to fit in a single well of multi-well plates, which 
allows convenient housing of large numbers of animals required for mid- to high-throughput screening, and 
fit with automated sample handling system. Second, the cost to maintain aquaria fish species is much less than 
to maintain rodents. Third, compounds to be tested can be applied directly to the water that bathes the animal, 
allowing one to assess bioavailability with properly labeled compound once a hit is found. Transcriptional changes 
are likely to represent some of the earliest phenotypes altered by drugs, occurring well before–and in fact, usu-
ally causing–the onset of later visible phenotypes. Therefore, identifying compounds capable of modulating the 
TDS phenotype may lead to promising drug candidates for further testing and clinical trials. Fourth, currently, 
it is very difficult to screen animals at different life stages, however, If TDS screening is found valuable, it could 
be adapted to any age of the animal, with an acceptable decline in throughput simply due to size of later stage 
animals.

To establish the TDS-based screening strategy, resolve logistics, and construct data analysis tools, we utilized 
a transgenic melanoma medaka model to institute a drug-screening pipeline. The medaka melanoma model 
expresses the melanoma driver transgene termed the Xiphophorus Melanoma Receptor Kinase (xmrk), that is reg-
ulated by pigment cell-specific mitf (melanogenesis associated transcription factor) promoter41,42. The xmrk onco-
gene is a mutant copy of fish Epidermal Growth Factor Receptor (EGFR) identified in the platyfish Xiphophorus 
maculatus43; xmrk overexpression in transgenic medaka leads to tumor development with 100% penetrance. The 
oncogenic transgene drives the development of pigment cell lesions and exhibits genetic background-specific 
tumor types when incorporated into different lines of medaka. For example, the xmrk transgene results in cutane-
ous exophytic xanthoerythrophoroma in Cab line, invasive extracutaneous melanotic melanoma, and exophytic 
xanthoerythrophoroma in Carbio line, uveal melanoma in albino i-3 line, and extracutatneous invasive melanotic 
melanoma in HB32C line41,42. Expression of xmrk drives several proliferation pathways that are also involved in 
human cancers44–48. Genes regulated by xmrk in medaka and Xiphophorus melanoma are implicated in networks 
that also characterize human melanoma, so the xmrk-associated gene expression profile represents the human 
melanoma transcriptional phenotype41,49–52. Additionally, fish and human melanocytes both appear in the epi-
dermis, while mouse melanocytes occupy hair follicles49. These attributes make xmrk-transgenic medaka a good 
model to screen potential anti-melanoma compounds and to establish the logistics of using the TDS concept as 
a screening tool.

In this study, we establish a TDS pipeline using whole transcriptome profiling of wild-type (wt) and 
xmrk-transgenic (tg-mel) medaka to identify target genes, construct NanoString probe sets targeting an identified 
TDS genes, and test two compounds to establish the feasibility of this drug screening approach (Fig. 1).
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Materials and Methods
Fish Utilized.  Three-week-old wild-type (wt) and xmrk-transgenic (tg-mel), also designated tg(mitf:x-
mrk), from the Cab strain [for a detailed description of genotypes and phenotypes see42] were raised in the 
Xiphophorus Genetic Stock Center. For TDS testing, both tg-mel and wt medaka were euthanized for whole-
fish RNA isolation in accordance with an approved Institutional Animal Care and Use Committee (IACUC) 
protocol (IACUC20173294956). Texas State University has an Animal Welfare Assurance on file with the Office 
of Laboratory Animal Welfare (OLAW), National Institute of Health. The assurance number is #A4147.01. For 
NanoString nCounter confirmation of TDS expression and compound screening, tg-mel and wt medaka were 
individually maintained in 96-well-plates (one fish/well) for 24 hrs prior to drug treatment. Fish were fed daily 
with freshly hatched brine shrimp (~10 brine shrimp/fish). The water, along with test compounds, was changed 
daily.

Small molecule treatment.  Trametinib (GSK1120212) was purchased from Selleckchem (Catalog Number 
S2673) and Cisplatin was purchased from Calbiochem (Catalog Number 232120). Trametinib was dissolved in 
DMSO and stored in −20 °C. Cisplatin powder was stored at 4 °C. 0.5 mg/mL (1.67 mM) Cisplatin stock solution 
was freshly made by dissolving in 0.9%(w/v) NaCl solution for each day of treatment.

In Drug Trial 1, five tg-mel and four wt medaka were used as vehicle controls. Two tg-mel medaka were treated 
with 25 nM Trametinib; Three tg-mel medaka were treated with 50 µM Cisplatin. Treatments lasted three days 
with compound and water refreshed daily. In Drug Trial 2, three tg-mel were used as vehicle controls, three tg-mel 
were treated with 25 nM Trametinib, and three tg-mel were treated with 50 µM for three days.

Design of Transcriptional Disease Signatures.  To establish a TDS target gene set for compound screen-
ing, we first performed transcriptome profiling of both wt and tg-mel medaka fish. Ten intact wt and 10 tg-mel 
medaka fish at age between 3–4 weeks, with body length of around 10 mm were anesthetized by placing them 
on ice, sacrificed, and then immediately placed in 1.5 mL microcentrifuge tubes containing 300 µL TRI Reagent 
(Sigma Inc., St. Louis, MO, USA) followed by flash freezing in an ethanol dry ice bath. Whole fish were homog-
enized with a tissue homogenizer while still frozen in TRI Reagent. After the initial homogenization, 300 µL of 
fresh TRI Reagent and 120 µL of chloroform were added to the 1.5 mL microcentrifuge tube and shaken vig-
orously for 15 sec. Phase separation was performed by centrifugation (12,000 × g for 5 min at 4 °C). The aque-
ous phase was then added to a new 1.5 mL microcentrifuge tube and an additional chloroform extraction was 
performed (300 µL TRI Reagent, 60 µL chloroform). Following extraction, the nucleic acids were precipitated 
with 500 µL of 70% EtOH and transferred to a Qiagen RNeasy mini spin column. DNase treatment was per-
formed on-column for 15 min at 25 °C, and RNA samples were subsequently eluted with 100 µL RNase-free water. 
RNA concentrations were quantified with a Qubit 2.0 fluorometer (Life Technologies, Grand Island, NY, USA), 
and RNA quality was assessed based on RNA integrity (RIN) score with an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA).

All samples sequenced were required to have RNA Integrity (RIN) score ≥ 8.0. Individual sequencing libraries 
were constructed using the Illumina TruSeq mRNA Library Prep Kit with polyA selection, and libraries were 
sequenced (100 bp, paired-end [PE] reads) on the Illumina HiSeq 2000 platform. RNA sequencing and raw reads 
filtering was performed as previously described53–57. Sequencing adaptors were trimmed from raw reads, and 

Figure 1.  TDS development pipeline and drug screening flow chart. The proposed compound-screening 
pipeline includes three phases: the identification of Transcriptional Disease Signature (TDS) genes, the 
development of data analyses tools, and the testing of the established screening pipeline using compounds that 
are commonly used for melanoma therapy.
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subsequent short sequencing reads were filtered using a custom Perl script58 that removed low scoring sections of 
each read while preserving the longest remaining fragment (for statistics of RNA-Seq, Table S1).

To take advantage of different gene expression profiling pipelines, in order to increase the ability to identify 
comprehensive Differentially Expressed Genes (DEGs) between the tg-mel and wt medaka, processed sequencing 
reads were mapped to the medaka reference genome (Ensembl release 85, ftp://ftp.ensembl.org/pub/release-85/
fasta/oryzias_latipes/dna/) using Tophat259 or STAR60. The percent of reads mapped and level of coverage were 
calculated by dividing total length of sequencing reads by the total length of all exons (Table S1). Gene expression 
was quantified using FeatureCounts following Tophat261 or RSEM after alignment using the STAR aligner62. 
DEGs between tg-mel and wt medaka were identified using R/Bioconductor edgeR package63,64 or DESeq 265. The 
Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curve was calculated to assess true 
and false positive rates for each gene tested by the R package pROC. A set of statistical thresholds was applied 
to define TDS: log2Fold Change (log2FC) ≥ 0.7 or ≤−0.7, and False Discovery Rate (FDR) ≤ 0.05; AUC ≥ 0.7. A 
total of 222 genes met these criteria and were designated as the preliminary TDS that are subject to validation 
using further Nanostring analyses. In addition to these genes, 29 genes that were expressed at a variety of levels 
and did not show differential expression between tg-mel and wt medaka were manually selected as housekeeper 
genes. Also, 108 genes were included as TDS to represent several functional categories related to the compounds 
to be tested. These genes were selected to represent several different pathways: cell proliferation, circadian reg-
ulation, DNA repair, and common toxicology related genes (For final probe set details, see Table S3). A capture 
probe and a reporter probe were designed to quantify one gene of interest. Specifically, a capture probe contained 
two portions of specific sequence. One was complementary to a unique sequence on the targeted transcript, and 
the other was complementary to a reporter probe. Once a capture probe was bound to the targeted transcript, and 
further bound by a reporter probe, the probe-transcript complex was fixed on a silicone surface. The quantifica-
tion of each transcript was made possible by counting the light signal generated by a series of fluorophores that 
specifically coded each transcript and attached to the reporter probe. Design and production of the reporter and 
capture probes was performed by the NanoString bioinformatics group (NanoString, Seattle, WA). Transcript 
sequences corresponding to each gene target were downloaded from Ensembl (www.ensembl.org) as templates 
for probe design. Each probe was 100 nt long, with a melting temperature between 73 and 91 °C and did not form 
secondary structures that could lead to assay inhibition. Probes were also tested in silico to avoid cross hybridi-
zation to other loci.

To validate the TDS gene expression data, and finalize selection of TDS genes, twenty 3-week old wt and 
twenty 3-week old tg-mel medaka were placed in individual wells of a 96-well plate (one fish per well), maintained 
for a week with daily feeding of brine shrimp and water changes, and finally sacrificed at 4-weeks old. As a repeat, 
another fifteen 3- to 4-week-old wt and fifteen age matched tg-mel were also sacrificed for TDS gene expression 
assessment. Total RNA from whole fish was isolated and TDS gene expression was assayed using the NanoString 
nCounter system. Log2FC, and AUC values of ROC curve of each TDS, were calculated in each test. Of the 
RNA-Seq identified 222 TDS genes, 97 showed consistent direction of Log2FC between tg-mel and wt in two sep-
arate tests, and AUC > 0.7 in at least one test. These 97 genes were weighted differently to reflect their expression 
pattern within the tg-mel and wt medaka populations, and were forwarded within the TDS for further testing. 
Twenty-three genes that have ROC curve AUC values > 0.8 in each of the two tests were given a weight of two. 
For the rest of the 74 genes, their weights were determined by the AUC values of the ROC curves. Twenty-one 
genes were weighted between 0.9 and 1, 33 genes were weighted between 0.8 and 0.9, and 20 genes were weighted 
between 0.7 and 0.8.

Correlation and Principle Component Analysis.  Spearman ranking correlation was performed using 
R programming correlation function. Principle Component Analysis (PCA) was performed using the R package 
prcomp, and normalized RNA-Seq gene expression read counts, or nCoutner TDS probe counts were used in 
Spearman ranking correlation and PCA. A heatmap of correlation coefficients and dendrograms were plotted 
using the gplots R package.

Construction of the data analysis pipeline.  To facilitate the processing of large quantities of data, 
we constructed a data analysis pipeline to normalize samples from different batches, identify differentially 
expressed genes, and evaluate compound effects on changing the TDS expression. The pipeline included three 
internet-accessible user interfaces (UIs) hosted at the Xiphophorus Genetic Stock Center (XGSC). The UIs can be 
launched directly through the XGSC website (www.xiphophorus.txstate.edu/TDSproject.html), or using com-
mand line through R interface. The latter method will download the UI package through Github and configure 
local workstation as a server to host the UI. For detailed description of the UI usage, please see: www.xiphopho-
rus.txstate.edu/TDSproject.html.

The normalization user interface, called “TDSNormalization” first assessed NanoString nCounter hybridiza-
tion efficiency by calculating the mean of built-in positive controls (i.e., pre-loaded short oligonucleotides) that 
generated fragment counts independent of sample RNA, and by normalizing gene expression levels targeted by 
custom probes by multiplying a normalization factor that is inversely related to the hybridization efficiency. This 
normalization step removed cartridge-specific hybridization differences among assays performed on different 
days, and therefore allowed comparison of data generated over the experimental time line. Next, the normaliza-
tion user interface calculated the geometric mean of the expression in housekeeper genes and further normalized 
gene expression counts by multiplying a sample-specific scaling factor that removes effects caused by differences 
in total RNA input. Subsequently, background noise was calculated by the mean (μ) and standard deviation (σ) 
of built-in negative control probes. Sample-specific background noise was determined to be μ + 2 × σ and was 
subtracted from expression counts generated from custom probes.

http://www.ensembl.org
http://www.xiphophorus.txstate.edu/TDSproject.html
http://www.xiphophorus.txstate.edu/TDSproject.html
http://www.xiphophorus.txstate.edu/TDSproject.html


www.nature.com/scientificreports/

5Scientific RePorTS |           (2019) 9:530  | DOI:10.1038/s41598-018-36656-x

The Differentially Expressed Gene (DEG) Identification user interface, called “DEGAnalysis”, took normalized 
gene expression counts as input, and calculated effective size using mean and standard deviation of user-defined 
samples. The DEG Identification user interface subsequently calculated Log2Fold Change (Log2FC), and per-
formed Welch two-sample t-test (two-sided) and calculated p-value. These statistical parameters are included in 
a UI-generated gene expression report.

Next, a Drug Score user interface, named “TDSScore”, calculates two parameters that evaluate the effect of 
tested compounds on TDS expression phenotypes. Activation Z-score is used to determine whether a compound 
worked as an activator of the disease-like state (i.e., changes TDS expression pattern to a disease status) or a 
repressor of the disease-like state (i.e., shifts TDS expression towards a wild-type status) by counting the number 
of genes that show consistent and contradicting expression changes compared to a list of reference genes (i.e., 
TDS). Briefly, we took a statistical approach by defining a Z-score that determined whether a compound has 
significantly more “activated” TDS than “repressed” TDS (Z > 0) or vice versa (Z < 0). Here, significance means 
that we rejected the hypothesis that the overall effect of the compound on TDS expression is random with equal 
probability. The distribution underlying this null hypothesis is defined by a random variable:

∈ −x { 1, 1}i

where +1 corresponded to a consistent state and −1 to a contradicting state, and both values were chosen with 
probability 1/2. The index i ran from 1 to N with N being the number of TDS. Let:

∑= = −+ −x x N Ni i

where N+/− was the number of “activated”/ “inhibited” TDS and N+ + N− = N. The variance of xi is σ2 = 1, so the 
variance of x was given by:

σ σ= =N Nx
2 2

and the Z-score statistic (with mean equal to zero and variance equal to 1) is defined by:

∑σ= = = −+ −Z x x N N N N/ / ( )/x i i

A Z-score greater than 2 or smaller than −2 is considered significant.
Because Z-score statistics did not take into account the degree of each probe’s differential expression, the 

Kolmogorov-Smirnov statistic (Ks_drug score) was also utilized in the TDSScore UI, to estimate and rank the 
effectiveness of compounds in “activating” or “repressing” TDS expression with consideration of which TDS 
genes a compound modulates66–69. For each compound treatment, the Kolmogorov-Smirnov statistic is computed 
for both up-regulated genes and down-regulated genes in the TDS, giving ksi

up and ksi
down. Let n be the number of 

the TDS and t be the number of compound-related differentially expressed genes. The UI first ordered all n TDS 
by the extent of their expression change after drug treatment, then constructed a vector V of the position (1… n) 
of each differentially expressed gene in the ordered list of all TDS, and next sorted these components in ascending 
order such that V(j) was the position of differentially expressed gene j, where j = 1, 2, …, t. The UI finally com-
puted the following two values:
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If a > b, set ks = a. If b > a, set ks = −b. The up scores and down scores were ksup and ksdown, respectively. These 
values were reported in the results table as “up” and “down”, respectively. The Ks_drug score S is set to zero where 
ksup and ksdown have the same sign. Otherwise, set S to be ksup−ksdown.

Automated RNA isolation and NanoString assay.  Medaka fish were sacrificed by placing the whole 
fish directly in 750 μL of QIAzol (Qiagen) in 2.0 mL collection tubes designed for automated (i.e., 96 well) tis-
sue homogenization and RNA isolation (Qiagen, TissueLyser II). Whole fish were homogenized using the 
TissueLyser II (Qiagen) facilitated by stainless beads (Qiagen) for 10 min at 25 hz. RNA isolation was subse-
quently performed using a QIAcube HT (Qiagen) automated bio-sample isolation system. The isolation system 
is equipped with a robotic arm with 8 pipettes. Each pipette is able to pick and eject pipette tips, self-clean, and 
transfer liquids between wells/columns, or between master reservoirs and wells/columns in standard 96-well plate 
formats (Fig. S1). Each sample was independently maintained throughout the isolation process. Briefly, 150 µL of 
chloroform was added to each isolation tube and the samples were vigorously shaken for 15 sec and then phases 
partitioned by centrifugation (12,000 × g for 15 min at 4 °C). The aqueous phase containing nucleic acids was 
transferred to a new sample tube by a rack of automated pipettors. After extraction, nucleic acids were precipi-
tated with 500 µL 70% EtOH. RNA was then purified using a Qiagen RNeasy mini RNA kit (96-well plate) fol-
lowing the manufacturer’s protocol. RNA was quantified with a Qubit 2.0 fluorometer (Life Technologies, Grand 
Island, NY, USA). Concentrations of RNA samples were adjusted to 100 ng/μL with RNase-free water (Qiagen).

NanoString hybridization of RNA samples with the TDS panel was initiated by mixing 500 ng of RNA (100 ng/
µL) with the custom designed NanoString capture and reporter probe sets. Samples were incubated for 12 hrs 
at 65 °C and then processed by the NanoString Prep Station (NanoString Technologies, Seattle, WA, USA). 
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The NanoString cartridge containing the hybridized samples was immediately evaluated with the NanoString 
nCounter based on unique color-coded signals. Probe counts were quantified through direct counting with 
the nCounter Digital Analyzer. Probe counts generated from individual samples were downloaded from the 
nCounter system and were combined into a count table using a custom R script. Raw probe reads were normal-
ized to built-in positive controls and processed (i.e., normalization to housekeeper genes, removal of background 
noise) using the normalization UI for further analyses.

At the end of each drug trial, RNA was isolated from whole fish, and gene expression was assayed using 
NanoString nCounter platform as described above. Raw gene expression counts were normalized using the 
Normalization UI, and DEGs were analyzed using DEG Identification UI. NanoString sensitivity has been 
detected accurately and reproducibly down to a 20% change70, therefore DEGs were identified by comparing 
tg-mel to wt medaka, compound treated wt to control wt medaka, or compound-treated tg-mel to control tg-mel 
medaka (log2FC ≥ 0.6 or ≤ −0.6, p-value ≤ 0.05). Drug Score UI was used to determine the compound effect on 
shifting TDS gene expression.

Functional analyses of differentially expressed genes.  Human orthologs of medaka genes were iden-
tified using the Ensembl database with the R Biomart package. Signal pathway(s) and functional categories were 
retrieved from Ingenuity Pathway Analyses (IPA) software (Qiagen, Redwood City, CA). Multiple representations 
of pathway and functional categories due to several human-medaka homolog genes pairs were combined.

Results
Establishing the Transcriptional Disease Signature.  Gene expression profiling in ten wt and ten tg-
mel medaka and differential gene expression analyses identified 222 DEGs between wt and tg-mel medaka. These 
genes composed our TDS panel to be tested on the NanoString nCounter and represented putative transcriptional 
phenotype differences between wt and tg-mel medaka (Table S2). As proof of concept, further validation of this 
preliminary TDS gene panel was carried out. First, our PCA using the preliminary TDS genes clearly segre-
gated the wt and tg-mel medaka fish cohort (Fig. 2a). To control for the amount of input RNA in the subsequent 
Nanostring nCounter assay, we show 29 genes (housekeeping classification) did not show significant differential 
expression over all wt and tg-mel medaka (Fig. 2b). Additionally, we included 108 genes in the preliminary TDS 
panel that are involved in liver toxicity, DNA repair, detoxification, cell cycle regulation, and pre-proliferation 
pathways (Table S3), to simultaneously measure their responses to the compounds tested.

After having constructed the custom NanoString panel and synthesized target gene-specific probes, we per-
formed targeted transcript counting on two sets of independent medaka samples, which included both tg-mel 
and wt medaka, aiming to validate the TDS genes using an independent assay, and to limit the TDS to a set of 
reliable genes that are capable of distinguishing transcriptional phenotypes using Nanostring platform. A total 
of 97 of the 222 preliminary TDS gene targets showed the same direction of differential expression between the 
two Nanostring tests, with ROC curve AUC value in at least one test larger than 0.7, and were determined to be 
the final TDS for compound screening (Fig. 3a). The final Nanostring panel consists of 234 probes, including 
97 probes that target the TDS, 29 housekeeping genes, and 108 genes that belong to various selected pathways 
considered to be important to screening (Table S3). As a quality control of TDS probes, we normalized and pro-
cessed the probe counts using TDS Normalization UI. Subsequently the gene expression profiles established by 
NanoString were compared to the expression profile assessed by RNA-Seq that were performed on independent 
animals. Ranking correlation showed that wt and tg-mel samples clustered separately independent of technology 
used to assess gene expression levels (Fig. 3b).

Figure 2.  TDS genes selected from gene expression profiling of tg-mel medaka. (a) Principle Components 
Analysis shows that TDS genes account for 57% of variance between tg-mel and wt. Tg-mel and wt samples can 
be clearly separated based on the expression profile of TDS genes. (b) Geometric means of housekeeping genes 
in each sample are similar in expression level between wt and tg-mel medaka.
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Evaluation of the Transcriptional Disease Signature.  Having established that TDS genes were capable 
of distinguishing tg-mel and wt medaka, we next evaluated the effectiveness of using Z-score and Ks_drug score to 
quantify the transcriptional phenotype in order to use this to evaluate drug treatment effects. Here we proposed 
to 1) test whether Z-score and Ks_drug score algorithms assign positive scores (i.e., consistent with TDS reference 
expression pattern) to diseased animals; 2) estimate the false discovery rate of using the scoring algorithms.

To fully represent TDS relative expression in known diseased to healthy individuals, we calculated Log2FC 
values of each TDS gene between each tg-mel to each wt medaka, and acquired 400 lists of Log2FC values of TDS 

Figure 3.  Gene expression profiling of TDS between RNA-Seq and nCounter. (a) Of 222 genes identified as 
TDS by RNA-Seq, 97 showed a consistent direction of differential expression between tg-mel and wt in two 
separate tests. These 97 genes were weighted differently to reflect their expression patterns within the tg-mel 
and wt medaka populations and were retained as TDS genes for further test. Twenty three of these 97 genes 
were given a weight of two because their AUC values of ROC curve in each of the two tests were above 0.8. 
Weights of the remaining 74 genes were determined by the AUC values of the ROC curves. (b) Spearman 
ranking correlation analysis was performed on RNA-Seq data for ten tg-mel fish and ten wt individuals and 
two independent NanoString nCounter assessed medaka samples (a total of 35 wt and 35 tg-mel medaka). 
Genotypes (i.e., tg-mel or wt) clustered together independent of methodology. (c–f) The TDS gene expression 
pattern itself (i.e., Reference TDS) serves as a standard to calculate the TDS expression pattern; a reversed 
pattern of Reference TDS simulates a compound that can make each TDS gene return to a non-diseased 
expression level (i.e., Model compound). The TDS expression profile of each of 20 tg-mel individuals was 
compared to that of each of 20 wt medaka, resulting in 400 possible comparisons. Using the Log2FC values 
generated in these 400 comparisons, 400 incidences were simulated by randomly choosing Log2FC values to 
estimate the false positive and false negative rate of Z-score and Ks_drug score statistics. (c) Weighted TDS 
activation Z-scores were calculated for the Reference TDS, model compounds, 400 simulated datasets and 400 
TDS expression patterns. (d) A Z-score of two resulted in 0% false negatives and 5% false positives in identifying 
TDS activation status. (e) The Ks_drug score was calculated for the Reference TDS, model compounds, 400 
simulated datasets and 400 TDS expression patterns. (f) A Ks_drug score of 0.27 resulted in 0% false negatives 
and 5% false positives in identifying TDS activation pattern.
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genes. These lists of values represent all possible TDS relative expression patterns from a population of 20 wt 
and 20 tg-mel medaka. Each list of the values was subsequently used to calculate a Z-score and a Ks_drug score. 
These lists of values resulted in a mean Z-score of 6.9 (Fig. 3c), and a mean Ks_drug score of 0.7 (Fig. 3e). Using 
the Log2FC value matrix, we have also created 400 lists of values by randomly selecting Log2FC values to repre-
sent scenarios where no diseased individuals are present in dataset, or where treatment with a drug did not lead 
to directional changes of TDS expression. These second data matrices were used to assess possible Z-score and 
Ks_drug scores from noise. The 400 lists containing randomized Log2FC values resulted in a mean Z-score of 0, 
so did the Ks_drug score (Fig. 3c,e).

Next we used the distribution of Z-scores and Ks_drugs score, calculated as detailed above, to estimate false 
positive rate. Randomized data only had a 5% chance to reach a Z-score of 2, or Ks_drug score of 0.27 (Fig. 3d,f). 
On the other hand, 100% of Z-scores and Ks_drug scores calculated from the data matrix that contained tg-mel/wt 
TDS Log2FC led to values larger than 2 or 0.27 respectively (Fig. 3d,f). Therefore, we used |Z-score| ≥ 2 and 
|Ks_drug score| ≥ 0.27 as thresholds to determine if a drug treatment led to a transcriptional phenotypic change.

Small Molecule Treatment and Effect.  After establishment of the TDS panel, next we examined whether 
compound altered gene expression pattern can be captured by the screening system. Because Trametinib and 
Cisplatin are used to treat melanoma, we selected them to test the effectiveness of the TDS-based pipeline for 
screening compounds. Trametinib is an inhibitor of MEK1 and MEK271,72, which are involved in the Ras/Raf/
MEK/ERK(MAPK) signal transduction cascade. Inhibiting the signaling cascade with MEK1/2 inhibitors leads 
to clinical benefits for treatment of cancers with dysregulation of this pathway. Expression of xmrk activates 
the MAPK pathway and drives the dedifferentiation of melanocytes44. Thus, Trametinib was used in this study 
as a control compound targeting a direct downstream effector of the xmrk transgene. Cisplatin is a broadly 
used chemotherapy agent in several types of cancer, including melanoma73,74. Its mechanism of action involves 
inter-strand DNA crosslinking, induction of DNA repair, interference with DNA replication, and initiation of 
apoptosis. Cisplatin was included in the pilot study to test whether the TDS-screening strategy can identify this 
compound as a potent anti-cancer agent.

A total of eight 3-week-old tg-mel medaka (five in trial 1; three in trial 2) were used as vehicle controls for 
Trametinib and Cisplatin treatment. Five (two in trial 1; three in trial 2) age-matching tg-mel medaka were treated 
with 25 nM Trametinib (Fig. 4a). Six 3-week-old tg-mel medaka (3 in trial 1; 3 in trial 2) were treated with 50 µM 
Cisplatin respectively for three days (Fig. 4b). Drug scoring calculations resulted in TDS activation Z-scores of 
−3.00, and Ks_drug score of −0.90 for 25 nM Trametinib treatments (Fig. 4a). Cisplatin at 50 µM concentration 
resulted in TDS activation Z-score of −4.01, and Ks_drug score of −1.19 (Fig. 4b). Twenty-five nM Trametinib 
treatments altered the expression of six genes (apoda.2, bhmt, rhcgb, frrs1.2, lymsd1, vmp1; Fig. 4a). Treatments 
with 50 µM Cisplatin led to differential expression of 3 TDS genes in the tg-mel medaka (Fig. 4b). Some of the 
TDS genes that exhibited transcriptional response to these drug treatments serve as a proliferation markers in the 
mouse melanoma model (apoda.2), as well as, early stage colorectal cancer, metastasis of breast cancer (olfm4), 
prognostic indicators in human hepatocellular carcinoma (bhmt), regulators of cancer cell migration and apopto-
sis (rgcgb), or directly involved in pancreatic cancer (vmp1)75–82. These observations suggest that TDS expression 
patterns may be applied to screens in other animal modes and human disease.

Discussion
Among molecular disease markers, such as gene expression, protein expression, patterns of DNA methylation, 
and metabolite profiles, gene expression is the most broadly used marker to measure gene activity due avail-
ability of cost-effectiveness of methods that assess levels of RNA. Additionally, transcript levels, compared to 
other parameters, is a direct reflection of genome status. Using gene expression to study disease mechanisms 
and applying disease-specific gene expression markers to identify potential treatment compounds has received 
long-standing interest. For example, Hughes et al. demonstrated that functions of small molecules can be 
explained by a collection of gene expression signatures83. Most strategies to capitalize on the relationship between 
gene expression and disease have utilized in vitro systems because experimentation with intact animals, especially 
mammalian experimental models, is expensive84. Coupling transcriptional phenotype changes with assessment 
in intact animals to select promising compounds for potential therapies has not been widely used on a mid- to 
high-throughput scale. This screening strategy, however, once established, can become a useful additional com-
ponent in the drug development pipeline, as a step between target, cell-culture based screening strategies, and 
mammalian model-based preclinical tests. The TDS screening system detailed herein serves as a first step toward 
combining the advantages of both in vitro target-based screening and in vivo phenotypical screening.

This study aims to establish the logistics of TDS-based screening system. We used a transgenic medaka mel-
anoma (tg-mel) model as an example, to identify gene expression changes, or TDS, that represented a diseased 
status, and known anti-melanoma agents as test compounds to examine whether gene expression change by drug 
treatment can be captured using the proposed system. Schartl et al. established the tg-mel medaka by expressing 
the fish oncogene xmrk under mitf control for expression in medaka pigment cells42. Previous expression profiling 
on wt and tg-mel medaka showed differential expression of 338 genes that have human homologues85. Forty-one 
of these 338 genes matched human genes previously shown to contain putative deleterious variants in human 
melanoma samples. A detailed canonical pathway evaluation showed significant enrichment for 50 diverse path-
ways, including melanocyte development and pigmentation, leukocyte signaling and antigen pattern recognition. 
The similarity between tg-mel and human melanoma renders tg-mel medaka a superb transcriptional representa-
tion of human melanoma49,52,85.

We established the medaka melanoma TDS gene set by identifying the most representative genes differentially 
expressed between wt and melanoma-bearing tg-mel medaka using RNA-Seq based transcriptome profiling. One 
common observation, especially when using animal-based samples, is the variation in signal readout among 
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different individuals. The sources of gene expression variance are likely due to environment factors, genetic back-
ground (e.g., eQTLs), or stochastic gene expression86. In our experience, although we observed reproducible 
differential expression of TDS genes in different datasets, we also observed that not all tg-mel medaka showed the 
same over-expression/under-expression pattern for all TDS genes. Instead of limiting the transcriptional pheno-
type to only a handful of genes that show absolute expression consistency among sample populations, we weighted 
each gene’s contribution to the overall phenotype by the likelihood that a gene target would show a differential 
expression pattern in diseased individuals. This way, when a compound appears to regulate a TDS gene, a poten-
tially therapeutic compound’s effect is also weighted by how prevalent the given gene is disease-representative 
in the diseased population. Incorporating the weighting procedure in the screening system has the advantage of 
allowing the identification of compounds that may be effective in modulating disease subtypes and also allows the 
TDS to represent a large number of distinct cellular pathways.

To evaluate the reliability of the TDS panel, transcript counts generated by NanoString nCounter were com-
pared to differential expression in RNA-Seq experiments. The clustering of the NanoString nCounter-generated 

Figure 4.  Evaluations of Trametinib and Cisplatin in TDS expression. Trametinib and Cisplatin were used 
to test the TDS screening system. In each plot, differential expression of TDS genes between tg-mel and wt 
medaka were plotted in ascending order of TDS Log2FC values (black dots). Gene expression changes after 
drug treatments were calculated by comparing the gene expression of drug-treated tg-mel to vehicle-treated 
tg-mel. Log2FCs by drug were plotted as open red dots in the order of reference TDS gene expression. Solid 
red dots represent statistically significant (p-value < 0.05; |Log2FC| ≥ 0.6) differentially expressed genes by 
drug treatment between drug-treated tg-mel fish and control individuals tg-mel. Differentially expressed genes 
that belong to reference pathways and functions are plotted in the bar graph. Genes are grouped in functions 
and plotted in ascending order of Log2FC by drug treatment. (a) Of the 97 TDS genes representing the 
transcriptional phenotypic difference between tg-mel and wt medaka, 25 nM Trametinib altered the expression 
of six TDS genes, and 13 genes belonged to reference functional categories. Drug scoring calculation resulted 
in a TDS activation Z-score of −3.00, and a Ks_drug score of −0.9. Eight control samples consisted of five 
control samples from trial 1, and 3 from trial 2; five drug-treated samples consisted of two samples from trial 1 
and three from trial 2. (b) 50 µM Cisplatin treatment led to differential expression of three TDS genes, and nine 
genes belonged to reference functional categories in tg-mel medaka. Cisplatin treatments resulted in a TDS 
activation Z-score of −4.01, and Ks_drug score of −1.19. Eight control samples consisted of five control samples 
from trial 1, and three samples from trial 2; six drug-treated samples consisted of three samples from trial 1 and 
three samples from trial 2.
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TDS profile and the RNA-Seq-generated TDS profile from wt and tg-mel medaka, suggests that TDS genes can 
identify transcriptome states that differentiate medaka, with or without the xmrk transgene (Fig. 3b). This obser-
vation supports the use of gene expression signatures and direct transcript quantification from intact animals. 
Z-score and Kolmogorov-Smirnov (Ks) statistics were shown capable of identifying disease-associated transcrip-
tional phenotypes given levels of gene expression variation displayed by medaka test populations, with a false 
discovery rate of 5% (Fig. 3).

The analysis of NanoString data requires a large amount of command line input and installation of a num-
ber of software packages. To streamline data analysis and facilitate the application of a pipeline for bench-top 
scientists, we developed a software suite that performs routine normalization, differential expression analysis, 
and calculation of activation Z-score and Ks_drug score. The pipeline is accessible through XGSC website, or 
locally by R interface through running R scripts stored in Github (For details: see www.xiphophorus.txstate.edu/
TDSproject.html). Normalization, DEG identification, and Drug-score calculation were all performed using the 
UI, thus supporting its feasibility within this new phenotypic screening pipeline.

To further test the TDS screening system, we performed a pilot study aiming to determine: 1) whether the 
TDS screening pipeline can identify gene expression changes caused by treatments with putative therapeutic com-
pounds; and 2) whether anti-cancer compounds that are used in clinical applications show promising therapeutic 
effect in an intact animal. Two compounds, Trametinib and Cisplatin, are commonly used to treat melanoma 
patients. Given the xmrk oncogene is reported to suppress differentiation of mouse melanocytes by maintaining 
MAPK activation44 we expected Trametinib, as a MEK1/2 inhibitor, to repress some TDS genes associated with 
MAPK signaling, because MEK1/2 are closely related and regulate the Ras/Raf/MEK/ERK signaling cascade. 
We also anticipate some of our TDS genes belong to common carcinogenesis pathways and that toxic responses 
may show altered treatment responses. Although these genes do not necessarily represent transcriptional differ-
ences between normal and diseased individuals, they can be used to test potential compound activity on specific 
signaling pathways, and to roughly evaluate toxicity of a tested compound. Including these gene targets in the 
TDS enhances the output derived from the TDS screening strategy. Expression changes in TDS genes after drug 
treatment are directly used to test whether compounds can alter disease-associated transcriptional phenotypes. 
The presence of DEGs after drug treatment, and repressed TDS expression pattern showed that both expectations 
were met. Additionally, the transcriptional change of genes targeting reference pathways provides information 
on how a given compound affects various cellular processes. This information can help determine the potential 
usage of a compound in other disease models, evaluate side effects, and characterize molecular mechanisms of 
action. For example, Trametinib, in addition to the TDS genes, also affected the proliferation-related gene tar-
gets fosl1a and fosaa, and toxicity related genes serpine1, egr1 and ugt1a1. It is noted that both Trametinib and 
Cisplatin down-regulate vascular toxicity related serpine1, and up-regulate detoxification-related ugt1a1 (Fig. 4). 
This observation may suggest that Trametinib treatment exhibits similar toxicity as hallmarked by these two 
genes87,88. Although using transcriptional markers may not be conclusive for determination of toxicity of the 
tested compounds, identification of toxicity related transcriptional responses serves as an early warning message, 
indicating the potential for toxicity that needs to be tested in more detail.

This study focuses on using coding gene transcriptional phenotypes as bait to evaluate new compounds. Using 
“omic” as phenotype is not limited to coding gene transcription profiles associated with diseases. Further devel-
opment of the TDS concept, adapting the in silico tools we have developed, may extend its application to any 
quantifiable disease trait. For example, non-coding RNA (ncRNA) has been discovered to be involved in cancer 
development, invasion and metastasis, as well as, drug resistance of melanoma89,90. Several studies have also pro-
vided convincing association between ncRNA expression and disease types91–95. Additionally, the exact model 
system we have implemented in this study (i.e., xmrk transgenic melanoma-bearing medaka) has previously been 
shown to exhibit piRNA profile changes between different melanoma stages96. These reports support the feasibil-
ity of adapting the TDS screening strategy to new and different disease biomarkers and phenotypes.

In summary, TDS drug screening strategy is capable of detecting transcriptional phenotypic changes induced 
by therapeutic drugs within fully intact fish that model melanoma. The establishment of the screening pipeline 
using transgenic melanoma medaka allows us to expand this strategy to other disease models for TDS screening 
pipeline development.

Conclusion
We have established a novel phenotypic compound-screening pipeline. We conclude that using disease-related 
changes gene expression patterns, the transcriptional disease signature (TDS), as a first screen for compounds 
having drug potential is effective in terms of identifying transcriptional changes induced by two test compounds, 
while concurrently evaluating their off target toxicity.
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