Identification and Analysis of Novel Amino-Acid Sequence Repeats in Bacillus anthracis str. Ames Proteome Using Computational Tools

G. R. Hemalatha, D. Satyanarayana Rao, and L. Guruprasad
School of Chemistry, University of Hyderabad, Hyderabad 500 046, India

Received 7 August 2006; Revised 6 December 2006; Accepted 9 December 2006
Recommended by Stephen Oliver

Abstract

We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A "repeat" corresponds to a region comprising less than 55 -amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A "domain" corresponds to a conserved region with greater than 55 -amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75 -amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure.

Copyright © 2007 G. R. Hemalatha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The anthrax is a disease of herbivores and other mammals including humans, caused by the Bacillus anthracis str. Ames, a Gram-positive, rod-shaped, nonmotile, spore-forming bacterium [1]. It is an endospore-forming bacterium that causes inhalational anthrax. During the course of disease, endospores are taken up by alveolar macrophages where they germinate in the phagolysosomal compartment. Vegetative cells then escape from the macrophage, eventually infecting blood. Expression of the major plasmid-encoded virulence determinants, tripartite toxin, and a poly-D-glutamic acid capsule is essential for full pathogenicity [2]. Key virulence genes found on plasmids are pXO 1 and pXO 2 [1]. The 60 MDa plasmid pXO 2 carries genes required for the synthesis of an antiphagocytic poly-D-glutamic acid capsule [3]. The 110 MDa plasmid pXO 1 [4] is required for the synthesis of the anthrax proteins, edema factor, lethal factor, and protective antigen. These proteins act in binary combinations to produce two anthrax toxins: edema toxin (a protec-
tive antigen and edema factor) and lethal toxin (a protective antigen and lethal factor) [5]. The chromosome encodes potential virulence factors that include haemolysins, enterotoxins, phospholipases, proteases, metalloproteases, and ironacquisition proteins.

The chromosome of B. anthracis str. Ames contains three homologues of sortase transpeptidase that is responsible for attachment of secreted proteins to peptidoglycan on the cell surface of Gram-positive bacteria [6]. A range of important surface proteins, including enzymes and virulencerelated MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are anchored to the cell wall in Gram-positive bacteria by sortase, a transpeptidase in Staphylococcus aureus, that cleaves polypeptides at a conserved LPxTG motif near the carboxyl terminus and covalently links them to penta-glycine crossbridges in peptidoglycan [7, 8]. Nearly 34 candidate surface proteins which have sortase attachment sites and SLH domains were identified. Two putative B. anthracis str. Ames sortase attached genes have internalin like repeats [9]. The chromosome of
B. anthracis str. Ames also contains the csaAB genes for binding of proteins with S-layer homology (SLH) domains to polysaccharide. The SLH domain is a repetitive modular element that is present in several bacterial cell surface proteins and is involved in noncovalent association with peptidoglycan associated polymers [10]. The SLH domain comprises 55-amino-acid residues [11] and the potential role of most proteins with SLH domains on the surface of B. anthracis str. Ames is unknown at present [12]. However, these surface proteins may mediate unknown interactions between B. anthracis str. Ames and its external environment and could be targets for vaccine and drug design. Read et al. [12] reported the complete genome sequence of B. anthracis str. Ames. It comprises 5227293 base pairs and 5508 genes with an overall $\mathrm{G}+\mathrm{C}$ content of 35.4%. Of these, 2762 are functional genes, 1212 are conserved hypothetical genes, 657 genes are of unknown function, and 877 genes are annotated as hypothetical proteins.

As the complete genome sequence of B. anthracis str. Ames is available [12], we intended to systematically identify and analyze all the amino-acid sequence repeats in this proteome. In a general context, a "repeat" corresponds to a region comprising less than 55-amino-acid residues that occur more than once, sometimes in tandem along the primary sequence, examples are the YVTN repeats in various cell surface proteins and the WD repeats present in proteins that perform a variety of functions. On the other hand, a "domain" refers to a region of the protein comprising greater than 55-amino-acid residues and does not contain internal sequence repeats. According to the crystallographer definition, a domain represents a region of the protein capable of folding independently as a stable unit. A domain can also exist in multiple copies and there can be several different domains per protein, examples are the $\mathrm{SH} 2, \mathrm{SH} 3$, and PH domains present in signal transduction proteins. The repeats and domains are characterized by conserved sequence motifs that may be identified according to the conservation of individual amino-acid residues at equivalent positions derived from multiple sequence alignments. In the absence of experimental data, the structural information can be obtained from secondary structure or fold prediction studies in silico. Information about the identified domains and repeats is represented in databases such as SMART, INTERPRO and PFAM. SMART (simple modular architecture research tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures [13]. INTERPRO is a searchable database that provides information on sequence, function, and annotation. It is an integrated documentation resource for protein families, domains, and sites [14]. PFAM is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains and families. This can be used to view the domain organization of proteins [15]. We believe that a systematic sequence analysis will provide information on the novel repeats and domains present in B. anthracis str. Ames proteome that are not identified so far.

The B. anthracis str. Ames proteome consists of several known repeats and domains. Some of these domains are as
follows. (1) BRCT (breast cancer carboxy terminal) domain was first identified as 100 -amino-acid tandem repeat at the C-terminus of the tumor suppressor gene product BRCA1, in which the germline mutations lead to nearly 50% familial breast cancer. Most BRCT domains containing proteins participate in DNA damage checkpoint or DNA repair pathways and transcription regulation [16]. The BRCT is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. (2) Excalibur (extracellular calcium binding) domain consists of a conserved $\operatorname{DxDxDGxxCE}$ motif, which is strikingly similar to the Ca^{2+} binding loop of the calmodulin like EF hand domains, suggesting an evolutionary relationship. (3) Cna_B domain forms a stalk in Streptococcus aureus collagen-binding protein that presents the ligand binding domain away from the bacterial cell surface. (4) CBS (cystathionine beta synthase) domain is a small intracellular module with 60 -amino-acid residues, mostly found in two or four copies within a protein and occurs in several proteins in all kingdoms of life. Tandem pairs of CBS domains can act as binding domains for adenosine derivatives. In some cases, CBS domains may act as sensors of cellular energy status by being activated by AMP and inhibited by ATP. (5) Par B (par B like nuclease) domain cleaves single stranded DNA, nicks supercoiled plasmid DNA, and exhibits $5^{\prime}-3^{\prime}$ exonuclease activity. (6) KH (K homology) domain comprises 70-amino-acids residues and is involved in RNA binding. (7) PAS and PAC domains comprising 300 and 45-amino-acid residues, respectively, mediate signal transduction. (8) PASTA domain is an extracellular module comprising 70-amino-acids residues that fold into a globular architecture consisting of 3β-strands and an α-helix which aids in penicillin binding. (9) NEAT (near transporter) domain is a 125 -amino-acid residue conserved region consisting mainly β-strands. The NEAT domain appears to be associated with iron transport in several Gram-positive species, some of them are pathogenic. (10) SLH domain is present in several bacterial cell surface proteins and is involved in noncovalent association with peptidoglycan associated polymers. It comprises 55 -amino-acid residues and the predicted secondary structure comprises two α-helices flanking a short β strand [11].

The repeats present in B. anthracis str. Ames proteome are as follows. (1) RHS repeats are 21-amino-acids residues long and are involved in carbohydrate binding. (2) TPR (tetratricopeptide) repeats are 34 -amino-acids residues long and are involved in protein-protein interactions. (3) EZ_HEAT repeats are 37-47-amino-acid residues long and occur in tandem in a number of cytoplasmic proteins that are involved in intracellular transport processes. Arrays of HEAT repeats consist of 3 to 36 units forming a rod-like helical structure and appear to function as protein-protein interaction surfaces. (4) Ankyrin repeats are about 33-amino-acid residues long and occur in at least four consecutive copies; the core of the repeat appears as a helix-loop-helix structure and is involved in protein-protein interactions. (5) LRR (lecuine rich repeats) are 20 -amino-acids residues long, each repeat consists of a β-strand and α-helix, that are oriented in an antiparallel manner. The function of LRRs includes signal
transduction, transmembrane receptors, DNA repair, cell adhesion, and extracellualr matrix proteins [17].

Andrade et al. [18] reviewed methods to identify repeats in proteins and the relationship between repeat sequences and their associated functions. Repeats may be identified by manual examination, if the sequence similarity is very high and present in tandem. Repeats are thought to arise due to gene duplication and recombination events. Protein domains may exist either as single or multiple copies and repeats always exist as multiple copies [18, 19]. Programs such as BLASTP [20] are also useful in detecting internal and homologous repeats in a protein database. By using the BLAST program, the presence of repeats in a query protein sequence can be identified if (a) the same region of the query is aligned against two or more distinct regions of a second protein; and (b) different regions of the query are being aligned against the same region of a second protein [18].

Several web-based methods are available for ab initio identification of sequence repeats in proteins. For example, RADAR (rapid automatic detection and alignment of repeats) [21] uses an automatic algorithm, for segmenting a query sequence into repeats; it identifies short composition biased as well as gapped approximate repeats and complex repeat architectures involving many different types of repeats in a query sequence. Rep program [22] uses an iterative algorithm based on score distributions from profile analysis. This procedure allows the identification of homologues at alignment scores lower than the highest optimal alignment score for nonhomologous sequences. The PROSPERO program [23] is ideal for large scale self-comparison of protein sequences. It uses a formula that accurately assesses the significance of protein repeat similarities, allowing for existence of gaps, and also takes into account sequence length and composition. TRUST (tracking repeats using significance and transitivity) program [24] exploits the concept of transitivity of alignments as well as a statistical scheme optimized for the evaluation of repeat significance. Starting from significant local suboptimal alignments, the application of transitivity allows to (1) identify distant repeat homologues for which no alignments were found; (2) gain confidence about consistently well-aligned regions; and (3) recognize and reduce the contribution of nonhomologous repeats. This assessment step will enable to derive a virtually noise-free profile representing a generalized repeat with high fidelity. It has been demonstrated by the authors that TRUST is a useful and reliable tool for mining tandem and nontandem repeats in protein sequence databases, to predict multiple repeat types with varying intervening segments within a single sequence. Once statistically significant repeats are detected, construction of a multiple sequence alignment provides insight into the extent of sequence homology among members of the new protein family and identification of the conserved sequence motifs.

We have implemented TRUST on a personal computer in our laboratory and used it to identify amino-acid sequence repeats in the proteins of B. anthracis str. Ames proteome. We have identified four repeats and ten domains that are novel in the proteome of B. anthracis str. Ames. Further analysis
corresponding to searches of the completed and unfinished genome databases identified some of these to be present in other bacterial genomes.

2. METHODS

We have downloaded the entire proteome of B. anthracis str. Ames from the website http://www.ncbi.nlm.nih.gov in the FASTA format. The TRUST program was downloaded from the website and installed on the local Pentium IV computers on the Linux platform. The TRUST server together with the source code is available at http://ibivu.cs.vu.nl/programs/ trustwww. The TRUST program was run for all the sequences in this proteome. Based on the size of the TRUST output file, the protein sequences with no internal repeats were discarded automatically; that is, only those protein sequences which comprise repeats were retained. The lengths of repeats and domains currently annotated in the INTERPRO database often comprise greater than 25-amino-acid residues; therefore, in this work, we have considered the repeats with greater than 25-amino-acid residues alone for further analysis. Thus selected proteins were submitted to SMART online (http://smart.embl-heidelberg.de/smart/batch.pl) [13] program in batch mode. Manual inspections of the SMART results identified proteins comprising known repeats or domains and were therefore discarded. Only those repeats that are not identified by SMART database are retained for further analysis.

We have downloaded NCBI NR (release date: April 22, 2005) and UNIPROT (release date: April 23, 2005) databases and installed BLAST-2.2.10 on the local Linux computers (OS: Fedora Core-2, Pentium-IV $3.00 \mathrm{GHz}, 1 \mathrm{~GB}$ RAM, 80 GB hard disk). Using automatic shell scripts, these protein sequences were then blasted using PSI-BLAST program [25] for three iterations against the NCBI NR database and using BLASTALL program against UNIPROT database. The proteins confirmed to comprise repeats by the BLAST program were retained and were tested for presence in the offline versions of INTERPRO (Database: iprscan_DATA_10.0, Applications: iprscan_V4.1, iprscan_binn4.x_Linux) and PFAM (release date: April 26, 2005) databases. A final check was made using online versions of INTERPRO and PFAM. These series of steps are given in the flowchart as shown in Figure 1.

The repeats which are not present in any of these databases were considered to be novel repeats or domains, depending upon (1) the number of times they occur in the protein sequences, and (2) length of the amino-acid sequence region. The novel repeats and domains thus identified in B. anthracis str. Ames proteome were subjected to PSI-BLAST analysis in order to identify other proteins from databases that comprise these repeats and domains. Multiple sequence alignment program, ClustalW [26], was used to detect the extent of sequence conservation and the secondary structure prediction was carried out using PHD [27] method.

3. RESULTS AND DISCUSSION

From the analysis of B. anthracis str. Ames proteome using TRUST program, we identified 905 proteins comprising

Figure 1: Flowchart for systematic analysis of repeats in proteins.
of amino-acid sequence repeats. SMART database analysis identified that 302 entries do not have a SMART description. Based on their absence in the INTERPRO and PFAM databases and the length of repeat sequence (greater than 25-amino-acid residues), we have identified about 120 proteins (data not shown) in the B. anthracis str. Ames proteome to comprise novel amino-acid sequence repeats. We have added an additional constraint that the repeats identified by TRUST program should also be identified as a repeat by the BLAST program. Subsequent online INTERPRO and PFAM searches confirmed that these domains and repeats have not been reported before. In this work, we have identified four repeats and ten domains, that are not within or part of previously reported repeats and our findings are therefore novel. Further analysis identified some of these in the proteins of other bacterial genomes. The conserved amino-acid residues observed from multiple sequence alignments using the CLUSTALW program were used to describe sequence motifs characteristic of these novel repeats and domains. Often, more than one sequence motif is associated with repeats or domains and the amino-acid sequence patterns characteristic of these repeats are represented according to the PROSITE description [28]. Ponting et al. [29], have earlier used a similar approach to identify novel domains and repeats in Drosophila melanogaster.

In this work, we identified four repeats and ten domains that have not been reported before in the B. anthracis str.

Ames proteome. The repeats and domains described in 1 to 6 and 9 are also present in some bacterial organisms, 7, 8, 10 and 11 are Bacillus-specific, 12 and 13 are Bacillus anthracis str. Ames specific. Lists of the proteins containing these novel repeats and domains are shown in Tables 1 a to 1 k . These tables indicate the protein identifiers (Gene or Swall_ID), the number of amino-acid residues in the protein, a description of the protein, and other well-characterized repeats and domains present in the protein. Some sequences representing these repeats or domains share lower than 15% pairwise sequence identity. However, these sequences retain the conserved motifs and the positions of secondary structure elements in the multiple sequence alignment. For all the proteins, the amino-acid sequence corresponding to each representative repeat are shown in the multiple sequence alignments (see Figures from 2 to 14). ${ }^{1}$ Conservation of the position of secondary structural elements is indicated from the multiple sequence alignment. The schematic figures used to represent these repeats and domains are shown in Figures 15 to 27. These figures (drawn to an approximate scale) reflect the relative proximity and location of individual repeats and domains along the primary sequence. We discuss each of these novel repeats and domains below.

3.1. 57-amino-acid-residue PxV domain

The 251-amino-acid-residue protein corresponding to the GENE_ID BA2292 and described as hypothetical protein comprises of a 57 -amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region ($65-121$) as a query identified 24 proteins that are described as hypothetical (see Table 1(a)). This region occurs as four copies in proteins from Shewanella amazonensis, and Haloarcula marismortui, as two copies in proteins from B. anthracis, B. cereus, B. halodurans, B. thuringiensis, B. thuringiensis serovar, Thermus thermopilus, Chloroflexus aurantiacus, Chloroflexus aggregans Exiguobacterium sp., Bacillus weihenstephanensis, Roseiflexus castenholzii, Clostridium novyi, Herpetosiphon aurantiacus, and as single copy in Anabaena variabilis; we therefore describe this region as a

[^0]Table 1: The proteins are represented by their corresponding Gene_ID along with the number of amino-acid residues indicated in brackets in the first column. The organism and corresponding phylogeny are indicated in the second column: (A) represents Archaea and (B) represents Bacteria. The third column contains the description of the proteins containing the repeats or the domains identified elsewhere, including those identified in the present work and the total number of such repeats or domains. The fourth column represents exclusively the total number of novel repeats or domains identified in this work.
(a) List of proteins containing the 57-amino-acid-residue PxV domain.

| Gene ID |
| :--- | :--- | :--- | :--- |
| (number of residues) | Organism \quad Description | Number of |
| :---: |
| PAVV domains |

Table 1: Continued.
(b) List of proteins containing the 122 -amino-acid-residue FxF domain.

Gene ID (number of residues)	Organism	Description	Number of FxF domains
BA0881 (293)	Bacillus anthracis str. Ames (B)	Conserved domain protein	2
BCZK0785 (293)	Bacillus cereus E33L (B)	Hypothetical protein	2
BT9727_0783 (295)	Bacillus thuringiensis serovar	Hypothetical protein	2
BCE_G9241_0886 (293)	Bacillus cereus G9241 (B)	Conserved protein, putative	2
GK3171 (297)	Geobacillus kaustophilus HTA426 (B)	Hypothetical conserved protein	2
CTC00525 (279)	Clostridium tetani E88 (B)	Hypothetical protein	2
Bcer98DRAFT_3031 (293)	Bacillus cereus subsp. cytotoxis NVH (B)	Conserved hypothetical protein	2
B14911_04439 (305)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	2
DredDRAFT_0533 (262)	Desulfotomaculum reducens MI-1 (B)	Hypothetical protein	2
NT01CX_1557 (276)	Clostridium novyi NT (B)	Conserved protein, putative	2

(c) List of proteins containing the 111-amino-acid-residue YEFF domain.

Gene ID (number of residues)	Organism	Description and other known domains	Number of YEFF domains
BA3695 (510)	Bacillus anthracis str. Ames (B)	S-layer protein, putative, SLH-domain (3)	2
BCZK3337 (492)	Bacillus cereus E33L (B)	S-layer protein, SLH-domain (3)	2
BT9727_3386 (510)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	S-layer protein, SLH-domain (3)	2
Bant_01004347 (510)	Bacillus anthracis str. A2012 (B)	Hypothetical protein, SLH-domain (3)	2
$\begin{aligned} & \text { BCE_G9241_3590 } \\ & \text { (492) } \end{aligned}$	Bacilus cereus G9241 (B)	Lipoprotein, putative SLH-domain (3)	2
BA5326 (321)	Bacillus anthracis str. Ames (B)	Lipoprotein, putative	2
BT9727_4791 (321)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BC5098 (321)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2
BCZK4809 (321)	Bacillus cereus E33L (B)	Hypothetical protein	2
RBTH_06214 (321)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical protein	2
EF0374 (325)	Enterococcus faecalis V583 (B)	Lipoprotein, putative	2
EF0375 (321)	Enterococcus faecalis V583 (B)	Hypothetical protein	2
EF0376 (347)	Enterococcus faecalis V583 (B)	Hypothetical protein	2
(d) List of proteins containing the 109-amino-acid-residue IMxxH domain.			
Gene ID (number of residues)	Organism	Description	Number of IMxxH domains
BA1021 (266)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2
BAS0955 (283)	Bacillus anthracis Sterne (B)	Hypothetical protein	2
BCZK0933 (283)	Bacillus cereus E33L (B)	Hypothetical protein	2
BT9727_0941 (283)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BC1029 (283)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2
RBTH_03050 (283)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical protein	2
CAC3450 (307)	Clostridium acetobutylicum ATCC 824 (B)	Hypothetical protein	2
CPE0158 (303)	Clostridium perfringens str. 13 (B)	Hypothetical protein	2
CTC02189 (314)	Clostridium tetani E88 (B)	Conserved protein	2
CtheDRAFT_1311 (307)	Clostridium thermocellum ATCC 27405 (B)	Conserved hypothetical protein	2
DhafDRAFT_0725 (321)	Desulfitobacterium hafniense DCB-2 (B)	Conserved hypothetical protein	2

Table 1: Continued.
(d) Continued.

Gene ID (number of residues)	Organism	Description	Number of IMxxH domains
BCE_G9241_1042 (283)	Bacillus cereus G9241 (B)	Conserved protein	2
CbeiDRAFT_3331 (312)	Clostridium beijerincki NCIMB 8052 (B)	Conserved hypothetical protein	2
CphyDRAFT_3436 (305)	Clostridium phytofermentans ISDg (B)	Conserved hypothetical protein	2
ClosDRAFT_1658 (308)	Clostridium sp. OhILAs (B)	Conserved hypothetical protein	2
CdifQ_02001573 (254)	Clostridium difficile QCD-32g58 (B)	Hypothetical protein	2
BcerKBAB4DRAFT_3543 (283)	Bacillus weihenstephanensis KBAB4 (B)	Hypothetical protein	2
AmetDRAFT_1908 (272)	Alkaliphilus metalliredigenes QYMF (B)	Conserved hypothetical protein	2
CD1511 (304)	Clostridium difficile 630 (B)	Conserved hypothetical protein	2
CPF_0149 (303)	Clostridium perfringens ATCC 13124 (B)	Hypothetical protein	2
BcerKBAB4DRAFT_0307 (171)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein	1
Bcer98DRAFT_1038 (303)	Bacillus cereus subsp. cytotoxis NVH 391-98 (B)	Conserved hypothetical protein	2

(e) List of proteins containing the 103-amino-acid-residue VxxT domain.

Gene ID (number of residues)	Organism	Description	Number of VxxT domains
BA4716 (349)	Bacillus anthracis str. Ames (B)	Germination protein gerM	2
gerM BT9727_4219 (349)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Germination protein	2
germ BCZK4235 (349)	Bacillus cereus E33L (B)	Germination protein	2
BCE4587 (349)	Bacillus cereus ATCC 10987 (B)	Germination protein gerM	2
BC4495 (349)	Bacillus cereus ATCC 14579 (B)	Germination protein germ	2
BSU28380 (366)	Bacillus subtilis subsp. subtilis str. 168 (B)	Germination protein gerM	2
BL00314 (369)	Bacillus licheniformis ATCC 14580 (B)	Spore germination protein GerM	2
BH3070 (365)	Bacillus halodurans C-125 (B)	Germination (Cortex hydrolysis) and sporulation	2
RBTH_05210 (349)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Germination protein germ	2
gerM (210)	Bacillus subtilis (B)	gerM	1
ABC2653 (377)	Bacillus clausii KSM-K16 (B)	Germination protein GerM	2
GK2667 (357)	Geobacillus kaustophilus HTA426 (B)	Germination (Cortex hydrolysis) and sporulation	2
OB2107 (352)	Oceanobacillus iheyensis HTE831 (B)	Germination (Cortex hydrolysis) and sporulation	2
SwolDRAFT_2302 (195)	Syntrophomonas wolfei str. Goettingen (B)	Hypothetical protein	1
MothDRAFT_0979 (200)	Moorella thermoacetica ATCC 39073 (B)	Similar to Spore germination protein	1
CtheDRAFT_0840 (299)	Clostridium thermocellum ATCC 27405 (B)	Hypothetical protein	1
gerM ABF83609 (349)	Bacillus thuringiensis serovar kurstaki (B)	Spore germination protein	2
Bcer98DRAFT_3179 (348)	Bacillus cereus subsp. cytotoxis NVH 391-98 (B)	Germination protein GerM	2
BcerKBAB4DRAFT_4089 (349)	Bacillus weihenstephanensis KBAB4 (B)	Germination protein gerM	2
B14911_06091 (361)	Bacillus sp. NRRL B-14911 (B)	Spore germination protein	2
GAA01614 (295)	Pelotomaculum thermopropionicum SI (B)	Unnamed protein product	1
AmetDRAFT_1640 (332)	Alkaliphilus metalliredigenes QYMF (B)	Hypothetical protein	2
Moth_0516 (200)	Moorella thermoacetica ATCC 39073 (B)	Spore germination protein-like	1

Table 1: Continued.
(f) List of proteins containing the 84-amino-acid-residue ExW domain.

Gene ID (number of residues)	Organism	Description	Number of ExW domains
BA4310 (246)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2
BT9727_3829 (246)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2
BCE4157 (246)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein	2
BCZK3845 (246)	Bacillus cereus E33L (B)	Hypothetical protein	2
BC4088 (248)	Bacillus cereus ATCC 14579 (B)	IG hypothetical 17224	2
GK0969 (226)	Geobacillus kaustophilus HTA426 (B)	Hypothetical conserved protein	2
BSU30660 (145)	Bacillus subtilis subsp. str. 168 (B)	Hypothetical protein ytkA (PSPA8)	2
BL05305 (147)	Bacillus licheniformis ATCC 14580 (B)	Conserved protein YtkA	1
BH0983 (157)	Bacillus halodurans C-125 (B)	BH0983 protein	1
Bant_01004966 (252)	Bacillus anthracis str. A2012 (B)	Protein chain release factor A	1
RBTH_02670 (248)	Bacillus thuringiensis	Hypothetical protein	2
BCE_G9241_4093 (246)	serovar israelensis ATCC 35646 (B)		2
OB2488 (166)	Bacillus cereus G9241 (B)	IG hypothetical protein	2
ABC0230 (158)	Oceanobacillus ihenyensis HTE831 (B)	Hypothetical conserved protein	1
BH0678 (246)	Bacillus clausii KSM-K16 (B)	Unknown conserved protein	1
ABC4088 (142)	Bacillus halodurans C-125 (B)	BH0678 protein	2
ExigDRAFT_1796 (161)	Bacillus clausii KSM-K16 (B)	Hypothetical protein	2
OB3282 (155)	Exiguobacterium sibiricum 255-15 (B)	Hypothetical protein	1
BcerKBAB4DRAFT_2040 (241)	Oceanobacillus ihenyensis HTE831 (B)	Hypothetical conserved protein	1
B14911_09907 (144)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein	1
B14911_05359 (273)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein	Hypothetical protein
BAA83944 (267)	Bacillus halodurans (B)	Unnamed protein product	2
BH1853 (158)	Bacillus halodurans C-125 (B)	Hypothetical protein	1
Bcer98DRAFT_3614 (177)	Bacillus cereus subsp.	cytotoxis NVH 391-98 (B)	IG hypothetical protein
ExigDRAFT_0574 (253)	Exiguobacterium sibiricum 255-15 (B)	Hypothetical protein	2

(g) List of proteins containing the 104-amino-acid-residue NTGFIG domain.

Gene ID (number of residues)	Organism	Description	Number of NTGFIG domains
BA2665 (232)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2 tandem
BT9727_2444 (232)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein	2 tandem
BCZK2413 (232)	Bacillus cereus E33L (B)	Group-specific protein	2 tandem
BCE2700 (234)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein	2 tandem
BC2674 (234)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein	2 tandem
Bant_01003317 (236)	Bacillus anthracis str. A2012 (B)	Hypothetical protein	2 tandem
BCE_G9241_CNI_0263 (234)	Bacillus cereus G9241 (B)	Conserved hypothetical protein	2 tandem
BcerKBAB4DRAFT_0535 (232)	Bacillus weihenstephanensis KBAB4(B)	Conserved hypothetical protein	2 tandem
Bcer98DRAFT_0128 (234)	Bacillus cereus subsp. cytotoxis NVH 391-98 (B)	Conserved hypothetical protein	2 tandem

Table 1: Continued.
(h) List of proteins containing the 36 -amino-acid-residue NxGK repeat.

Gene ID (number of residues)	Organism	Description and other known domains	Numbre of NxGK repeats
BA3686 (193)	Bacillus anthracis str. Ames (B)	Hypothetical protein, SAP domain (1)	2
BT9727_3378 (193)	Bacillus thuringiensis serovar konkukian str. 97-27 (B)	Hypothetical protein, SAP domain (1)	2
BCZK3328 (193)	Bacillus cereus E33L (B)	Hypothetical protein, SAP domain (1)	2
BC3626 (193)	Bacillus cereus ATCC 14579 (B)	Hypothetical protein, SAP domain (1)	2
BCE3645 (193)	Bacillus cereus ATCC 10987 (B)	Hypothetical protein, SAP domain (1)	2
RBTH_03615 (193)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical cytosolic protein, SAP domain (1)	2
BCE_G9241_3579 (193)	Bacillus cereus G9241 (B)	Hypothetical cytosolic protein, SAP domain (1)	2
BcerKBAB4DRAFT_0944 (193)	Bacillus weihenstephanensis KBAB4 (B)	Conserved hypothetical protein, SAP domain (1)	2
B14911_25780 (189)	Bacillus sp. NRRL B-14911 (B)	Hypothetical protein, SAP domain (1)	2

(i) List of proteins containing the 95-amino-acid-residue VYV domain.

Gene ID (number of residues)	Organism	Description	Number of VYV domains
BA1701 (225)	Bacillus anthracis str. Ames (B)	Hypothetical protein	2 tandem
BAS1577 (227)	Bacillus anthracis str. Sterne (B)	Hypothetical protein	2 tandem
RBTH_03882 (1004)	Bacillus thuringiensis serovar israelensis ATCC 35646(B)	Hypothetical exported protein	10 tandem
DSY3134 (1674)	Desulfitobacterium hafniense Y51 (B)	Hypothetical protein	2 tandem

(j) List of proteins containing the 75-amino-acid-residue KEWE domain.

Gene ID (number of residues)	Organism	Description	Number of KEWE domains
BA3147 (262)	Bacillus anthracis str. Ames (B)	Hypothetical protein	3 tandem
BAS2924 (344)	Bacillus anthracis str. Sterne (B)	Hypothetical protein	4 tandem
RBTH_06405 (331)	Bacillus thuringiensis serovar israelensis ATCC 35646 (B)	Hypothetical protein	4 tandem
pE33L466_0092 (328)	Bacillus cereus E33L (B)	Hypothetical protein	4 tandem
Bant_01003795 (178)	Bacillus anthracis str. A2012 (B)	Hypothetical protein	2 tandem
pBMB165 (247)	Bacillus thuringiensis serovar tenebrionis (B)	Hypothetical protein	3 tandem

(k) List of proteins containing the 59-amino-acid-residue AFL domain.

| Gene ID
 (number of residues) | Organism | Description |
| :--- | :--- | :--- | | Number of |
| :--- |
| AFL domains |

domain. The length of proteins varied between 196 to 488-amino-acid residues. The multiple sequence alignment corresponding to this domain is associated with PxV sequence motif where x is any amino-acid residue and is shown in Figure 2. The pairwise identities between sequences corre-
sponding to PxV domain varied between $15-96 \%$. The secondary structure corresponding to PxV domain is predicted to comprise four β-strands as shown in Figure 2. The representative domain architecture corresponding to proteins comprising the PxV domain is shown in Figure 15.

Secondary structure
RcasDRAFT_0590_1(32-89)
RoseRSDRAFT_1732_1(32-89)
Chlo02001630_1(32-90)
CaggDRAFT_2922_1(31-89)
HaurDRAFT_2803_1(4-62)
B14911_22687_1(67-124)
HaurDRAFT_2803_2(105-162)
rrnAC0576_1(67-124)
rrnAC0576_2(284-341)
BH1282_1-30-89)
ExigDRAFT_0608_1(29-86)
RBTH_03198_2(161-218)
BC2244_2(159-216)
BcerKBAB4DRAFT_2942_2(159-216)
BCE_G9241_2259_2(159-217)
BCE_2326_2(159-216)
BA2292_2(161-218)
BAS2138_2(159-216)
BT9727_2076_2(159-216)
BCZK2072_2(159-216)
Bcer98DRAFT_2673_2(159-216)
NT01CX_1619_2(113-170)
B14911_22687_2(164-221)
RcasDRAFT_0590_2(131-188)
RoseRSDRAFT_1732_2(131-188)
Chlo02001630_2(131-188)
CaggDRAFT_2922_2(130-187)
ExigDRAFT_0608_2(126-183)
TTHB089_2(124-181)
TTP0044_2(124-181)
BH1282_2(130-187)
RBTH_03198_1(65-121)
BC2244_1(63-119)
BCE_G9241_2259_1(63-119)
BAS2138_1(63-119)
BCE_2326_1(63-119)
BA2292_1(65-121)
BCZK2072_1(63-119)
BT9727_2076_1(63-119)
BcerKBAB4DRAFT_2942_1(63-119)
Bcer98DRAFT_2673_1(63-119)
SamaDRAFT_3539(264-321)
Ava_3757(63-120)
TTHB089_1(24-81)
TTP0044_1(24-81)
NT01CX_1619_1(15-72)
consensus/80\%

Abstract

EEEEE EE EEEEEE EE VRVIHAS - PDAPAVDVIVNGNR - - ALTNVPFFAASAYLDLPAGSYDIQVVPAGAT - S - PVVID 58 VRVVHAS - PDAPAVDVIVNGNK - - ALTNVPFFAASAYLDLPAGSYDIQVVPAGAT - S - PVVID 58 VRVIHAS - PDAPAVDVFVNGNA - -VLTNVGFFAASPYLDLPAGTYRVQVAPTGAG - AGSAVID VRVIHAS - PDAPAVDVFVNGNA - - VLTNVGFFAAS PYLDLPAGTYRVQVAPTGAG-AGSAVID VRVMHAS - PDAPAVDI FVDGKA - -VLTSVPFFALSGQLALPDGTYTIDIAPAGAG-VAASVFE VRVVHAS - PDAPNVDIYVNGNR - - I LKDFPYKDV SGYLS LPAGKYQIDIYPAGDM - V - STVLS VRVIHGS - PDAPAVDIKIAGTQN - VVVKGAKFGDAATLEVPAGTYSFDISPAGS S - T - -VLFT VRVAHMS - PNAPNVDVYLEGDA - - VLEDVPFGAVSQYLDVPAGERSVEITAAGD - - PDTSVFS VRVAHMS - PNAPNVDVYVDGSA - -VLEDVPFGAVSDYLEVPAGARTVEITAAGD - - PDTSVFE VRVLHAS - PDAP PVDVYIDGKK - - QMEGVPFKQTS SYFNVPAGDHMITIFAAGDDPAETPVIE VRVIHAS - PDAPAVDIAVDGKK - - AVSGAEFKAVTDYLTLPAGEHKVEVFAAGT - - TKDPVLS I RFAHFS - PDTPVVNVDLKDGDH - LFENVLFKQITDFLQVSPGTADIEISLANNK - - NVLLT IRFAHFS - PDTPVVNVDLKDGDH - LFENVLFKQITDFLQVSPGTADIEISLADNK - - NVLLT IRFAHFS - PDTPVVNVNLKDGDH - LFENVLFKQITDFLQVSPGTADIEVSLADTK - - KVLLT IRFAHFS - PDTPVVNV S L KGGDH - LFENVLFKQITDFLEVSPGTADIEVSLADNQ - - -NVLLT 58 IRFAHFS - PDTPVVNV S LKGGDH - LFENVLFKQITDFLEV SPGTADIEVS LADHQ - - - SVLLT 58 I RFAHFS - PDTPVVNV S LKDGDH - LFENVLFKQ I TDFLEV S PGTADIEVSLADNQ - - - SVLLT 58 IRFAHFS - PDTPVVNVSLKDGDH - LFENVLFKQITDFLEVSPGTADIEVSLADNQ - - SVLLT 58 I RFAHFS - PDTPVVNVS LKDGDH - LFENVLFKQITDFLEVSPGTADIEVSLADNQ - - SVLLT 58 IRFAHFS - PDTPVINVSLKDGDH - LFENVLFKQ ITDFLEVSPGTADIEVS LADNQ - - - S I LLT 58 I RFAHFS - PDTSVVNV S LKNGDH - LFENVLFKQVTDYLQVSPGTADIEISLADTK - - - KNLVT 58 VKFVHLS - PGTPNVDITLPNGTI - LFKDVEFEEGTDYIPLKVGTYTIEAKPTGSD - - - KTVLT 58 ARFIHLS - PDAPAVDIAVKKGDV - IFPNI SFRQATQYLGLTPMTVDLEVRVAGS S - - NTVLS 58 VRVIHFS - PDAPAVDIKVAGGPT - LI SNLAFPNASNYLPVDAGSYDLQVTPAGGT - - AVVLD 58 VRVIHFS - PDAPAVDIKVAGGPT - LI SNLAFPQASNYLPVDAGSYDLQVTPAGGT - - AVVLD 58 VRVYHFS - PDAPAVDVKLANGTT - LI SNLAFPNASDYLEVPAGTYDLQVTPAGGS - - AVVIN 58 VRVYHFS - PDAPAVDVKLANGTT - LI SNLAFPDASDYLEVPAGTYDLQVTPAGGD - - AVVIN 58 VRVAHFA - PDAPAVDVAPKGGDP - LF SDLEFSKVSDYGTLDAGTYDLEVRPAGAT - - - DVVKA 58 I RVVHAS - PDAPAVDVAVKGGPV - LFAGLPFPRASAYASVPAGTYDLEVRAAGTA - - TVALD 58 I RVVHAS - PDAPAVDVAVKGGPV - LLAGLPFPRASAYASVPAGTYDLEVRAAGTA - - TVALD 58 LRAVHLS - PDTPAVQLHLSAANV - DMP SLSFENASRYIDLPAGAYDLDIRMIETD - - DVATE I R I FHAD - PNI PAVD I LVNGQKV - - I KN I SFKQF S PYL S LVQGKYR I DIVPVGNET - - - P I FS 57 I RIFHAD - PNI PAVDI LVNGQKV - - I KNI SFKQF S PYLS LVQGKYRIDIVPVGNET - - PI F S I RFFHSA - SNTPAVDI LVNGQKV - I KNI SFKQF S PYLTLVQGKYRIDIVPVGNET - - P I FS I RFFHSA - SNTPAVDI LVNGQKV - - I KN I SFKQF S PYLTLVQGKYRIDIVPVGNET - - - PI FS 57 IRFFHSA - SNTPAVDI LVNGQKV - - IKNI SFKQF S PYLTLVQGKYRIDIVPVGNET - - - PI FS IRFFHSA - SNTPAVDI LVNGQKV - - IKNI SFKQFSPYLTLVQGKYRIDIVPVGNET - - - PIFS I RFFHSA - SNTPAVDILVNGQKV - - I KNI SFKQF S PYLTLVQGKYRIDIVPVGNET - - - PIFS IRFFHSA - SNTPAVDILVNGQKV - - I KNI SFKQFS PYLTLVQGKYRIDIVPVGNET - - - PIFS 57 MRIFHTA - PHTPAVDI I INGQKV - - I KNI SFKQF S PYLS LVQGKYRIDIVPVGNET - - - PIFS MRIFHAS - PHTAPVDILINGQKV - I KNITFQQFS PYF S LMQGQYRLDIVPLDNET - - PIFS I RVAHSA - ADVPQVDI LANGTKVDALSGAAFGQASGYLNLAPGEYQVDTVLTSDNS - - -VVGI LRVINAAVPTASPVDV I VNGQRV - - LENVNFRQASRYVNVTPGNIQVLFVTSGTNS - - - T I AS VRVAHLS - PDAPAVDVLVNGQRA - I TGLAFKEVTPYIPLPAAKVRVQVVPAGQDAP - -VVID VRVAHLS - PDAPAVDVLVNGQRA - I TGLAFKEVTPYIPLPAAKVRVQVVPAGQDAP - -VVID

lRhhHhu. PsspsVsl.lpstt...hpsl.F.phosalpls.Gphplpl..ssst....slhs

Figure 2: BA2292 is homologous to protein GBAA2292 from Bacillus anthracis str. "Ames Ancestor." BAS2138 is homologous to proteins BT9727_2076 from Bacillus thuringiensis serovar konkukian str. 97-27 and Bant_01002917 from Bacillus anthracis str. A2012.

3.2. 122-amino-acid-residue FxF domain

The 293-amino-acid-residue protein corresponding to the GENE_ID BA0881 and described as conserved domain protein comprises a 122-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region ($55-176$) as a query identified 10 proteins (see Table 1(b)). The proteins comprising this region are described as either conserved or hypothetical proteins. This region occurs as two copies in the proteins of B. anthracis, B. cereus, B. thuringiensis, Geobacillus kaustophilus, Clostridium tetani, Clostridium novyi, and Desulfotomaculum reducens genomes. The length of proteins varied between 262 to 305-amino-acid residues. The multiple sequence alignment corresponding to this domain is associated with characteristic sequence motif FxF (Figure 3) and we refer to this as the FxF domain. The pairwise sequence identities corresponding to this domain varies between $18-97 \%$. The secondary structure corresponding to FxF domain is predicted to comprise one α-helix and five β-strands, and the representative
domain architecture of proteins comprising this domain is shown in Figure 16.

3.3. 111-amino-acid-residue YEFF domain

The 510-amino-acid-residue protein corresponding to the GENE_ID BA3695 and described as a S-layer protein comprises a 111-amino-acid-residue region that is present as two copies. Further BLAST searches, using sequence corresponding to the region (247-357) as a query, identified 13 proteins (see Table $1(\mathrm{c})$), that are described as S-layer proteins, hypothetical, or lipoproteins and correspond to the B. anthracis str. Ames and A2012, B. cereus, B. thuringiensis, B. thuringiensis serovar israelensis, and Enterococcus faecalis genomes. The length of proteins varied between 321 to 510 -amino-acid residues. Five proteins corresponding to the GENE_ID BA3695 and Bant_01004347 of B. anthracis, BCE_G9241_3590, and BCZK3337 of B. cereus and BT9727_3386 of B. thuringiensis comprise three copies of SLH domain, indicating a cell surface role for these proteins.

Secondary structure	HHHHHHH	EEEEE	EEEEEE	EEEEE	EEEEE
BA0881_1(55-176)	I YQFLHKELPRLEEYQISLSGIEIEKRDNG-YDVAVFIRSTVPKPISFEEVTLILLNKEKKLCARKT				
BCZK0785_1(55-176)	I YQF LHKELPRLEEYQISLSGIEIEERDNG-YDVAVFIRSTVPKPISFEEVTLILLNKEKKLCARKT				
BCE_G9241_0886_1(55-176)	I YQFLHKELPRLEEYQISLSGIEIEKRDSG-YDVAVFIRSTVPKPISFEEVTLILLNKEKKLCARKT				
Bcer98DRAFT_3031_1(55-176)	I YQF LHKELPRLQENQISLSGIEIEKREGS - Yavanfirs i Skpi SFeevtll linkedelcarkt				
BT9727_0783_1(58-179)					
GK3171_1(46-167)	VYRFYHEQLPPLQPNQISISGVKLVEYNDG - FVAVAILRNTLPKPVRFERIRLLLLDEDGTAIARKE				
B14911_04439_1(59-182)	VLRFLNNELPPLLPNQI SLAGIELQQDGGS - VTVAAFVRSSLSKAVEFKKTHLLLVGPDEEI LARKE				
BA0881_2(185-293)	ALRNFVDNLTPPNDGEINFLGLQAARKENGDLHTTLLIRNGCKDNIQLEQLPLHIEDATGAVVVKGA				
BCZK0785_2(185-293)	ALRNFVDNLTP PNDGEINFLGLQAARKENGDLHTTLLI RNGCKDNIQLEQLPLHIEDATGAVVVKGA				
BCE_G9241_0886_2(185-293)	ALRNFVDNLTPPNDGEINFLGLQAARKENGDLHTTLLIRNGCKENIQLEQLPLHIEDATGAVVVKGA				
Bcer98DRAFT_3031_2(185-293)	ALRNFVESLTPPQNGELNFLGLQAAQKENGDLHATILIRNGCKRNIQLKQLPLHIEDASGEIVVKGA				
BT9727_0783_2(188-295)	KLQEI IANLDPPEEDEINFRGLNAVVEENGDLNATILIRNGYNKNITLEQLPLHI SDRSESTVAERI				
B14911_04439_2(191-305)	KLKQMVEQMDPPKIGEINFMGI QAKVADNEDLQVTLLIRNGNDQNVMLQQLPLQVEDATSEVIAKGG				
GK3171_2(176-297)	QLQALVDSVPPPAPGEVNFMGIEAKQLPSGELGVTLLIRNGSDKHIHFEQIPLEVRDYAGDIVARGL				
NT01CX_1557_2(164-276)	QYEKFLKELPLLREGQVTMNAYDVYTNEDDGIAVELVIRNGRHNGVDIKRIPLSIYDKDKKLVASGT				
DredDRAFT_0533_2(156-262)	QFTTFLKKLPSVQEGSINIDTYSIEKNNDGS LTVAIVLRHRLAKPTVLSRFQFGIVDTNKS IVARAA				
CTC00525_2(170-279)	VFKEFLESLPKLERGQGSISVFTITQYENGDLLMTLLVRNATDEAVTMTKMPITLKTQKGETILSGV				
CTC00525_1(36-159)	LEEELREVIPKVEEGKINIAGIYAFDQGDK - VEVKAYLANGLSQKINFEDVPIYIINSKEEKLAYQV				
NT01CX_1557_1(31-154)	CLEEELEALPAIKEGELDVN - VDFFFDLGDRYEASIFIRNGLSTGVNLEKIPFIVLDKDEKEVGRKI				
DredDRAFT_0533_1(25-147)	LMQEEINNLPQITDGTVAIDSIYTVNWEDK-IEIGFYLRNVTSHKICFTQTPLKILNPKGEVLASVT				
consensus/80\%	hhp.hhcpls..ppsplsh.ulph.ptpss.htsshhlrsshtcslphcplsthl.stptphhscth				
Secondary structure	EEEEE				
BA0881_1(55-176)	FNLS ALGD	FIFTF	L S Q TDW	TLDLDPSWEA	122
BCZK0785_1(55-176)	FNLSALGD	FIFTF	ALSQTDWE	HALDLDP SWEA	2
BCE_G9241_0886_1(55-176)	FNLSALGD	FIFTF	LSQTDW	HVLDLDPSWEA	122
Bcer98DRAFT_3031_1(55-176)	FNLSDIGD	PWVFTFD	L S Q TDWQ	HRLDLDPTWET	122
BT9727_0783_1(58-179)	FDLSHLEG	PWTFVFE	L S NEDWQ	HS LDLDPIWQE	122
GK3171_1(46-167)	FDMS PFG	WRFLF	QLPADGW	HRLDLEESWEQ	122
B14911_04439_1(59-182)	FDLTEIGE	PWNFTFN	I PAEGWK	HRLDLDEAWEN	124
BA0881_2(185-293)	FTLPNLEI	PWSFVFP	DMD L S SWK		109
BCZK0785_2(185-293)	FTLPNLEI	PWSFVFP	MD L S SW		
BCE_G9241_0886_2(185-293)	FTLPNLEI	PWSFVFP	DME L S SWK		
Bcer98DRAFT_3031_2(185-293)	FTLPNLEI	PWSFIFP	MDL S TWK		
BT9727_0783_2(188-295)	FVLKDFQ I	PWTFTFP	I DL S KW		
B14911_04439_2(191-305)	FQLDKFEL	PWTFIFP	NPDLS SWK		
GK3171_2(176-297)	FPCH-LEV	PWTFLFP	EPDWT SWK	EKQETPSSDE-	122
NT01CX_1557_2(164-276)	FYLEDAS L	VYLFTF	OYNLKNW		
DredDRAFT_0533_2(156-262)	FVIEQYIL	LRSFKFT	DAD INQC		
CTC00525_2(170-279)	FDIENFTV	VLSLIFK	FFDLSTCK		
CTC00525_1(36-159)	FDLSEEGD	PVKLNFN	I PQDDWK	R YVNIELESI	124
NT01CX_1557_1(31-154)	FNLREVGE	PWKIYFE	GINLKDLK	GVVNVQYENLP	124
DredDRAFT_0533_1(25-147)	I N L S DMGD	PWRFYLG	NS LKDLK	YMLVIEDRLPE	123
consensus/80\%	FsLptht.hss.sshPa.FhF.tppl.hptphs.psWchhh.p				

Figure 3: BA0881 is homologous to proteins GBAA0881 Bacillus anthracis str. "Ames Ancestor," BAS0837 from Bacillus anthracis str. Sterne and Bant_01001534 from Bacillus anthracis str. A2012.

This domain is characterized by conserved sequence motifs; YEFF, RGD, FTY, GKD, and FVEH. We refer to this 111-amino-acid region as the YEFF domain. The pairwise sequence identities corresponding to the YEFF domain varied between $36-96 \%$. The consensus secondary structure predicted for this domain suggests mainly β-strands and the conserved sequence motifs, that is, YEFF and FTY are associated with β-strands; see Figure 4. The representative domain architecture of proteins comprising this domain is shown in Figure 17. It is intriguing that each domain comprises RGD sequence motif which is found in the proteins of extracellular matrix. Many viruses enter their host cells via the RGD motif-integrin interaction and synthetic peptides containing this RGD motif are active modulators of cell adhesion [30]. The RGD motif was originally identified as the sequence within fibronectin that mediates cell attachment. This motif has now been found in numerous other proteins and supports cell adhesion. The integrins, a family of cell surface proteins, act as receptors for cell adhesion molecules. A subset of the integrins recognizes the RGD motif within their ligands, the binding of which mediates both cell substratum and cell-cell interactions [31]. The presence of RGD motif and SLH domain implies that the YEFF domain compris-
ing proteins is also present on the cell surface and mediates protein-protein interactions.

3.4. 109-amino-acid-residue IMxxH domain

The 266-amino-acid-residue protein corresponding to the GENE_ID BA1021 and described as hypothetical protein comprises a 109 -amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (4-112) as a query identified 22 proteins (see Table 1(d)) that are described as either conserved or hypothetical proteins. This domain region occurs as two copies in all the proteins of B. anthracis, B. cereus, B. thuringiensis, Bacillus weihenstephanensis C. acetobutylicum, C. perfringens, C. tetani, C. thermocellum, Desulfitobacterium hafniense, Clostridium phytofermentans, and Alkaliphilus metalliredigenes, and as single domain in the 171-amino-acid-residue protein BcerKBAB4DRAFT_0307. The length of proteins varied between 171 to 321-amino-acid residues. The multiple sequence alignment corresponding to this domain identified the characteristic sequence motifs; IMxxH, REA, and we refer to this as the IMxxH domain. The IMxxH sequence motif occurs at the N -terminal region of the domain. The

Secondary structure	EEEE EEEE EEEE	EEE
EF0374(62-172)	ILS S--TDWQGTKVYDKNNNNLTAENANFIGLAKYDGETGFYEFFDKE	TGETRGDEGTFFVTD - - dge
EF0375(58-168)	ILSG--TDWQGTRVYDAAGNDLTAENANFIGLAKYDGETGFYEFFDKN	TGETRGDEGTFFVTG - - - DGT
EF0376(59-172)	GLSE--KDWAGTRVYDRNGNDLTDENQNLLHAIKFDATTSFYEFFDKE	TGESTGDEGTFFMTAGITDVS
BA5326(58-168)	ILSD--TNWQGTRVYDKDKNDVTKENANFIGLAKYDAKSGRYEFFDAK	TGASRGDKGTFFITN - - - DGK
BCZK4809(58-168)	ILSD-- TNWQGTRVLDKDKNDLTKENANFIGLAKYDAKSGRYEFFDAK	TGASRGDKGTFFITN - - - DGK
BT9727_4791(58-168)	ILSD--TNWQGTRVYDKDKNDVTKENANFIGLAKYDAKSGRYEFFDAK	TGASRGDKGTFFITN - - - DGK
BC5098(58-168)	ILSE--TNWQGTRVYDKDKNDLTKENANFIGLAKYDAKSGRYEFFDAK	TGASRGDKGTFFVTN - - - DGK
RBTH_06214(58-168)	ILSK--TNWQGTRVYDKDKNDLTKENANFIGLAKYDAKSGRYEFFDAK	
BA3695(247-357)	ILGE-- TNWQGTKVYDKDHNDVTKENQNFIGLAKYDAKTARYEFFNAS	tGesrndsgtafitn - - dgk
Bant_01004347(247-357)	ILGE--TNWQGTKVYDKDHNDVTKENQNFIGLAKYDAKTARYEFFNAS	tgesrndsgtffitn - - dgk
BT9727_3386(247-357)	ILGE--TNWQGTKVYDKDHNDVTKENQNFIGLAKYDAKMARYEFFNAS	tgesrndsgtffitn - - dgk
BCZK3337(229-339)	ILGE--TNWQGTKVYDKDHNDVTKENQNFIGLAKYDAKTARYEFFNAS	tGesrndsgtffitn - - dgk
BCE_G9241_3590(229-339)	ILGE--TNWQGTKVYDKDHNDVTKENQNFIGLAKYDAKTARYEFFNAK	tGesrndsgtffitn - - dgk
EF0376(223-336)	FDGTPQLLWNGTKVVDKDGNDVTSANQNFISLAKFDQDSSKYEFFNLQ	TGETRGDYGYFKVGN - - - QNK
EF0375(199-310)	ILGT - TLWNGTKVVDKNGNDVTAANQNFISLAKFDPNTSKYEFFNLQ	TGETRGDFGYFQVVD - - NnK
EF0374(203-314)	ILGA - TLWNGTKVLDEDGNDVTEANKMFI SLAKFDNKTSKYEFFDLE	TGKTRGDFGYFQVID - - ${ }^{\text {NNK }}$
BA3695(388-499)	ILS S--TLWNGTVVLDEQGNNVTKYNSNLI SLAKYDKNTNKYEFFNVN	TGESRGDYGFFDVVH - - DNK
BT9727_3386(388-499)	ILS S--TLWNGTVVLDEQGNNVTKYNSNLI SLAKYDKNTNKYEFFNVN	TGESRGDYGFFDVVH - - DNK
Bant_01004347(388-499)	ILS S--TLWNGTVVLDEQGNNVTKYNSNLIS LAKYDKNTNKYEFFNVN	TGESRGDYGFFDVVH - - DNK
BCZK3337(370-481)	ILS S - TLWNGTVVLDEQGNNVTKYNSNLIS LAKYDENTNKYEFFNVN	TGESRGDYGFFDVVH - - GNK
BCE_G9241_3590(370-481)	ILS S - TLWNGTVVLDDQGNDVTKYNSNLISLAKYDKNTNKYEFFNVN	TGESRGDYGFFDVVH - - GNK
BA5326(199-310)	ILGG - TLWHGTKVLDEAGNDVTQFNSNFISLAKFDDKSNKYEFFNSE	TGQSRGDYGYFDVLH - - EnK
BCZK4809(199-310)	ILGG-- TLWHGTKVLDEAGNDVTQFNSNFISLAKFDDKFNKYEFFNSE	TGQSRGDYGYFDVLH - - EnK
BT9727_4791(199-310)	ILGG-- TLWHGTKVLDETGNDVTQFNSNFISLAKFDDKSNKYEFFNSE	TGQSRGDYGYFDVLH - - EnK
BC5098(199-310)	I LGG-- TLWHGTKVLDEAGNDVTQFNSNFISLAKFDDKSNKYEFFNSE	TGQSRGDYGYFDVVH - - EnK
RBTH_06214(199-310)	ILGG - TLWHGTKILDEAGNDVTQFNSNFISLAKFDDKSNKYEFFNSE	TGQSRGDYGYFDVVH - - EnK
consensus $/ 80 \%$	ILut. . T. Wpgt VhDcstnditp.ntnhiulakadtpos + YEFFshp	GpSRGD.GhF. 1 sp . . . - sk
Secondary structure	Eefee Eeee eee eeeeee	
EF0374(62-172)	KRILISDTQN-YQAVVDLTEVTKDKFTYKRMGKDKDGKDVEVFVEHIP	111
EF0375(58-168)	KRILISRTQN-YQAVVDLTEVSKDKFTYKRLGKDKLGNDVEVYVEHIP	111
EF0376(59-172)	RLVII SETKN-YQGVYPLRTLYQDTFTYRQMGKDKNGNDIEVFVENKA	114
BA5326(58-168)	KRILISESMK-YQAVVDMTKLNKNVFTYKRMGKDANGNDVEVFVEHVP	111
BCZK4809(58-168)	KRILISESMK-YQAVVDMTKLNKNVFTYKRMGKDANGNDVEVFVEHVP	111
BT9727_4791(58-168)	KRILISESMK - YQAVVDMTKLNKNIFTYKRMGKDANGNDVEVFVEHVP	111
BC5098(58-168)	KRILISESMK - YQAVI DMTKLNKNVFTYKRMGKDANGKDVEVFVEHVP	111
RBTH_06214(58-168)	KRILISESMK - YQAVVDMTKLNKNVFTYKRMGKDANGKDVEVFVEHVP	111
BA3695(247-357)	KRVLI SETQN-YQAVVELTQLDKEKFTYKRMGKDAKRNDVEVFVEHIP	111
Bant_01004347(247-357)	KRVLI SETQN - YQAVVELTQLDKEKFTYKRMGKDAKRNDVEVFVEHIP	111
BT9727_3386(247-357)	KRVLI SETQN - YQAVVELTQLDKEKFTYKRMGKDAKGNDVEVFVEHIP	111
BCZK3337(229-339)	KRVLI SETQN-YQAVVELTQLDKEKFTYKRMGKDAKGNDVEVFVEHVP	111
BCE_G9241_3590(229-339)	KRVLI SETQN-YQAVVELTQLDKEKFTYKRMGKDVKGNDVEVFVEHIP	111
EF0376(223-336)	FRAHVSIGTNRYGAVLELTELNDNRFTYTRMGKDNEGNDI QVYVEHEP	114
EF0375(199-310)	IRAHVSIGTNRYGAALELTELNNDRFTYTRMGKDNAGNDIQVFVEHEP	112
EF0374(203-314)	IRAHVS IGDNKYGAALELTELNDKRFTYTRMGKDNNGKEIKVFVEHEP	112
BA3695(388-499)	IRAHVS LGNNKYGAVLELTELNKEKFTYTRMGKDANGKDIKIFVEHEP	112
BT9727_3386(388-499)	IRAHVS LGNNKYGAVLELTELNKEKFTYTRMGKDANGKDIKIFVEHEP	112
Bant_01004347(388-499)	IRAHVS LGNNKYGAVLELTELNKEKFTYTRMGKDANGKDIKIFVEHEP	112
BCZK3337(370-481)	IRAHVS LGNNKYGAVLELTELNKAKFTYTRMGKDANGKDIKIFVEHEP	112
BCE_G9241_3590(370-481)	IRAHAS LGNNKYGAVLELTELNKEKFTYTRIGKDANGKDIKIFVEHEP	112
BA5326(199-310)	IRAHVS IGNNKYGAALELTELNKNKFTYKRTGKDQAGNDITIFVEHEP	112
BCZK4809(199-310)	IRAHVS IGNNKYGAALELTELNKNKFTYKRTGKDQAGNDITIFVEHEP	112
BT9727_4791(199-310)	IRAHVS IGNNKYGAALELTELNKNKFTYKRTGKDQAGNDITIFVEHEP	112
BC5098(199-310)	IRAHVS IGNNKYGAALELTELNKNKFTYKRTGKDQAGKDITIFVEHEP	112
RBTH_06214(199-310)	IRAHVSIGNNKYGAALELTELNKNKFTYKRTGKDQAGKDITIFVEHEP	112
consensus/80\%		

Figure 4: BA3695 is homologous to proteins GBAA3695 from Bacillus anthracis str. "Ames Ancestor" and BAS342 from Bacillus anthracis str. Sterne. BA5326 is homologous to proteins GBAA5326 from Bacillus anthracis str. "Ames Ancestor," BAS4948 from Bacillus anthracis str. Sterne and Bant_01000199 from Bacillus anthracis str. A2012.
pairwise sequence identities corresponding to the IMxxH domain varies between $5-98 \%$. The secondary structure corresponding to IMxxH domain is predicted to comprise four $\alpha-$ helices as shown in Figure 5. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 18.

3.5. 103-amino-acid-residue VxxT domain

The 349-amino-acid-residue protein corresponding to the GENE_ID BA4716 and described as germination protein comprises a 103-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the region (67-169) as query identified 23 proteins (see

Table 1(e)). The proteins comprising this domain are described as germination proteins as the Bacillus anthracis is an endospore-forming bacterium. This domain region occurs twice in proteins of B. anthracis str. Ames, B. cereus, B. clausii, B. thuringiensis, B. thuringiensis serovar israelensis, Alkaliphilus metalliredigene, and Bacillus weihenstephanensis genomes and only once in the proteins of Syntrophomonas wolfei str. Goettingen, Moorella thermoacetica, Clostridium thermocellum, B. subtilis, and Pelotomaculum thermopropionicum genomes. The length of proteins varied between 195 to 377 -amino-acid residues. The multiple sequence alignment corresponding to this domain identified VxxT as sequence motif. This sequence motif occurs in the N -terminal region of each protein and the pairwise sequence identity

Secondary structure

BCE_G9241_1042_1(21-129) BCZK0933_1(21-129) BT9727_0941_1(21-129) BA1021_1(4-112) BAS0955_1(21-129) BAS0955_1(21-129) BC1029_1(21-129) BcerKBAB4DRAFT_3543_1(21-129) Bcer98DRAFT_1038_1(42-147) CTC02189(189-294) CbeiDRAFT_3331(190-295) ClosDRAFT_1658(189-294) CtheDRAFT_1311(189-294) CdifQ_02001573(138-241) CD1511(189-291) CPE0158_2(188-291) CPF_0149(188-291) CphyDRAFT_3436(189-292) DhafDRAFT_0725_2(197-302) BCZK0933_2(149-260) BT9727_0941_2(149-260) BA1021_2(132-243) BAS0955_2(149-260) BCE_G9241_1042_2(149-260) BC1029_2(149-260) RBTH_03050_2(149-260) BcerKBAB4DRAFT_3543_2(149-260) BcerKBAB4DRAFT_0307(35-147) Bcer98DRAFT_1038_2(167-279) CAC3450_1(190-295) CPE0158_1(9-119) DhafDRAFT_0725_1(12-122) CAC3450_2(9-121) AmetDRAFT_1908_1(11-115) AmetDRAFT_1908_2(133-245)

```
consensus/80\%
```


Secondary structure

BCE_G9241_1042_1(21-129) BCZK0933_1(21-129) BT9727_0941_1(21-129) BA1021_1(4-112) BAS0955_1(21-129) RBTH_03050_1(21-129) BC1029_1(21-129) BcerKBAB4DRAFT_3543_1(21-129) Bcer98DRAFT_1038_1(42-147)
CTC02189(189-294)
CbeiDRAFT_3331(190-295) ClosDRAFT_1658(189-294) CtheDRAFT_1311(189-294) CdifQ_02001573(138-241) CD1511(189-291) CPE0158_2(188-291) CPF_0149(188-291) CphyDRAFT_3436(189-292) DhafDRAFT_0725_2(197-302) BCZK0933_2(149-260) BT9727_0941_2(149-260) BA1021_2(132-243) BAS0955_2(149-260) BCE_G9241_1042_2(149-260) BC1029_2(149-260)
RBTH_03050_2(149-260) BcerKBAB4DRAFT_3543_2(149-260) BcerKBAB4DRAFT_0307(35-147) Bcer98DRAFT_1038_2(167-279)
CAC3450_1(190-295)
CPE0158_1(9-119)
DhafDRAFT_0725_1(12-122)
CAC3450_2(9-121)
AmetDRAFT_1908_1(11-115)
AmetDRAFT_1908_2(133-245)
consensus/80\%

HННННнHHHHHHHHHHHH

HHНННННННнHHHHHHHHH
ERS LNEIRFWSRIMKEHSLFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ…..IKRF ERS LNEIRFWSRIMKEHSLFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ…-IKRF ERSLNEIRFWSRIMKEHSLFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ… - IKRF ERS LNEIRFWSRIMKEHSLFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ-....IKRF ERS LNEIRFWSRIMKEHS LFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ - IKRF ERS LNEIRFWSRIMKEHSFFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQIKRF ERS LNEIRFWSRIMKEHSFFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAHSYTNETDPEQ…..IKRF ERS LNEIRFWSRIMKEHSFFLRLGFRCEDTQLIEEANQFYRLFEHIEQIAYSYTNETDPGQIKRF EKS LTENRFWLRIMKEHALFLGEGFNRKDTNLI QQVDQFFHLFDRHLQKAFSIP - -QTVQA .-...-VRQL RYAYEQET FWNR IMAEHAKFI RGL LDPTEDALIDTANNFGKEFDELTR - - - EAKRAMYKTM - - - - P I SKV REAYEQEAFWNRIMAEHSKFI RGLLDPTEDELINTANNFGHQFDILTR - - EARAAMNKSI-. - PISKV KEIYEQELFWNRIMAEHSKFIRGLLDPTEDELIHIANDFAKEFDALTA - - AVEEAIEKCL - - - PIDKI KEAYELQFFWNRQMAEHAKFIRGLLDPTENDLINQANDFGNEFDQLTA - - EAKAAMDATS - - - PMAKV KNAKEIELFWDHIMMEHAL FMRGLLDPSEGELINTSNDFAIKFNELIE-- KTN - - EMTDS - - - NIKNI KNAKEIELFWDHIMMEHAL FMRGLLDPSEGELINTSNDFAIKFNELIE-- KTN - - EMTDS - - - NIKNI VNI SKTEAFWNE IMMEHSLFIRGLLDPSEYELINTAHEFAFEFNELIQ---QLN - -NVTNV - - - TIDNV VNI S KTEAFWNE IMMEHS LFIRGLLDP SEYEL INTAHEFAFEFNELIQ---QLN - -NVTNV - - - TIDNV EDLKDDEL FWNQ IMMEHALFI RGL LDP TENDL IMQADDFASVYADLLD - - EAS - -TMTER-. - TMGDL CHMVEMQMFWDHIMKEHAEVI SHLLDPKEKAMITRADHFAQAYEQLLN - - QLGNGTVPDQ - - - SFRRI DA I IKENVFF LR IMADHAKFI GHLLDPSERKLVDTARNF SNDFDALMYQAIDLESMKPQSQ - TVPLLDQF DAI IKENVFFLRIMADHAKFIGHLLDPSERKLVDTARNF SNDFDA LMYQAIDLESMKPQSQ - TVPLLDQF DAI IKENVFFLRIMADHAKFIGHLLDPSERKLVDTARNFSNDFDALMYQAIDLESMKPQSQ - TVPLLDQF DAI IKENVFFLRIMADHAKFIGHLLDPSERKLVDTARNFSNDFDALMYQAIDLESMKPQSQ - TVPLLDQF DAI IKENVFFLRIMADHAKFIGHLLDPSERKLVDTARNFSNDFDALMYQAIDLESMKPQSQ - TVPLLDQF DA I I KENVFFLRIMADHAKFI GHLLDPSERKLVDTARNFSNDFDELMYQAIDLESMKPQSQ - TAPLLDQF DAI I KENVFFLRIMADHAKFI GHLLDPSERKLVDTARNFSNDFDELMYQAIDLESMKPQSQ-TVPLLDQF DAI I KENVFFLRIMADHAKFIGHLLDPSERKLVDTARNFSNDFDELMYQAIDLESMKPQSQ - TVPLLDQF DAI I SENVFWLRIMMEHSRFIGSLLDQSERNLVHTALKFGDDFEILLNQARDVESMLYQKEPTYPI IGKM DA I I S ENVFWLR IMMEHSRFIASLLDQSERNLVHTALKFGDDFEVLLSQARDVESMLYQKQPTYPI I GKM QG I I RQE I FWND IMEDHAEFIRGYLDPSQTS LFNTANNFVRRFDDIEN - - ATESLTNNPS - . - NLNNI TS S LELHLFFMRVMKEHAIFLEAGLGPKNSKLAKELDKCKGNLEKLLFDVVKLSKGRVRQSIVD - SGEVF RES LELHLFWARI IKEHLIFLESGFMCKDADWMQEADALKCSFEEI LHEANCLADGKVGIEVMK - SGELF RLS LELNLFFLRIVKEHNVI AGAS LPPKYAPTLMEI LAVNKKLDMLLSKTVALSKGNISREAMN - S STLI NVALFEHQFWLQVLGDHARFI LNALSPEEREEIQRAQYFIHIFDQLLE-..-ESRKSPRGS--ALSKL TQP I HYHMVWL LDAAGHSAGIMGDLDMVEKELIRKSGKFTQRFEEFYIKAVEIAGYTRTTLDQFPAFTRF
ct.hp..hFa. + IMt-HuhFlthhhcsp-ppLlppAppF.p.F-tl....phpt.p..pp.... lpph

ННННННН HНННННННН

NAEVQQAATNIWGFKRKI LGLI LTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKILGLILTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKILGLILTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKI LGLILTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKI LGLILTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKI LGLILTCKLPGQNNFPLLVDHTSREA NAEVQQAATNIWGFKRKI LGLILTCKLPGQNNFPLLVDHT SREA NSEVQQAATNIWGFKRKI LGLI LTCKLPGQNNFPLLVDHTSREA NEESIQLVYAFRNYKRNLLILI INCKVSGFN-FPLLVDHIAREA TNRS LRATRRIRNFKKQGTEGI LDCKIRSI I - I PLLADHTLREA TDES LEATKS I RNFKAQGTQGLVECKIKSI I - I PLLGDHTLREA TDKS LEATKEVRNFNTQGTEGLLDCKIRSI I - I PLLGDHVLRES TDES LKATEDFRNFKAQGTQAILECKVKS I I - IPLLGDHVLREA TEETLNETVEFKDFKEAGASGIEQCKIKSII - LPLLADHVLREA TEETLNETVEFKDFKEAGASGIEQCKIKSII - LPLLADHVLREA THEI LKETTRLRDFKEEGTKGIMNCNIKSLI - LPLLSDHVLREA THETLKETTRLRDFKEEGTKGIMNCNIKSLI - LPLLSDHVLREA TCRTLEETIKYRDFKLAGTKGINDCEIRSII - LPLLADHVLREA TSETIRVTGEFKDFKAAGTDAILCCQLRSLI - LPLIADHVLREA LDQNRVSVASLRDFKKTARDLIEQCKIKSII -HPLLADHVFREA LDQNRVSVASLRDFKKTARDLIEQCKIKSII - HPLLADHVFREA LDQNRVSVASLRDFKKTARDLIEQCKIKSII - HPLLADHVFREA LDQNRVSVAS LRDFKKTARDLIEQCKIKSII - HPLLADHVFREA LDQNRVSVAS LRDFKKTARDLIEQCKIKSI I - HPLLADHVFREA LDQNRVSVAS LRDFKKTARDLIEQCKIKSI I - HPLLADHVFREA LDQNRVSVTSLRDFKKTARDLIEQCKIKSI I - HPLLADHVFREA LDQNRVSVTSLRDFKKTARDLIEQCKIKSII -HPLLADHVFREA NKDSENATVELRNFKKAGLELIQTCQIRSVI - NPLLADHVTREA NKDSENATVELRNFKKAGLELIQTCQIRNVI - NPLLADHVVREA TRNIYSLVTEFRNFKSTATKGLLACKIKAIM-APLLADHVTREA TDYTLETEKKTEHYTGININSKITTMEKDLMC - - APKKGIDSKV TNKTLKAEQKTQELTCIPINSQLTVETMS LHP - - YMGVGMGMVP TPLTLPSEKVTSALTGVPINTAITSKEI SLGYRDYYRTGINMVT TDQAYGCAQEIRTFKLHLIKRHLVGKIEIGL-PPTFLNHMVNEV NYQVEGELLLFKKFLRELEALELNQKVLGTL - SALMLDHMAREE

109 109
109 109 109 109 109
106 106 106 104 104 104
104 106 106 112 112 112 112
112 112
113 113 106 111 111 113 105 113

Figure 5: BAS0955 is homologous to proteins BT9727_0941 from Bacillus thuringiensis serovar konkukian str. 97-27, BCZK0933 from Bacillus cereus E33L, and BCE_G9241_1042 from Bacillus cereus G9241. BA1021 is homologous to protein GBAA1021 from Bacillus anthracis str. "Ames Ancestor." BA0807 is homologous to proteins GBAA0807 from Bacillus anthracis str. "Ames Ancestor" and BAS0770 from Bacillus anthracis str. Sterne.

Secondary Structure
BT9727_4219_1(67-169) BCZK4235_1(67-169) BA4716_1(67-169) BCE4587_1(67-169) RBTH_05210_1(67-169) ABF83609_1(67-169) BC4495_1(67-169) BcerKBAB4DRAFT_4089_1(67-169) Bcer98DRAFT_3179_1(67-169) gerM (84-184)
BSU28380_1(84-184)
BL00314_1(87-187)
GK2667_1(76-177)
BH3070_1(87-186)
OB2107_1(69-172)
B14911_06091_1(82-181)
ABC2653_1(99-200) SwolDRAFT_2302(77-173) Moth_0516(72-172) MothDRAFT_0979(72-172) CtheDRAFT_0840(63-168) AmetTDRAFT_1640_1(62-164) GAA01614(67-167) BCE4587_2(220-319) BA4716_2(220-319) BT9727_4219_2(220-319) BCZK4235_2(220-319) ABF83609_2(20-319) BC4495_2(220-319) RBTH_05210_2(220-310) BcerKBAB4DRAFT_4089_2(220-319) Bcer98DRAFT_3179_2(219-318) BSU28380_2(234-336) BL00314_2(237-339) GK2667_2(227-327) B14911_06091_2(231-331) BH3070_2(236-335) ABC2653_2(250-349) OB2107_2(222-322) AmetDRAFT_1640_2(210-309)

consensus/80\%

Secondary Structure
BT9727_4219_1(67-169)
BCZK4235_1(67-169) BA4716 1(67-169) BCE4587_1(67-169) RBTH_05210_1(67-169) ABF83609_1(67-169)
BC4495_1(67-169)
BcerKBAB4DRAFT_4089_1(67-169) Bcer98DRAFT_3179_1(67-169) gerM (84-184)
BSU28380_1(84-184)
BL00314_1(87-187)
GK2667_1(76-177)
BH3070_1(87-186)
OB2107_1(69-172)
B14911_06091_1(82-181)
ABC2653_1(99-200)
SwolDRAFT_2302(77-173)
Moth_0516(72-172)
MothDRAFT_0979(72-172)
CtheDRAFT_0840(63-168)
AmetDRAFT_1640_1(62-164)
GAA01614(67-167)
BCE4587_2(220-319)
BA4716_2(220-319)
BT9727_4219_2(220-319)
BCZK4235_2(220-319)
ABF83609_2(20-319)
BC4495_2(220-319)
RBTH_05210_2(220-310)
BcerKBAB4DRAFT_4089_2(220-319)
Bcer98DRAFT_3179_2(219-318)
BSU28380_2(234-336)
BL00314_2(237-339)
GK2667_2(227-327)
B14911_06091_2(231-331)
BH3070_2(236-335)
ABC2653_2(250-349)
OB2107_2(222-322)
AmetDRAFT_1640_2(210-309)

EE
HHHHHHHHHH
VDKNGYVVPQTLAIPTPKANE-- -VIQQTLEYLVKDGPVTNLLPN - GFRAVIPANTSMT - - LDLKKDG VDKNGYVVPQTLAIPTPKANE - .- VIQQTLEYLVKDGPVTNLLPN - GFRAVIPANTSMT - - LDLKKDG VDKNGYVVPQTLAIPTPKANE-- -VIQQTLEYLVKDGPVTNLLPN-GFRAVIPANTSMT - - LDLKKDG VDKNGYVVPQTLAIPTPKANE-..-VIQQTLEYLVKDGPVTNLLPN - GFRAVI PANTSMT - - LNLKKDG VDKNGYVVPQTLAIPTPKANE - .- TVKQTLEYLVKDGPVTNLLPN - GFRAVIPANTTMT - LLDLKKDG VDKNGYVVPQTLAI PTPKANE-..-TVKQTLEYLVKDGPVTNLLPN - GFRAVI PANTTMT - - LDLKKDG VDKNGYVVPQTLA I PTPKANE - - - TVKQTLEYLVKDGPVTNLLPN - GFRAVI PANTTMT - - LDLKKDG VDKNGYVVPQT I AMPTPKANE - - - VVQQTLEYLVKDGPVTNLLPN - GFRAVLPANTTMT - - LNLKKGG VDKNGYVVPQTLALPI PKQSE-...VVKQTLEYLVKDGPVENILPN - GFRAVLPADTTMT - -VDLKKDG I DKNGYVVAQTLPLPKSES.......TAKQALEYLVQGGPVSEILPN - GFRAVLPADTTVN - -VDIKKDG I DKNGYVVAQTLPLPKSES -......TAKQALEYLVQGGPVSEILPN - GFRAVLPADTTVN - - VDIKKDG I DKNGYVTAQTLPLPKQEG - TAKQALEYLVEGGPVSNILPN - GFRAVLPADTTVN - -VDIKEDG I DKNGFVVPQTVELPKTQA…-.VAKQVLEYLVEDGPVSEMLPN-GFRAVIPAGTTVL-GTKLEKDG LDENGMVVPQTLPLPKSDG…- VLKQS LEYLVEGGPVTNLLPN - GFQAVLPPDTEMS - -VNL-EDG LDANGMVASQTLELPVPDTNE-..-VAAQVLEHLVKGGPVTPLLPN-GFQAVLPEGTEVL-GVNLQEDG VDKNGYVVPQTLTLPKTES -.....VATQALEYLMQNGPVTDMLPN - DFRAVLPADTKIS -VN - -VKDK I D SNGLVVPQTLTLPKTDS -......VMKQALEYLVEGGPINDILPN - GFRAVLPAGTEVD - IDHLKEEK ADKEELVMERR - EITRTEG -.....IARSTLQELLK-GPDN P- AYRNVFPEGTRLL - DINLKPDG DS SGNYLVAEKRSIPAVEG…...IARATIEELIKGPAPDSK… ...ILPTIPKGTVLK-DINIRPDG DS SGNYLVAEKRSIPAVEG…...IARATIEELIKGPAPDSK… - LLPTIPKGTVLK-DINIRPDG NEDNSKLKLEIRYIPVSETTKSVNHLAEIIVNELIKGPKVAG….-LKPTIPEGTKLRSAIKIEGDRDDKGLLI PVMRRIPWQEG…-. IAKAALEQLVDQPVLRDDLATIGLLPVLPPGTEVI - GISINEGTGSDAYLVREVHQVPFTREVAKAALEELINTAPSTPG… - AVRVLPPATKIR-GISIKDG -
 NNKQQYYVPVTRRVVEGKE - . . NDYAAIVDELVKGPIHQS $\ldots-\operatorname{L}$ LNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVVEGKE $-\cdots$ - NDYAAIVDELVKGPIHQS $\ldots . . \operatorname{L}$ LNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVVEGKE - . - NDYAAIVDELVKGPIHQS … . L L LNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVAEGKE - - - NDYAAI I DELVKGPIHQS - . . - LLNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVAEGKE - - - NDYATI IDELVKGPIHQS ….. LLNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVAEGKE NDYAAI IDELVKGPIHQS LLNDFNPGVKLI - TNPKLQDG NNKQQYYVPVTRRVAEGKE . . . NDYSAIVDELVKGPIQGS LLNDFNPGAKLI - TNPKVENG NNKRQYYVPVTRRVAEEKE - - - NEVETI INELVKGPSHSS...... LLNDFNPGVKLV - SEPKIQDG NEDS EYYVPVTKRIDNSEK $\cdots-$ - DDITAAINELAKGPSKVSG $\ldots-$ LLTDFSEDVKLV - SKPKIKDG
 QGNS TYYVPVTRRVSNKEK…-DDIAAAVNELIQGPEQGSG…-LVGVFQPDAKLV - DAPKYEDG EEGAYYYVPVTKRISAQED - . - NQVEAVVKELVKGPSFTSN - . - LFTDFMPEVELL - GDPKIENG SGDQTYYVPVTRRVNVKDNSFATAVEELLNGPMVTSP LVTDFRNGVELL - DEPKYENG NDEDTYYVPVTKRVENVDNELEAAINELIDGPS LMTN LLTEMSGDVELL -NEPKLQNG QENNRYYVPVTQYIETNED…-EAIANI IKELIDGPGHQSK… - VVNVFNPEAGLA - SEPTLNNG NGEDDFFIPITRGLNVLKA - DTKSVLTALVEGAPVGSG…-LHSEIPYGASIN - - DVYVRDG
scptYhVs.Thtlstsct......htthlc.Llcss.hps.....hhsshssssphh...shhp-G

EEEEEE

НнНнннННнН
EEEE
TAVIDFSKEMKNYA - - - KEEERQIVESIAWTLTQFK-EVKQVQFQ TAVIDFSKEMKNYA - - - KEEERQIVESIAWTLTQFK-EVKQVQFQ TAVIDFSKEMKNYA - . . . KEEERQIVES I AWTLTQFK - EVKQVQFQ TAVIDFSKEMKNYA - - - KEEERQIVESIAWTLTQFK-EIKQVQFQ TAVIDFSKEMKNYA… KEEERQIVESIAWTLTQFT-EIKQVQFQ TAVIDFSKEMKNYA - .-. KEEERQIVESIAWTLTQFT -EIKQVQFQ TAVIDFSKEMKNYA…-KEEERQIVESIAWTLTQFT -EIKQVQFQ TAVIDFSKEMKNYS -.- KEEERQIVESVAWTLTQFT - EIKQVQFQ TAVIDFSKEMQNYK - .- KEEERQIVESVAWTLTQFK - DIKQVKFQ TAIADFSNEFKNYK -... KEDEQKIVQSVTWTLTQFS - S IDKVKLR TA I ADF SNEFKNYK - .-. KEDEQKIVQSVTWTLTQFS - S IDKVKLR TAI ADF SNEFKNYK…AEDEQKIVQAITWTLTQFN - S I DKVKLR TLIADFSPEFKNYK -...-PEDEKRILQSITWTLTQFD -NIKRVKIR VAVVDFSKEFTEYD - - - GEKEQQI LQSI TWTLTQFE - NVEKVKLQ TI I VDLSEEFTQYE VATVDFSKEFGDYQ ATVDFSKEFGDYQ AEDEEKILESITWTLTQF-SVHKVKLR LA IVNFS SEFNDYN -. . LADEKQIFEAVTWTLTQFP - DVEEVKVE TCI LDF S SELRRLEN - - EVEEKQMLDAVCQTLAQFP - AVKQLVFM LARVDFSKELVANHS - GGS LGESLTVYS IVNTLTQFP - TIKQVQFL LARVDFSKELVANHS - GGSLGESLTVYS IVNTLTQFP - TIKQVQFL VA I VDF TKEFRDNHP - GGKAEERMTIYSVVNS LTELK - EINKVKFL LSKVDFNEQLLAYQS ---EIDENAIVKSIVYTLTEFD-SIDQVQIM LATVDFSRDVLRANT-G-ASGEALGIQSIVNTLTEFP - EVQKVSFL NLTLNFNENIFINP - - DKNMI SNYVLKSLVLSLTEKK-GVKSVSIE NLTLNFNENIFINP - - DKNMI SNYVLKS LVLS LTEKK-GVKSVSIE NLTLNFNENIFINP - - DKNMI SNYVLKSLVLSLTEKK-GVKSVSIE NLTLNFNENIFINP--DKNMI SNYVLKSLVLSLTEKK - GVKSVSIE NLTLNFNENIFVNP - - DKNMI SNYVLKSLVLSLTEKK - GVKNIS IE NLTLNFNENIFVNP - - DKNMI SNYVLKSLVLSLTEKK-GVKNISIE NLTLNFNENIFVNP - - DKNMI SNYVLKSLVLSLTEKK-GVKNVS IE NI TLNFNENIFVNP - - DKNMI SNYVLKSLVLSLTEKQ-GVKNVSIE KVTLNFNENIYANK - - DKNMI SNYVLQSLVLS LTEKQ-GVKNVSVE RVTLDFNQS IFGSADEKTKMI S SEVLNS IVLTLTEQP - DVKSVSVK HVTLDFNEAIYGSADGQKKVI SDEVLNSIVLTLTELP -DVKSVSVT KVTLNFNEGIYGSN - - KKNVI SDVVLNS LVLS LTEQK - GVESVAIT LATLDFNESVYGSF--EEKI I SQHLLNSLVLSLTEQK - GIESVAVT VVTLNFNEALLSQM--QATAVSDEI INMLALTLTEQD-GVEKVAIQ EVVLDFNEAIQSAN - - EGSAIPTSVLESLALTLTEQG-GIEKVSIQ I LEVVFNKEILADS - - EQGI I ADEVMETMVRTLTEQP - NIDAVDVK I AYIDFTEEIRNVP - - VNEKHQQSLVYELGLTLREVEPSIHQVRIL

Figure 6: BA4716 is homologous to proteins GBAA4716 from Bacillus anthracis str. "Ames Ancestor," BAS4378 from Bacillus anthracis str. Sterne, and Bant_01005366 from Bacillus anthracis str. A2012. BT9727_4219 is homologous to protein BCZK4235 from Bacillus cereus E33L. BA4716 is homologous to protein BL02986 from Bacillus licheniformis ATCC 14580.

Secondary structure
BC4088_1(47-130)
RBTH_02670_1(47-130)
BCE_G9241_4093_1(45-128)
BA4310_1(45-128)
BT9727_3829_1(45-128)
Bant_01004966_1(51-134)
BCE4157_1(45-128)
BCZK3845_1(45-128)
BcerKBAB4DRAFT_2040_1(46-128)
GK0969(45-128)
BL05305(45-129)
BSU30660(44-127)
OB2488(50-134)
B14911_05359_1(53-137)
BH0678_1(45-129)
ABC0230(45-129)
ABC4088(44-127)
BH0983(47-131)
B14911_09907(34-118)
ExigDRAFT_1796(51-135)
BAA83944_1 (46-130)
BH1853(46-130)
OB3282(48-131)
BCE_G9241_4093_2(163-245)
BC4088_2(165-247)
RBTH_02670_2(165-247)
BcerKBAB4DRAFT_2040_2(158-240)
BT9727_3829_2(163-245)
Bant_01004966_2(169-251)
BA4310_2(163-245)
BCE4157_2(163-245)
BCZK3845_2(163-245) Bcer98DRAFT_3614(94-176) B14911_05359_2(187-271)
BH0678_2(159-242)
ExigDRAFT_0574(52-137)
consensus/80\%

Secondary structure
BC4088_1(47-130) RBTH_02670_1(47-130)
BCE_G9241_4093_1(45-128)
BA4310_1(45-128)
BT9727_3829_1(45-128)
Bant_01004966_1(51-134)
BCE4157_1(45-128)
BCZK3845_1(45-128)
BcerKBAB4DRAFT_2040_1(46-128)
GK0969(45-128)
BL05305(45-129)
BSU30660(44-127)
OB2488(50-134)
B14911_05359_1(53-137)
BH0678_1(45-129)
ABC0230(45-129)
ABC4088(44-127)
BH0983(47-131)
B14911_09907(34-118)
ExigDRAFT_1796(51-135)
BAA83944_1(46-130)
BH1853(46-130)
OB3282(48-131)
BCE_G9241_4093_2(163-245)
BC4088_2(165-247)
RBTH_02670_2 (165-247)
BcerKBAB4DRAFT_2040_2(158-240
BT9727_3829_2(163-245)
Bant_01004966_2(169-251)
BA4310_2(163-245)
BCE4157_2(163-245)
BCZK3845_2(163-245)
Bcer98DRAFT_3614(94-176)
B14911_05359_2(187-271)
BH0678_2(159-242)
ExigDRAFT_0574(52-137)

EEEEEE
EEEEE
EEEEE
IKPGEKTEVQALVTQGKEKVTDADDVKFEIWKDGD - - EKHEMLDGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKXTDADDVKFEIWKDGD--EKHEMLDGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKERVTDADDVKFEIWKDGD--EKHEMLDGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKVTDADDVKFEVWKAGD--EKHEMLEGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKVTDADDVKFEVWKAGD - -EKHEMLEGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKVTDADDVKFEVWKAGD - -EKHEMLEGKHKGKGVYAVEKTFETDG I KPGEKTEVQALVTQGKEKVTDADDVKFEIWKAGD - - EKHEMLEGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKVTDADDVKFEIWKAGD--EKHEMLEGKHKGKGVYAVEKTFETDG IKPGEKTEVQALVTQGKEKVTDADDVKFEIWKAGD--EKHEMLNAKHKGKGVYAVEKTFETDG I DLNKPTKLACVVTYGGEKVDDANEVKFEVWKHGS - - DEREMLEAKHDGDGRYSVEKTFTEAG AAKNEKAVIKATVLYGEEPVADADEVEFECWKAGSK - EDSELIKAKNEGKGVYSMEKAFPEDG VNPGESAAYEAAVSYGDEAVTDADEVEFEVWKEGEK - DASQMFKVKQE - KGVYRLETTFKEDG VETGETIDLTAHVTYGDAPVEDADEVIFEVWTQGNS - DQSVELEGKHQENGTYTASYTFEEEK VELNEEITLSVEVVQGEEAVEDADEVKFEIWQEGNQ - EESEMLPAEHTGKGIYQAAKTFGKDG LASGENMTFDVLVTQNEAPVEDAREVIVEFWQEGAK - EESDMIESTNEGGGVYRVTYEFPEDG IEIGEEI LLSVQLAQGEVQVEDADEVVFEVWKDQER - DNGTLQEATHQENGVYEITHTFDEDG LEL - ENIVLEAKVMQGDEPVDDAEEVVFEVWPYDDR - EESEFHEASYAESGLYQAPLALEEAG LI PNTPHELAIHVTQGDENVTDATDIQFEIWQGHDR - EQGELIEASHVEDGIYLVEYEFPEDG FAAGEDVPIRAVLTQNGEKVAGADYVHFEIWKRDGS -VHYPMEEAADEGEGVYQLTKKFEQDG ADQEKQYRFGATLWQDQKAVKEAEYVHFEIWKADGT - LRYSMEPADETKPGVYSIEKKLPKEG LVTDQEESLTVSLSHNGEI LSKVDS LHVHIWKHDHT - VAYHFEQLETDQDGAFNLPLTFESDG LVTDQEESLTVSLSHNGEI LSKVDS LHVHIWKHDHT - VAYHFEQLETDQDGAFNLPLTFESDG I EAKENTEVTFELSQNGESVSTLDDLSVTTWMVDSE-TTKQLVAENVG - NGEYSVETSFDQDG I KANAES TMKVHLKQKE - EALTGAEVQLEIWKDGV - - EKHEFI PAKEGNKGEYETKHTFKENG I KANAES TMKVHLKQKE - EALTGAEVQLEIWKDGV - -EKHEFIPAKEGNKGEYETKHTFKENG I KANAES TMKVHLKQKE - EALAGAEVQLEIWKDGV - - EKHEFI PAKEGNKGEYETKHTFKENG I KANAESTMKVHLKQKE - EALSGAEVQLEIWKDGV - - EKHEFIPAKEGNKGEYESKHTFKENG IKANAES TMKVHLKQKE - EALTGAEVQLEIWKDGV - -EKHEFIPAKEGNKGEYETKHTFKENG I KANAESTMKVHLKQKE - EALTGAEVQLEIWKDGV - - EKHEFIPAKEGNKGEYETKHTFKENG I KANAESTMKVHLKQKE - EALTGAEVQLEIWKDGV - - EKHEFIPAKEGNKGEYETKHTFKENG I KANAES TMKVHLKQKE - EALTGAEVQLEIWKDGV - - EKHEFIPAKEGNKGEYETKHTFKENG I KANAES TMKVHLKQKE - EALTGAEVQLEIWKDGV - -EKHEFIPAKEGNKGEYETKYTFKEKG VKANAESTLKAHVKQKE - EALTKAEVQFEIWKDGV - -EKHTFITAKEDNKGEYVGKYTFKESG I HMKQAAGLDVQVDKKDGAPLEKALVKLEIMKEGK - - DTPEWVNLKESGEGKYSAEHSFAEAG IQAGEETTLLIVVEHKD - KPFTGGVLTLEVWQHED--EAHTWLDTEETDVGQYEVSHTFADAG KTMENQKVVFQATALENKKAVNLENVAFEVWKADEKEAVHQKFKAALKKTGTYQAEAKLA - EG
lp.stptphpshlpptc.ts.sus-VphElWKtss..-ppphh.ucpttpG.YtsphoFtpsG

EEEEEEE
E E
VYHI I AHTNARE-MHVMPEVKVAV 84 VYHIIAHTNARE-MHVMPEVKVAV 84 VYHI I PHTNARD-MHVMPEHKVAV 8 VYHI I AHTNARE-MHVMPEVKVAV VYHI I AHTNARE - MHVMPEVKVAV VYHI I AHTNARE-MHVMPEVKVAV VYHI I AHTNARE-MHVMPEVKVAV VYHI I AHTNARE - MHVMPEVKVAV VYHVI AHTNARE-MHVMPEVKVAV TYS VVAHVTARD - MHNMPKKDIVA HYKVQVHVTAKK - QHTMPVADIKV VYTVQSHVTAKK-QHSMPTLKVQV VYEMYAHTTAEA - IHSMPFKTVIV DY I VQVHVTARD - MHTMPKAEVQA LYFVQPHVTARD - MHRMPLYELTI I Y I VQTHVTARD - MHVMPKQMIVA YMVQVHVTARG - MHVMPTQPLFA I YFVQAHVTARG - LHVMPTERLIV VYI IKVHASSGG - SLIMPQKQFVV LYYIKVHA S SNG - AMIMPTRQFIV LYYMKVDVTHNG - DTIMPTAQLIV LYYMKVDVTHNG - DTIMPTAQLIV I YHMKVTASKNN - AT IMPTKQF IV AYKVKVHVRKGE - LHEHKEETIEV AYKVKVHVRKGE - LHEHKEETIEV AYKVKVHVRKGE - LHEHKEETIEV AYKVKVHVRKGE - LHEHKEETVEV SYKVKVHVKKGE - LHEHKEETVEV SYKVKVHVKKGE - LHEHKEETVEV SYKVKVHVKKGE - LHEHKEETVEV S YKVKVHVKKGE - LHEHKEEXVEV SYKVKVHVKKGE - LHEHKEETVEV KYKVKVHVRKGD - LHEHKEETVEV SYTVTVHVENS EGLHEHSDFPLTV EYHVVFHIEDDTGLHEHIHEALIV EYEGLYHINDKNGLHHMDK I S FVV 86

Figure 7: BA4310 is homologous to proteins GBAA4310 from Bacillus anthracis str. "Ames Ancestor," BAS3998 from Bacillus anthracis str. Sterne, and BT9727_3829 from Bacillus thuringiensis serovar konkukian str. 97-27.

Secondary structure
BCZK2413_2(120-222)
BT9727_2444_2(120-222)
BA2665_2(120-222)
Bant_01003317_2(124-226)
BCE2700_2(122-224)
BCE_G9241_CNI_0263_2(122-224)
BcerKBAB4DRAFT_0535_2(120-222)
BC2674_2(122-224)
Bcer98DRAFT_0128_2(122-224)
BA2665_1(16-119)
Bant_01003317_1(20-123)
BCZK2413_1(16-119)
BT9727_2444_1(16-119)
BcerKBABB4DRAFT_0535_1(16-119)
BCE2700_1(16-121)
BCE_G9241_CNI_0263_1(16-121)
BC2674_1(16-121)
Bcer98DRAFT_0128_1(16-121)
consensus/80\%

Secondary structure
BCZK2413_2(120-222)
BT9727_2444_2(120-222)
BA2665_2(120-222)
Bant_01003317_2(124-226)
BCE2700_2(122-224)
BCE_G9241_CNI_0263_2(122-224)
BcerKBAB4DRAFT_0535_2(120-222)
BC2674_2(122-224)
Bcer98DRAFT_0128_2(122-224) BA2665_1(16-119)
Bant_01003317_1(20-123)
BCZK2413 1(16-119)
BT9727_2444_1(16-119)
BcerKBAB4DRAFT_0535_1(16-119)
BCE2700_1(16-121)
BCE_G9241_CNI_0263_1(16-121)
BC2674_1(16-121)
Bcer98DRAFT_0128_1(16-121)

EEEEE
HH H
HHHHH
VYNTGFIGVVFADLCSIDRFNFEF-. EMGMLTKLMKDMI I PVKELFLRHNVPAYISTSHLEEQNK VYNTGFIGVVFADLCSIDRFNFEF-.-EMGMLTKLMKDMI I PVKELFLRHNVPAYISTSHLEEQNK VYNTGFIGVVFADLCSIDRFNFEF-- EMGMLTKLMKDMI I PVKELFLRHNVPAYISTSHLEEQNK VYNTGFIGVVFADLCSIDRFNFEF--EMGMLTKLMKDMI IPVKELFLRHNVPAYISTSHLEEXNK VFNTGFIGVVFADLCSIDRFNFEF-. EMGMLTKLMKDMI I PVKELFLRHNVPAYISTSHLEEQNK VFNTGFIGVVFADLCSIDRFNFEF-. EMGMLTKLMKDMI IPVKELFLRHNVPAYISTSHLEEQNK VFNTGFIGVVFADLSSIDRFNFEF - - EMGMLTKLMKDMI I PVKELFLRHNVPAYISTSHLEEQNK VFNTGFIGVVFADLSSIDRFNFEF-. EMGMLTKLMKDMI I PVKELFLRHNVPAYIST SHLEEQNK VFNTGFIGVVFADLSSIDRFNFEF-. EMNMLFKLMKDMI I PVKELFLRHNIPAYISTSHLETQNK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATSSLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATSSLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATSSLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATS SLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATSALFKEHNTAAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATS SLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATS SLFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFARKKLQIVHHVLDGLSGATSALFKEHNI SAYMSCVYLHKQKK I SNTGFIGSVFIDTLELQKKSYYFSRKKLQIVHHVLDGLAEATSSLFHEHEVAAYI SCVYLHKQKK

1. NTGFIGsVFhDhhplp+hsa.F...chthlp+lhcsh.hssppLFhcHNlsAYhSssaLccQpK

EEEE HHHHHHHHHHH
LGFVLSIKPYDERAEADLYFEAYLKERGLFIG-DEEDDIDK 103 LGFVLSIKPYDERAEADLYFEAYLKERGLFIG-DEEDDIDK 103 LGFVLSIKPYDERAEADLYFEAYLKERGLFIG-DEEDDIDK 103 LGFVLS IKXYDERAEADLYFEAYLKERGLFIG-DEEDDIDK 103 LGFVLSVKPYDERAEADLYFEAYLKERGLFIG-DEEDDIDK LGFVLSVKPYDERAEADLYFEAYLKERGLFIG-DEEDDIDK LGFVLSVKPYDERAEADLYFETYLKERGLFIG-DEEDDIDK LGFVLSVKPYDERAEADLYFEAYLKERGLFIG -DEEDDIDK VGFVLSIKPYDERAEADLYFETYLKERGLFIG-DEEDEMDK I GFVLSTKPFEQ-SDGVAYFINYLIEKNFYG--NEEVEYQE I GFVLSTKPFEQ-SDGVAYFINYLIEKNFYG--NEEVEYQE I GFVLSTKPFEQ-SDGVAYFINYLIEKNFYG--NEEVEYQE I GFVLSTKPFEQ-SDGVAYFINYLIEKNFYG--NEEVEYQE I GFVLSTKPFEQ - SDGVSYFINYLIEKNFYG--NEEVEYQE I GFVLSTKPFEQ - SDGVAYFVNYLIEKNFYGNHDEDVEYQE I GFVLSTKPFEQ-SDGVAYFVNYLIEKNFYGNHDEDVEYQE I GFVLSTKPFEQ - SDGVAYFVNYLIEKNFYGGHDEDVEYQE I GFVLSTKLFEQ-TDGIAYFKNYLIEKNFYGKTDQEVEYQE
l GFVLShKPa-p.u-ushYF.sYLhE+shah..sEEs-hpc

Figure 8: BA2665 is homologous to proteins GBAA2665 from Bacillus anthracis str. "Ames Ancestor," BAS2482 from Bacillus anthracis str. Sterne. BT9727_2444 is homologous to protein BCZK2413 from Bacillus cereus E33L.
varied between $11-98 \%$. The secondary structure is predicted to comprise two α-helices and three β-strands as shown in Figure 6. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 19.

3.6. 84-amino-acid-residue ExW domain

The 246-amino-acid-residue protein corresponding to the GENE_ID BA4310 and described as hypothetical protein comprises an 84-amino-acid-residue region as two copies. Further BLAST searches using sequence corresponding to the domain (45-128) as a query identified 25 proteins (Table 1(f)) that are described as either conserved or hypothetical proteins. This domain region occurs as two copies in proteins of B. anthracis str. Ames, B. cereus, B. halodurans (GENE_ID BH0678), B. thuringiensis, B. thuringiensis serovar israelensis, Geobacillus kaustophilus, Bacillus weihenstephanensis, and Exiguobacterium sibiricum genomes and as single copy in proteins of B. clausii, B. halodurans (GENE_ID BH0983), B. licheniformis, B. subtilis, Exiguobacterium sp., and Oceanobacillus ihenyensis genomes. The length of proteins varied between 142 to 273 -amino-acid residues. The
multiple sequence alignment corresponding to this domain identified ExW sequence motif. The pairwise sequence identities corresponding to the ExW domain varied between 14$98 \%$. The secondary structure of this domain is predicted to comprise five β-strands and the conserved sequence motif is associated with one of the β-strands as shown in Figure 7. The representative domain architecture corresponding to proteins comprising this domain is shown in Figure 20.

3.7. 104-amino-acid-residue NTGFIG domain

The 232-amino-acid-residue protein corresponding to the GENE_ID BA2665 and described as a hypothetical protein comprises a 104-amino-acid-residue region as two copies in tandem. Further BLAST searches using sequence corresponding to the region (16-119) as query identified 9 hypothetical proteins comprising this domain from organisms such as B. anthracis, B. thuringiensis, Bacillus weihenstephanensis, and B. cereus. The protein corresponding to the GENE_ID BCZK2413 of B. cereus is described as groupspecific protein. The list of 9 proteins comprising this domain is shown in Table $1(\mathrm{~g})$. The length of proteins varied between 232 to 236-amino-acid residues. This domain
Secondary structure
BT9727_3378_2(139-176)
BcerKBAB4DRAFT_0944_2(139-176)
BA3686_2(139-176)
BCZK3328_2(139-176)
BCE_G9241_3579_2(139-176)
BCE3645_2(139-176)
RBTH_03615_2(139-176)
BC3626_2(139-176)
B14911_25780_2(138-175)
RBTH_03615_1(94-129)
BC3626_1(94-129)
BT9727_3378_1(94-129)
BCZK3328_1(94-129)
BA3686_1(94-129)
BCE_G9241_3579_1(94-129)
BCE3645_1(94-129)
BcerKBAB4DRAFT_0944_1(94-129)
B14911_25780_1(93-128)
consensus/80\%

Abstract

HHHHHHHH YKTTISAQFEYNRFTRDFFEDPNNKGKSKADAIAAWNE 38 YKTTISAQFEYNRFTRDFFEDPNNKGKSKADAIAAWNE 38 YKTTISAQFEYNRFTRDFFEDPNNKGKSKADAIAAWNE 38 YKTTISAQFEYNRFTRDFFEDPNNKGKSKADAIAAWNE YKTTISSQFEYNRFTRDFFEDPNNKGKSKADAI AAWNE YKTTISPQFEYNRFTRDFFEDPNNKGKTKADVI AAWNE YKTTIGAQFEYNRFTRDFFEDPNNKGKAKADAI AAWNE YKTTIGTQFEYNRFTRDFFEDPNNKGKAKADAIAAWNE YKSEIGRQFEYNQFI RDYYADQKNQGKSRAEA I AAWML FKEKIGTNFRFTVALQKFFK - - ENVGKTYEDAVAFWHE FKEKIGTNFRFTVALQKFFK--ENVGKTYEDAI AFWHE FKEKIGANFRFTVALQKFFK - - ENIGKTYEDAVAFWHE FKEKIGANFRFTVALQKFFK - - ENI GKTYEDAVAFWHE FKEKIGANFRFTVALQKFFK.-ENIGKTYEDAVAFWHE FKEKIGANFRFTVALQKFFK - - ENVGKTYEDAITFWYE FKEKIGANFRFTVALQKFFK - ENVGKTYEDAITFWYE FKEKI GANFRFTVALQKFFK - - ENVGKTYEDAI T FWYE FKSVIGSHFHFSTYI QDYFK - - HNPGKTYNDAVSAWHE 36 aKppIuspFcashhhpcFFc..pNhGKohtDAluhW.E

Figure 9: BT9727_3378 is homologous to protein BCZK3328 from Bacillus cereus E33L. BA3686 is homologous to proteins GBAA3686 from Bacillus anthracis str. "Ames Ancestor," BAS3417 from Bacillus anthracis str. Sterne, and Bant_01004341 from Bacillus anthracis str. A2012.

Secondary structure	EEE	EEEE EEE
BAS1577_2(128-220)	AKKYDTQVS LAPAVKNIVI LNND - DADD IVRVTGL	E S GDVVKVYGEATGG - EVIEKATVQG
BA1701_2(126-218)	AKKYDTQVS LAPAVKNIVI LNND - DADD IVRVTGL	E SGDVVKVYGEATGG - EVIEKATVQG
RBTH_03882_10(898-990)	AVKYESQVTAEPVGGNIVVLNND - GAADIVRVTGL	TAGDKVSVYNEETVQ - EAIGTATVAE
BAS1577_1(33-127)	AAEVAIVKTKAVTVDA ITVANNEKEAEDTIKVTGL	VTGD I VKVYDAA SKGKELGTTK - VAE
BA1701_1(31-125)	AAEVAIVKTKAVTVDA ITVANNEKEAEDTIKVTGL	VTGDIVKVYDAASKGKELGTTK - VAE
RBTH_03882_2(610-705)	VKYEAEPTTVAPAVEKITVSNNKVEAEDTITVSE	KKGDIVRVYEASKGGEAIVTSEAVAE
RBTH_03882_3(802-897)	VKYEAEPTTVAPAVEKITVSNNKVEAEDTITVSEL	KKGDIVRVYEASKGGEAIVTSEAVAE
RBTH_03882_1(418-513)	VKYEAEPTTVAPAVEKITVSNNKVEAEDTITVSEL	KKGDIVRVYEASKGGEAIVTSEAVAE
RBTH_03882_8(226-320)	VKYEAEPTTVAPAVEKITVSNNKVGNADAI TVSKL	KKGDIVRVYEASKGGAAIAASEAVAE
RBTH_03882_6(33-128)	AAEVTSAKTAALSVEKANI INNKKGETDT I TVSEL	KKGDIVRVYEASKGGEAI ATSEAVAE
RBTH_03882_4(321-416)	AVKYESQVTVAPAVDTVKVANNKAGDADT I TVSGV	AEGDLVRVYDASTEG - KELGNATVAK
RBTH_03882_5(706-800)	AVKYESQVTVAPAVDTVKVANNKAGDADT ITVSEV	TEGDVVKVYDASTEG - KELGNATVAK
RBTH_03882_7(514-608)	AVKYESQVTVAPAVDTVKVANNKAGDADT I TVSGV	AEGDLVRVYDASTEG - KELGNATVAK
RBTH_03882_9(129-224)	AMKYESEVTVAPAVDTVKVANNKAGDADT I TVSEL	APGDIVKI YDAS TGGNLKATSAAVAE
DSY3134_1(51-142)	VPFSEPLKTTTP - SAIEVRNYIEGIRDRVTVSSL	EEGDIVKIYPSEESN - TPSGTEAVKA
DSY3134_2(150-240)	P I PWLI YGHTGNWGEDVKLPRTPFDQSK-ASYPAY	- P I DANG I SDDNPLGI I YNQHI I I KG
consensus/80\%	sh..t..hThAssVcplpl.NNc.tstDhlpVot	
Secondary structure	EEE EEEEEE	
BAS1577_2(128-220)	NKTAVNVKIPQLGIEAG - KVYVTVTKPNKDESKRV	93
BA1701_2(126-218)	NKTAVNVKI PQLGIEAG - KVYVTVTKPNKDESKRV	93
RBTH_03882_10(898-990)	NKTAVNVVI PQLGEVAG - KIYVSVTKVNKDESKRV	93
BAS1577_1(33-127)	NATDATITGKDLLAVAGGTVYVSVQS KDQ LESPRT	95
BA1701_1(31-125)	NATDAT ITGKDLLAVAGGTVYVSVQS KDQ LESPRT	95
RBTH_03882_2(610-705)	GKTEATILGKDLLKVTGGTVYVSVQSENELESART	96
RBTH_03882_3(802-897)	GKTEATILGKDLLKVTGGTVYVSVQSENELESART	96
RBTH_03882_1(418-513)	GKTEATILGKDLLKVTGGTVYVSVQSENELESART	96
RBTH_03882_8(226-320)	GKTEATILGKDLLKVTGGTVYVSVQSENELESART	96
RBTH_03882_6(33-128)	GKVEVTITKKDLLKATGGTVYVSVQSESELESTRT	96
RBTH_03882_4(321-416)	DAKEATITGKDLLVSTGGTVYVTVTKPNKDESKRV	95
RBTH_03882_5(706-800)	DAKEATITGKDLLVSTGGTVYVTVTKPNKDESKRV	95
RBTH_03882_7(514-608)	EATEVKIEKTDLLVSTGGTVYVTVTKPNKDESKRV	95
RBTH_03882_9(129-224)	GKKEATITGKDLLVSTGGTVYVTVTKPNKDESKRV	96
DSY3134_1(51-142)	GQTSVTIEIDQLSEVYG-EIYVTVTRSGYEESDRV	92
DSY3134_2(150-240)	NGSRVTFYG - - YAQNAYKDFILLPSESVAKKTIE	91
consensus/80\%	stspsslhh.plhhssG.pVYVoVpp.sp.EStRs	

Figure 10: BA1701 is homologous to proteins GBAA1701 from Bacillus anthracis str. "Ames Ancestor," and Bant_01002313 from Bacillus anthracis str. A2012.
occurs twice in every protein of the bacillus species as shown in Table $1(\mathrm{~g})$. We refer to this as the NTGFIG domain based on the conserved sequence motif that is present at the N terminal part. The pairwise sequence identities between sequences corresponding to this domain varied between 31$99 \%$. The secondary structure corresponding to this domain is predicted to comprise three α-helices and two β-strands as shown in Figure 8. The representative domain architecture
corresponding to proteins comprising this domain is shown in Figure 21.

3.8. 36-amino-acid-residue NxGK repeat

The 193-amino-acid-residue protein corresponding to GENE_ID BA3686 and described as hypothetical cytosolic protein comprises a 36-amino-acid-residue region as two

Secondary structure		
RBTH_06405_4(259-331)	I K S SFSGYINKF -	73
pBMB165_3(175-247)	LKS SFRGYINKS	73
pE33L466_0092_4(259-328)	S KNMLKGYM	70
RBTH_06405_3(109-183)	KEWEFNKAPNKFWT	75
pBMB165_2(25-99)	KEWEFTKAPNKFWT	75
BA3147_2(109-183)	KEWEFSMTPNNFWT	75
Bant_01003795_1(25-99)	KEWEFSMTPNNFWT	75
BAS2924_2(116-190)	KEWEFSMTPNNFWT	75
BAS2924_3(191-265)	KEWEFSMTPNNFWT	75
pE33L466_0092_2(109-183)	KEWEFGMT PNNFWT	75
RBTH_06405_2(184-258)	KEWEFKMTPNGFWT	75
pBMB165_1(100-174)	KEWEFKMTPSGFWT	75
BAS2924_4(266-340)	KEWEYKFTPTGFWT	75
Bant_01003795_2(100-174)	KEWEYKFTPTGFWT	75
BA3147_3(184-258)	KEWEYKFTPTGFWT	75
pE33L466_0092_3(184-258)	KEWEFRVTPVGYWS	75
BA3147_1(34-108)	KEWEFGMAP LNFWT	75
BAS2924_1(41-115)	KEWEFGMAPLNFWT	75
RBTH_06405_1(34-108)	KEWEFRMTPLNFWT	75
pE33L466_0092_1(34-108)	KEWEFGMTP LNFWT	75
consensus/80\%	KEWEFphsP.t FWT	

Figure 11: BA3147 is homologous to protein GBAA3147 from Bacillus anthracis str. "Ames Ancestor."

Figure 12: BA3065 is homologous to protein GBAA3065 from Bacillus anthracis str. "Ames Ancestor."

Figure 13: BA0482 is homologous to proteins GBAA0482 from Bacillus anthracis str. "Ames Ancestor," BAS0458 from Bacillus anthracis str. Sterne, and Bant_01001108 from Bacillus anthracis str. A2012.

(b)

Figure 14: BA4081 is homologous to proteins GBAA4081 from Bacillus anthracis str. "Ames Ancestor," BAS3792 from Bacillus anthracis str. Sterne, and Bant_01004731 from Bacillus anthracis str. A2012.

BA2292

BAS3128
BC2244
BCE2326
BCZK2072
BT9727_2076
BCE_G9241_2259
BcerKBAB4DRAFT_2942
B14911_22687
Bcer98DRAFT_2673
RcasDRAFT_0590
RoseRSDRAFT_1732 $-\mathrm{PxV-57}$ PxV-57
BH1282
TTP0044
TTHB089
Chlo02001630

HaurDRAFT_2803 PxV-57 PxV-57-
NT01CX_1619 \quad PxV-57 PxV-57

SamaDRAFT_3539
rrnAC0576

Ava_3757

Figure 15: PxV-57 aa domain.

Figure 16: FxF-122 aa domain.

BA3695
BCZK3337
BT9727_3386
Bant_01004347
BCE_G9241_3590
BA5326
BC5098
BCZK4809
BT9727_4791
RBTH_06214

EF0374
EF0375
EF0376

Figure 17: YEFF-111 aa domain.

BA1021
BAS0955
BC1029
BCZK0933
BT9727_0941
RBTH_03050
BCE_G9241_1042
BcerKBAB4DRAFT_3543
AmetDRAFT_1908
Bcer98DRAFT_1038
CAC3450
CPE0158
CbeiDRAFT_3331
DhafDRAFT_0725
CtheDRAFT_1311
CTC02189
CphyDRAFT_3436
ClosDRAFT_1658
CD1511
CPF_0149
CdifQ_02001573

BcerKBAB4DRAFT_0307 IMxxH-109-I

Figure 18: IMxxH-109 aa domain.

Figure 19: VxxT-103 aa domain.
copies. Further BLAST searches using sequence corresponding to the region (94-129) as query identified 9 hypothetical proteins comprising this repeat region from the organisms B. anthracis, B. thuringiensis, B. thuringiensis serovar israelensis, Bacillus weihenstephanensis, and B. cereus (see Table 1(h)). The length of proteins varied between 189 to 193-amino-acid residues, and also consists a SAP domain at the N-terminus, in addition to the novel repeat described here. A SAP domain consists of two α-helices and is a DNAbinding motif that is involved in chromosomal organization [32]. Therefore, we believe that these repeats might also participate in a similar function. The multiple sequence alignment corresponding to this repeat identified NxGK sequence motif (Figure 9). The pairwise sequence identities between sequences corresponding to NxGK repeats varied between $36-97 \%$. The secondary structure is predicted to comprise a α-helix and the conserved sequence motif described above is also associated with α-helix. The representative domain architecture corresponding to proteins comprising the NxGK repeats is shown in Figure 22.

3.9. 95-amino-acid-residue VYV domain

The 225-amino-acid-residue protein corresponding to the GENE_ID BA1701 and described as a hypothetical protein comprises a 95 -amino-acid-residue region, as two copies in tandem. Further BLAST searches using sequence corresponding to the region (31-125) as query identified BAS1577 protein of B. anthracis, RBTH_03882 protein of Bacillus

BA4310
BC4088
BCE4157
BCZK3845
BT9727_3829
BH0678
Bant_01004966
RBTH_02670
BCE_G9241_4093
BcerKBAB4DRAFT_2040
B14911 05359
GK0969
BAA83944
Bcer98DRAFT_3614
ExigDRAFT_0574

Figure 20: ExW-84 aa domain.

Figure 21: NTGFIG-104 aa domain.
thuringiensis serovar israelensis, and DSY3134 of Desulfitobacterium hafniense Y51 that are described as hypothetical proteins. The length of proteins varied between 227 to $1674-$ amino-acid residues (see Table 1(i)). In RBTH_03882, this region occurs ten times and in tandem. The multiple sequence alignment corresponding to this domain identified characteristic sequence motifs; GDxV, VYV (see Figure 10). For the sake of simplicity, we refer to this 95 -amino-acid region as VYV domain. The pairwise sequence identities between sequences corresponding to VYV domains varied between $29-95 \%$. The secondary structure corresponding to VYV domain is predicted to comprise five β-strands. The representative domain architecture corresponding to proteins comprising the VYV domains is shown in Figure 23.

3.10. 75-amino-acid-residue KEWE domain

The 262-amino-acid-residue protein corresponding to the GENE_ID BA3147 and described as a hypothetical protein comprises a 75-amino-acid-residue region as three copies in

BA3686
BC3626
BCE3645
BCZK3328
RBTH_03615
BT9727_3378

BCE_G9241_3579
BcerKBAB4DRAFT_0944
B14911_25780

Figure 22: NxGK-36 aa repeat.

Figure 23: VYV-95 aa domain.

Figure 24: KEWE-75 aa domain.
tandem. Further BLAST searches using the sequence corresponding to the region (34-108) as query identified this domain in 6 proteins that are described as hypothetical proteins (see Table $1(\mathrm{j})$). This domain may exist as 2,3 , or 4 copies in these proteins. The length of proteins identified varied between 178 to 344 -amino-acid residues. The pairwise sequence identities between sequences corresponding to these regions varied between $22-69 \%$. These domains are present in tandem and associated with SPY, MIN, LYP, KEWE, and FWT conserved sequence motifs as indicated in the multiple sequence alignment (see Figure 11). We refer to these as the KEWE domain, and this sequence motif occurs at the C-terminus of the domain. The secondary structure corresponding to KEWE domain is predicted to comprise three α helices as shown in Figure 11. The representative domain architecture corresponding to proteins comprising the KEWE domain is shown in Figure 24.

3.11. 59-amino-acid-residue AFL domain

The 290-amino-acid-residue protein corresponding to the GENE_ID BA3065 and described as hypothetical protein comprises a 59-amino-acid-residue region as two copies.

Further BLAST searches using sequence corresponding to the region (13-71) as query identified that this region occurs twice in the proteins with GENE_ID's: BAS2851 and Bant_01003715 of B. anthracis strains, the protein with GENE_ID: BcerKBAB4DRAFT_1832 of Bacillus weihenstephanensis, and once in the protein with GENE_ID: RBTH_02124 of Bacillus thuringiensis serovar israelensis (see Table 1(k)). The lengths of the proteins varied between 145 to 297-amino-acid residues and are described as hypothetical proteins. The multiple sequence alignment corresponding to this domain identified two characteristic sequence motifs: RFxI and AFL (see Figure 12). We refer to this as the AFL domain. The sequence identities shared between AFL domains varied between $38-91 \%$. The secondary structure corresponding to the AFL domain is predicted to comprise of one α-helix and two β-strands and the conserved sequence motif AFL is a part of the α-helix. The representative domain architecture corresponding to protein comprising the AFL domain is shown in Figure 25.

3.12. 53-amino-acid-residue RIDVK repeat

The 159-amino-acid-residue protein corresponding to the GENE_ID BA0482 and described as a conserved domain protein comprises a 53-amino-acid region as two copies. BLAST did not identify this repeat in any other proteins; therefore this repeat is unique to B. anthracis str. Ames. The multiple sequence alignment corresponding to this repeat identified three characteristic sequence motifs: ITV, IGD, and RIDVK (Figure 13). We refer to this as the RIDVK repeat. The sequence identity shared between this RIDVK repeats in BA0482 is 45%. The secondary structure corresponding to the RIDVK repeat is predicted to comprise three β strands. The representative domain architecture corresponding to protein comprising the RIDVK repeat is shown in Figure 26.

BA0482

Figure 26: RIDVK-53 aa repeat.

BA4081

Figure 27: AGQF-41 aa repeat; GSAL-42 aa repeat.

3.13. (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat

The protein corresponding to the GENE_ID BA4081 comprises 462-amino-acid residues and described as conserved domain protein contains two novel repeat types. The sequence length corresponding to repeat types are 41 and 42-amino-acid residues and are present as two copies in BA4081. BLAST searches identified these repeats to be specific to this protein alone.
(a) The sequence alignment corresponding to 41 -amino-acid-residue repeat identified two characteristic sequence motifs: DLG and AGQF (Figure 14(a)). We refer to this as the AGQF repeat. The motif occurs at the C-terminal part of the repeat region. The sequence homology shared between this AGQF repeats is about 34%. The secondary structure corresponding to the AGQF repeat is predicted to comprise one α-helix. The representative domain architecture corresponding to protein comprising the AGQF repeat is shown in Figure 27.
(b) The sequence alignment corresponding to the 42-amino-acid-residue tandem repeat identified three characteristic sequence motifs: GYI, GSAL, and TING (Figure $14(\mathrm{~b})$) and is a glycine-rich repeat. We refer to this as the GSAL repeat. The sequence homology shared between this GSAL repeats is 52%. The secondary structure corresponding to the GSAL repeat is predicted to comprise one α helix and one β-strand. The representative domain architecture corresponding to protein comprising the GSAL repeat is shown in Figure 27. This protein is associated with a $27-$ amino-acid-residue Ribosomal_S7 region that is sandwiched between the 41-amino-acid-residue AGQF repeat and the 42 -amino-acid-residue GSAL repeat. These two repeats are specific to this protein alone and are therefore B. anthracis str. Ames specific.

From the analysis of the B. anthracis proteome, we observed that the novel repeats and domains are present in all the strains, such as Ames, Ames ancestor, Sterne, and A2012, that have been sequenced so far. This indicates that these strains of B. anthracis have diverged recently. We also observed that the domains PxV, FxF, YEFF, VxxT, ExW, and VYV are present in proteins from several bacterial organisms. The domains NTGFIG, KEWE, AFL, and the repeats NxGK are specific to bacillus. It is interesting to note that the domains VYV and AFL are present in all the B. anthracis species
while absent in B. cereus genomes. The repeats RIDVK, AGQF, and GSAL are also specifically present only in all the strains of B. anthracis. This analysis explains some differences in the closely related B. anthracis and B. cereus genomes. The identification of these novel domains and repeats in subsequently sequenced genomes will add value to their annotation.

4. CONCLUSIONS

A systematic analysis using computational tools identified four novel repeats and ten domains corresponding to the B. anthracis str. Ames proteome. Further database searches identified that some novel repeats and domains are also present in other bacterial genomes. The NxGK repeats are associated with SAP domain. The SAP domain is a DNAbinding motif that is involved in chromosomal organization. Therefore, we believe that these repeats also participate in similar function. The YEFF domain-containing proteins are associated with RGD motif and may be involved in cell adhesion. The identification of novel repeats and domains corresponding to B. anthracis proteome may be useful for annotation. From the presence of VYV and AFL domains in all the B. anthracis species and their absence in B. cereus genomes, we identified some differences in these two genomes that are otherwise closely related.

ACKNOWLEDGMENTS

The first author thanks UGC, New Delhi, for a JRF fellowship. The second author thanks DBT, New Delhi, for project funding. The third author thanks DBT, New Delhi, for research funding.

REFERENCES

[1] R. Okinaka, K. Cloud, O. Hampton, et al., "Sequence, assembly and analysis of pX01 and pX02," Journal of Applied Microbiology, vol. 87, no. 2, pp. 261-262, 1999.
[2] T. C. Dixon, M. Meselson, J. Guillemin, and P. C. Hanna, "Anthrax," New England Journal of Medicine, vol. 341, no. 11, pp. 815-826, 1999.
[3] I. Uchida, T. Sekizaki, K. Hashimoto, and N. Terakado, "Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid," Journal of General Microbiology, vol. 131, no. 2, pp. 363-367, 1985.
[4] I. Uchida, K. Hashimoto, and N. Terakado, "Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids," Journal of General Microbiology, vol. 132, no. 2, pp. 557559, 1986.
[5] S. H. Leppla, "Anthrax toxins," in Bacterial Toxins and Virulence Factors in Disease, J. Moss, B. Iglewski, M. Vaughn, and A. T. Tu, Eds., pp. 543-572, Marcel Dekker, New York, NY, USA, 1995.
[6] M. J. Pallen, A. C. Lam, M. Antonio, and K. Dunbar, "An embarrassment of sortases - a richness of substrates?" Trends in Microbiology, vol. 9, no. 3, pp. 97-101, 2001.
[7] J. M. Patti, B. L. Allen, M. J. McGavin, and M. Hook, "MSCRAMM-medicated adherence of microorganisms to host tissues," Annual Review of Microbiology, vol. 48, pp. 585617, 1994.
[8] W. W. Navarre and O. Schneewind, "Surface proteins of grampositive bacteria and mechanisms of their targeting to the cell wall envelope," Microbiology and Molecular Biology Reviews, vol. 63, no. 1, pp. 174-229, 1999.
[9] D. M. Guttmann and D. J. Ellar, "Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors," FEMS Microbiology Letters, vol. 188, no. 1, pp. 7-13, 2000.
[10] A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, "Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis," Journal of Bacteriology, vol. 176, no. 5, pp. 1224-1233, 1994.
[11] A. Lupas, "A circular permutation event in the evolution of the SLH domain?" Molecular Microbiology, vol. 20, no. 4, pp. 897-898, 1996.
[12] T. D. Read, S. N. Peterson, N. Tourasse, et al., "The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria," Nature, vol. 423, no. 6935, pp. 81-86, 2003.
[13] I. Letunic, R. R. Copley, S. Schmidt, et al., "SMART 4.0: towards genomic data integration," Nucleic Acids Research, vol. 32, pp. D142-D144, 2004.
[14] N. J. Mulder, R. Apweiler, T. K. Attwood, et al., "The InterPro database, 2003 brings increased coverage and new features," Nucleic Acids Research, vol. 31, no. 1, pp. 315-318, 2003.
[15] A. Bateman, E. Birney, L. Cerruti, et al., "The Pfam protein families database," Nucleic Acids Research, vol. 30, no. 1, pp. 276-280, 2002.
[16] X. Yu, C. C. S. Chini, M. He, G. Mer, and J. Chen, "The BRCT domain is a phospho-protein binding domain," Science, vol. 302, no. 5645, pp. 639-642, 2003.
[17] B. Kobe and J. Deisenhofer, "The leucine-rich repeat: a versatile binding motif," Trends in Biochemical Sciences, vol. 19, no. 10, pp. 415-421, 1994.
[18] M. A. Andrade, C. Perez-Iratxeta, and C. P. Ponting, "Protein repeats: structures, functions, and evolution," Journal of Structural Biology, vol. 134, no. 2-3, pp. 117-131, 2001.
[19] M. A. Andrade, F. D. Ciccarelli, C. Perez-Iratxeta, and P. Bork, "NEAT: a domain duplicated in genes near the components of a putative Fe^{3+} siderophore transporter from Gram-positive pathogenic bacteria," Genome Biology, vol. 3, no. 9, pp. 0047.10047.5, 2002.
[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol. 215, no. 3, pp. 403-410, 1990.
[21] A. Heger and L. Holm, "Rapid automatic detection and alignment of repeats in protein sequences," Proteins: Structure, Function and Genetics, vol. 41, no. 2, pp. 224-237, 2000.
[22] M. A. Andrade, C. P. Ponting, T. J. Gibson, and P. Bork, "Homology-based method for identification of protein repeats using statistical significance estimates," Journal of Molecular Biology, vol. 298, no. 3, pp. 521-537, 2000.
[23] R. Mott, "Accurate formula for P-values of gapped local sequence and profile alignments," Journal of Molecular Biology, vol. 300, no. 3, pp. 649-659, 2000.
[24] R. Szklarczyk and J. Heringa, "Tracking repeats using significance and transitivity," Bioinformatics, vol. 20, supplement 1, pp. i311-i317, 2004.
[25] S. F. Altschul, T. L. Madden, A. A. Schäffer, et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Research, vol. 25, no. 17, pp. 3389-3402, 1997.
[26] J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice," Nucleic Acids Research, vol. 22, no. 22, pp. 4673-4680, 1994.
[27] B. Rost, C. Sander, and R. Schneider, "PHD-an automatic mail server for protein secondary structure prediction," Computer Applications in the Biosciences, vol. 10, no. 1, pp. 53-60, 1994.
[28] L. Falquet, M. Pagni, P. Bucher, et al., "The PROSITE database, its status in 2002," Nucleic Acids Research, vol. 30, no. 1, pp. 235-238, 2002.
[29] C. P. Ponting, R. Mott, P. Bork, and R. R. Copley, "Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution," Genome Research, vol. 11, no. 12, pp. 1996-2008, 2001.
[30] S. M. Akula, N. P. Pramod, F.-Z. Wang, and B. Chandran, "Integrin $\alpha 3 \beta 1$ (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells," Cell, vol. 108, no. 3, pp. 407-419, 2002.
[31] S. E. D'Souza, M. H. Ginsberg, and E. F. Plow, "Arginyl-glycylaspartic acid (RGD): a cell adhesion motif", Trends in Biochemical Sciences, vol. 16, no. 7, pp. 246-250, 1991.
[32] L. Aravind and E. V. Koonin, "SAP-a putative DNA-binding motif involved in chromosomal organization," Trends in Biochemical Sciences, vol. 25, no. 3, pp. 112-114, 2000.

[^0]: ${ }^{1}$ The multiple sequence alignments corresponding to representative repeats and domains from various proteins along with their GENE or SWall identifiers. (a) PxV domain, (b) FxF domain, (c) YEFF domain, (d) IMxxH domain, (e) VxxT domain, (f) ExW domain, (g) NTGFIG domain, (h) NxGK repeat (i) VYV domain, (j) KEWE domain, (k) AFL domain, (l) RIDVK repeat, (m)(a) AGQF repeat and (b) GSAL repeat. The numbers given in brackets indicate the start and end of amino-acid-residue positions corresponding to either the repeat or domain. The 80% consensus is labeled according to the alignment to the alignment generated at the website http://www.bork.embl-heidelberg.de/Alignment/consensus.html: alcohol (o, ST); aliphatic (I, ILV); any (•, ACDEFGHIKLMNPQRSTVWY); aromatic (a, FHWY); charged (c, DEHKR); hydrophobic (h, ACFGHIKLMRTVWY); negative (- , DE); polar (p, CDEHKNQRST); positive (+ , HKR); small (s , ACDGNPSTV); tiny (u, AGS); turn-like (t, ACDEGHKNQRST). A capital letter indicates 80% conservation of corresponding amino-acid residue. The secondary structure prediction indicated at the top was derived using the PHD program. Residues predicted with greater than 82% accuracy to form β-sheets are represented by " E " and α-helices are represented by "Н."

