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Particular reproductive stages such as lactation impose demands on the female. To cope
with these demands, her physiology goes through numerous adaptations, for example,
attenuation of immune and stress responses. Hormonal fluctuation during lactation exerts
a strong influence, inducing neuroplasticity in the hypothalamus and extrahypothalamic
regions, and diminishing the stress and inflammatory responses. Thus, hormones confer
decreased vulnerability to the female brain.This mini-review focuses on the adaptations of
the immune and stress response during maternity, and on the neuroprotective actions of
progesterone and prolactin and their effects on inflammation.The importance of pregnancy
and lactation as experimental models to study immune responses and disease is also
highlighted.
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INTRODUCTION
Reproduction is one of the most significant events in the life of
a mammalian female. It can be described as a rich social and
hormonal experience that begins by interacting and mating with
a male, followed by pregnancy, parturition, and ultimately lac-
tation, interaction with pups, and weaning (Mann and Bridges,
2001; Serafim and Felicio, 2002). Striking behavioral and neu-
roendocrine alterations due to motherhood have been reported
in several mammalian species including mice, rats, rabbits, sheep,
and humans. They are reflected by changes at almost all brain
levels and are essential to protect the developing embryo, and for
successful delivery, maternal behavior, and pup survival (Kins-
ley and Lambert, 2008). These neuroanatomical and functional
changes observed during pregnancy and lactation are necessary
to cope with the demands of reproduction and to protect the
maternal organism against dramatic hormonal variations (Mann
and Bridges, 2001; Kinsley and Lambert, 2008). They include a
marked adaptation of the hypothalamus-pituitary-adrenal (HPA)
axis, which results in hypo-responsiveness to stress, diminished
inflammatory responses (Walker et al., 1992; Windle et al., 1997a;
Lightman et al., 1998; Tilbrook and Clarke, 2006), and diminished
sensitivity of the brain of the mother against excitotoxic damage
(Morales, 2011).

MECHANISMS GOVERNING THE HYPO-RESPONSIVENESS
TO STRESS DURING PREGNANCY AND LACTATION
One of the best-known examples of naturally attenuated stress
response is seen in the female rat during late pregnancy and lac-
tation (Tilbrook and Clarke, 2006). During these reproductive

phases, the HPA axis maintains minimal responses necessary to
cope with any situation that may threaten the homeostasis of
the female. This axis comprises corticotropin-releasing hormone
(CRH)- and vasopressin- neurons in the paraventricular nucleus
of the hypothalamus (PVN), which when stimulated, release these
peptides into the median eminence to stimulate pituitary cell pro-
duction of adrenocorticotropic hormone (ACTH) that reaches
the adrenal cortex to release cortisol or corticosterone. HPA axis
activity is regulated by glucocorticoid negative feedback on the
pituitary, the PVN, and higher brain centers.

The attenuation of the stress response during pregnancy and
lactation has been documented in various different stress mod-
els (Lightman et al., 2001; Russell et al., 2008). Pregnancy in
the rat is accompanied by a progressive decrease in HPA axis
responses to a range of psychological (Neumann et al., 1998) and
physical (Brunton et al., 2005; Douglas et al., 2005) stressors par-
ticularly in the last week of pregnancy, reflected by reduced ACTH
and corticosterone secretion. This hypo-responsiveness persists
through parturition (Wigger et al., 1999; Neumann et al., 2003)
and lactation until weaning (Windle et al., 1997b). Suppressed
responses to stress in pregnancy can be explained by adaptations
in both the anterior pituitary and the hypothalamus (Brunton
et al., 2005; Russell et al., 2008). Corticotrophs in the pituitary are
less sensitive to secretagogs (Shanks et al., 1997; Neumann et al.,
1998), and CRH mRNA expression induced by stress is atten-
uated (Brunton et al., 2005). Moreover, HPA axis responses to
immune stress in early mid pregnancy are strong and similar to
that in virgins, although activation of hypothalamic vasopressin
neurons, rather than CRH neurons, may be more important in
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the stress response in pregnancy (Ma et al., 2005; Parker et al.,
2011).

Studies in lactating rats have shown a flattening of the diurnal
rhythm of corticosterone secretion (Walker et al., 1992; Atkinson
and Waddell, 1995) during this phase, such that the nadir lev-
els of corticosterone rise (Stern et al., 1973; Fischer et al., 1995)
and the peak evening levels decrease (Windle et al., 2013). During
lactation, basal plasma concentrations of both ACTH and corti-
costerone increased in lactating animals compared with those in
virgin rats (Shanks et al., 1997, 1999). There is also an increased
basal expression of CRH mRNA in the PVN in early lactation
(day 3; da Costa et al., 1996), but low basal expression of CRH
mRNA by the middle phase of the lactation period (days 7–10;
Windle et al., 1997a; Walker et al., 2001). However, CRH expres-
sion in response to stress is diminished at either stage (Lightman
and Young, 1989; Windle et al., 1997b), similar to findings in late
pregnancy (Douglas et al., 2005).

The mechanisms for this altered neuroendocrine responses
include diminished CNS excitatory signaling within stress-
responsive systems like the catecholaminergic brainstem and
limbic circuitry (Hoffman et al., 1994; da Costa et al., 1996;
Wintrip et al., 1997) as well as an altered hypothalamic and
adrenomedullary catecholamine function (Patel et al., 1993;
Toufexis and Walker, 1996; Windle et al., 1997a; Toufexis et al.,
1998). Attenuated noradrenergic tone also underlies stress hypo-
responsiveness in lactation, and is clearly dependent upon suckling
(Hoffman et al., 1994; Toufexis and Walker, 1996; Toufexis et al.,
1998). Moreover, opioids switch to having a net inhibitory effect
on HPA activity such that naloxone treatment enhances the ACTH
response to IL-1β in late pregnant rats (Brunton et al., 2009).
Growing evidence for an integrated participation of many other
factors besides noradrenaline and opioids that underlie altered
responses to stress, include CRH (Johnstone et al., 2000; da
Costa et al., 2001), oxytocin (Neumann et al., 2003; Windle et al.,
2004), prolactin (PRL; Torner and Neumann, 2002), steroids and

neurosteroids (Douglas et al., 2000; Brunton and Russell, 2008,
2011; Figure 1).

Another mechanism for the attenuation of the stress response
involves nitric oxide (NO) regulation of CRH expression within
the PVN. NO is present in the PVN of female rats during lac-
tation (Popeski et al., 1999; Otukonyong et al., 2000; Monasterio
and Morales, 2011), as indicated by the NO markers NADPH-
diaphorase and neuronal synthase (nNOS), and its synthesis
dependent on suckling (Otukonyong et al., 2000) and PRL (Vega
et al., 2010). These markers increase within the PVN in response
to stress in male rats, but paradoxically, basal level of NO mark-
ers are present in the PVN of lactating females whose response
to stress is attenuated. The activational c-fos response and an
increase in NADPH-diaphorase- and nNOS-positive cells are
clearly detected in the PVN of diestrus rats after an immune
challenge, but not in lactating rats. Furthermore, the total con-
centration of nitrates in the hypothalamus and the circulating
level of corticosterone and IL-6 increase significantly after stress
in diestrus, but not in lactating rats, compared to their cor-
responding controls. Intracerebral administration of L-NAME,
a general NOS inhibitor, reverses the attenuation of the acti-
vational response to stress in the lactating rats and increases
CRH expression, suggesting that sustained NO production in
the PVN during lactation contributes to attenuate the neu-
roendocrine response to stress (Monasterio and Morales, 2011;
Figure 1).

HPA AXIS HORMONES, PROGESTERONE, AND PROLACTIN IN
THE REGULATION OF THE IMMUNE RESPONSES DURING
PREGNANCY AND LACTATION
HPA AXIS AND IMMUNE RESPONSES
Cytokines, peptide hormones, neurotransmitters, and their recep-
tors are endogenous elements of the nervous, endocrine, and
immune systems. These systems share ligands and receptors
that serve to communicate (Haddad et al., 2002; Elenkov and

FIGURE 1 | Diagram illustrating the regulation of CRH expression

in the parvocellular neurons of paraventricular nucleus of the

hypothalamus. During late pregnancy and lactation, there is a
diminished noradrenergic tone reaching CRH neurons, and progesterone,
allopregnanolone, prolactin, and nitric oxide will contribute to the inhibitory
regulation of the CRH neurons. The cascade of neuroendocrine

responses, synthesis of ACTH and corticosteroids will also be modified.
Neuroimmune interactions are represented by effects of glucocorticoids
on cells of the immune system, and which molecules will affect CNS
functions. ACTH, adrenocorticotropic hormone; AP, allopregnanolone; CRH,
corticotropin-releasing hormone; CBG, corticosteroid-binding globulin;
POMC, proopiomelanocortin.
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Chrousos, 2006). In addition to altered endocrine responses dur-
ing lactation, stress also changes immune function in comparison
to non-lactating animals (Monasterio and Morales, 2011), sug-
gesting that bi-directional communication between the immune
and endocrine systems is also altered during lactation. Preg-
nancy and lactation represent interesting experimental models
that illustrate how the elevated basal plasma level of corticos-
terone and the diminished stress responses, affect the immune
system. It is established that dampened HPA responses are asso-
ciated with increased vulnerability to inflammation (Shanks et al.,
1997, 1999) and therefore, alterations in endocrine regulation of
immune responses during lactation may predispose the animal to
inflammatory disease. However, not all of the immune responses
are dampened during pregnancy and lactation (Jaedicke et al.,
2009).

Several reports have documented motherhood-induced adap-
tations of the immune system in female rats, showing that this
is a not always an immune suppression condition (Jaedicke et al.,
2009). Early pregnancy has been associated with an increased cell
density in the thymus and spleen, whereas late pregnancy and
lactation have been associated with a decreased cellularity despite
the expansion of the thymus medulla (Kendall and Clarke, 2000).
Lactation delays the return of the thymus medulla to the original
pre-pregnancy state. In addition, the changes in the thymus can be
attributed to the adaptation of the maternal immune system to the
semi-allogeneic fetus (Kendall and Clarke, 2000). Hormonal and
neural changes can partially explain these modifications. Proges-
terone, PRL, and estradiol levels in plasma fluctuate in early, mid,
and late pregnancy (Neville et al., 2002; Brusco et al., 2008). Nerve
growth factor, nearly absent in the medulla of the adult thymus,
is high in the medulla of the thymus during late pregnancy (Aloe
et al., 1997). Also, lactation is associated with an increased suscep-
tibility to parasitic infections (Barger, 1993), but much controversy
exists in the effects of pregnancy and lactation on the progression
of autoimmune diseases as documented by studies in rodents and
in humans (Elenkov et al., 2001; Buchel et al., 2002; Vukusic et al.,
2004; Gregg, 2009).

The immune system of lactating rodents has been the focus of
only a few studies, which have shown that some immune functions
become suppressed in this phase, while others remain unaffected
or are enhanced (Jaedicke et al., 2009). For example, antibody pro-
duction after immunization, and IL-6 (Monasterio and Morales,
2011) and IL-2 production in the spleen (Shanks et al., 1997) were
suppressed during lactation in rodents. Conversely, evidence of
increased concentrations of plasma IL-6 or an enhanced prolif-
erative response of lymphocytes from mesenteric lymph nodes
suggests activation of other immune responses (Shanks et al.,
1997). In male rats, activation of the HPA axis and glucocorticoid
release occurs during bacterial lipopolysaccharide (LPS) exposure,
triggering an elaborate inflammatory response that involves the
release of the pro-inflammatory mediators IL-1β, IL-6, and tumor
necrosis factor (TNF)-α (Grinevich et al., 2001), which stimulate
cells to upregulate the inflammatory reaction, and systemically
they activate the HPA axis (Chrousos, 1995). However, in lactat-
ing rats, LPS significantly elevates circulating levels of ACTH and
corticosterone, but the magnitude of hormonal and hypothala-
mic responses to LPS are significantly reduced in lactating animals

relative to virgin controls (Shanks et al., 1999). Despite this atten-
uated stress response, systemic immune responses to stressors are
modulated during lactation indicating that the immune system is
not generally suppressed but rather adjusted in this stage (Jaedicke
et al., 2009).

In humans, the early postpartum period has been associ-
ated with up-regulated inflammatory responses and a relapse of
autoimmune disorders such as rheumatoid arthritis and multiple
sclerosis, often interpreted as a flare-up due to the rebound of the
immune system after pregnancy (Elenkov et al., 2001; Buchel et al.,
2002). However, long term-studies have shown that relapse rate
of multiple sclerosis remains similar to pre-pregnancy level, after
an increase in the first trimester postpartum (Vukusic et al., 2004).
A broad state of immune activation is also characteristic of the
early postpartum period, as measured by levels of neopterin, sol-
uble IL-2 receptor, and soluble CD8 antigen (Burns et al., 1999).
This may help women recover from the biological stress of partu-
rition, but more studies about the magnitude and length of such
a state are necessary. Immune and inflammatory activation in
postpartum women may be factors leading to anxiety and depres-
sion in the early days after delivery (Maes et al., 2000). CD4 cell
counts are reported to rise during postpartum, primarily due to
γδ T cells (Watanabe et al., 1996). Natural killer (NK) subsets
with weak cytotoxic activity (CD16+, CD57+) were found to
increase during months 1–4 postpartum (Watanabe et al., 1997),
and lymphocyte proliferation was higher than non-postpartum
controls. Furthermore, the postpartum period is also associated
with the onset of autoimmune thyroid syndrome (Muller et al.,
2001). Thus, immune responses linked to reproduction can either
be dampened or enhanced depending on the stimulus and hor-
monal status (De Bellis et al., 2005; Hughes, 2012; Shelly et al.,
2012).

In summary, during both pregnancy and lactation the immune
responses are altered, but instead of considering them to be
immune-suppressed stages, they represent reproductive condi-
tions in which either stress or immune responses can vary
depending on the hormonal status (Mor and Cardenas, 2010).
The immunology of reproduction is the result of the combina-
tion of signals and responses originating from the fetal-placental
and the maternal immune systems. This last is under the reg-
ulation of the CNS through the hormonal (glucocorticoids)
stress response, pituitary responses, and the autonomic nervous
system.

PROGESTERONE ACTIONS ON CNS IMMUNE RESPONSES
Among the hormones that have been considered candidate induc-
ers of pregnancy- and lactation-related adaptations in HPA axis
and immune responses is progesterone. Progesterone is a steroid
hormone synthesized by the corpus luteum in cycling females and
by the placenta during pregnancy; it can enter the brain from the
circulation and can also be synthesized in the brain by oligoden-
drocytes and excitatory neurons (Stein, 2011). During pregnancy,
progesterone levels in plasma and brain are increased and are
accompanied by elevated levels of its metabolite allopregnanolone
(Brunton and Russell, 2008; Mostallino et al., 2009).

Progesterone (and its metabolite allopregnanolone) has impor-
tant actions in the female’s brain, such as the expression of
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maternal behavior (Bridges, 1984). During pregnancy, high lev-
els of allopregnanolone suppress HPA -axis responses to stress:
allopregnanolone may enhance the action of GABA in the PVN or
on afferent inputs to the CRH neurons to suppress stress responses,
and it also induces and maintains the endogenous inhibitory opi-
oid mechanism in the nucleus of the solitary tract (Brunton et al.,
2009). Blocking allopregnanolone restores HPA axis responses to
systemically administered IL-1β in late pregnant rats (Brunton and
Russell, 2008). Allopregnanolone acts as an agonist on the GABA
receptor, exerting anxiolytic, sedative, and antiepileptic effects,
and it enhances the myelination/remyelination process in the cen-
tral and peripheral nervous system (Wang et al., 2008; Gangisetty
and Reddy, 2010). These steroid hormones have been described as
potent regulators of growth factor expression during pregnancy:
epidermal growth factor (EGF), insulin-like growth factor (IGF),
and transforming growth factor (TGF-β1) in particular are all
up-regulated, promoting neural proliferation (Wang et al., 2008).
Moreover, they increase neurogenesis within the subgranular zone
of the dentate gyrus and subventricular zone (Pawluski et al.,
2009), and induce regenerative responses in a mouse model of
Alzheimer’s disease (Pike et al., 2009; Borowicz et al., 2011). Dur-
ing lactation, progesterone participates in glial changes in brain
areas such as the cingulate cortex (Salmaso et al., 2009) and the
dentate gyrus of the hippocampus (Cabrera et al., 2013), and this
steroid is part of the hormonal cocktail responsible for diminished
responses of astrocyte and microglial cells in the hippocampus of
lactating rats to damage induced by excitotoxic insults (Cabrera
et al., 2013).

Progesterone and allopregnanolone attenuate traumatic brain
injury, and diminish the elevation of pro-inflammatory cytokines
in a time-dependent manner, suggesting that the protection occurs
by limiting the overexpression of cytokines, when they peak at
3 h after a brain injury, rather than inhibiting their expression
later in the post-injury cascade of toxic events (He et al., 2004).
Both steroids prevent breakdown of the blood–brain barrier in
edema and stroke (Ishrat et al., 2010). Progesterone exerts some
of its actions through the intracellular, membrane-bound pro-
gesterone receptor, while allopregnanolone does not bind to the
progesterone receptor (Ishrat et al., 2010). Also, progesterone can
reduce the excessive excitotoxicity and inflammation by stimulat-
ing activation of the neuroprotective mitogen-activated protein
kinase (MAPK) and PI3-K pathways (Kaur et al., 2007). Through
use of calcium imaging, electrophysiology, and the measurement
of changes in activity-dependent gene expression, progesterone
was found to block calcium entry through voltage-gated calcium
channels, leading to alterations in the signaling of the activity-
dependent transcription factors nuclear factor of activated T-cells
(NFAT) and cAMP response element-binding protein (CREB;
Luoma et al., 2012). This effect of progesterone on calcium sig-
naling provides a putative mechanism for its neuroprotective
actions (Luoma et al., 2012). Furthermore, allopregnanolone is
an allosteric modifier of the GABAA receptors expressed by oxy-
tocin neurons (Koksma et al., 2003). Electrophysiological studies
of hypothalamic oxytocin neurons showed that allopregnanolone
acts via a G-protein mechanism involving protein kinase C to
delay the closure of the Cl− channel after activation (Brussaard
and Koksma, 2003), enhancing both the tonic and phasic actions

of GABA in oxytocin neurons. This modulatory action on GABA
transmission represents an alternative candidate pathway for the
protective actions of this steroid.

Progesterone also plays an important role in the periphery.
Progesterone-dependent immunomodulation is one of the mech-
anisms that enable pregnancy to proceed to term, because it
protects the fetus from immunological rejection. Recent evidence
suggests that autocrine/paracrine factors such as cytokines play a
crucial role, possible as effectors of steroid hormones (Agrawal
et al., 2011). A growing body of evidence implicates progesterone
in the establishment of an adequate immune response during
pregnancy (Hirsch and Muhle, 2002; Aisemberg et al., 2013).

Thus, progesterone and its metabolite allopregnanolone are
important modulators of the immune responses in the periphery
and within the CNS. Such effects are aimed to diminish the impact
of an acute lesion or degenerative process in the nervous system
while in the periphery contributes to the regulation of immune
response against the fetus (Aisemberg et al., 2013).

PROLACTIN ACTIONS ON CNS AND IMMUNE SYSTEM
Prolactin is a peptide hormone secreted from the anterior pitu-
itary into the circulation; it is thought to cross the blood–brain
barrier and is known to regulate a wide variety of physiological
process (Bole-feysot et al., 1998; Grattan and Kokay, 2008). PRL is
also produced in a broad spectrum of extrapituitary sites including
cells of the nervous and the immune system (Montgomery, 2001;
Torner et al., 2002; Ignacak et al., 2012), and it is an impor-
tant mediator of the immunoneuroendocrine network. However,
effects of PRL on the immune system are complex. Removal
of PRL by hypophysectomy impairs thymus growth (Nagy and
Berczi, 1978) and immune reaction to immunogenic factors
(Bernton et al., 1988) in rats. On the other hand, hyperprolactine-
mia (HP), in mice injected with Listeria monocytogenes increases
mortality associated with impaired lymphocyte proliferation and
decreased macrophage-activating factor production by T lympho-
cytes (Bernton et al., 1988). Furthermore, a PRL-like mRNA and a
secreted product have been detected in human B-lymphoblastoid
cell lines (Bernton et al., 1988; Baglia et al., 1991). Peripheral blood
mononuclear cells also secrete a PRL-like protein, suggesting that
it binds to PRL receptors and migrates to the nucleus, where it
serves as a co-mitogen and autocrine regulator of cell growth.
But, there are several reports showing that PRL is not essential
for the proper development and function of the mouse immune
system. Using PRL-deficient animals it was shown that PRL is not
required for normal hematopoiesis (Horseman et al., 1997), and
that PRL receptor signaling is not required for normal immunity
(Bouchard et al., 1999). PRL is known to have other contradictory
actions on the immune system that depends upon the concentra-
tion: it inhibits lymphocyte proliferation at high concentrations,
while having enhancing effects at lower concentrations (Matera
et al., 1992).

During pregnancy in rats, PRL plasma levels are high in the
first half, they decrease until term, and then rise again at postpar-
tum and throughout lactation (Neville et al., 2002). PRL actions
in early gestation are crucial to prepare the mammary gland for
lactation and in the CNS to establish the appropriate adaptive
behavioral responses of the mother (Grattan and Kokay, 2008)
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toward the pups. PRL has been related to behavioral and neu-
ronal effects, such as maternal behavior (Mann and Bridges, 2001),
attenuation of anxiety and hormonal and neuronal responses to
various stressors (Lightman et al., 2001; Torner and Neumann,
2002; Donner et al., 2007), neurogenesis (Shingo et al., 2003;
Torner et al., 2009; Larsen and Grattan, 2010; Walker et al., 2012),
and neuroprotection (Torner et al., 2009; Tejadilla et al., 2010).

Inflammatory response after a brain injury, such as prolifer-
ation and activation of glia is enhanced by PRL (Möderscheim
et al., 2007), and elevated levels of PRL stimulate mitogenesis in
astrocyte and oligodendrocyte populations of the subventricular
zone (Larsen and Grattan, 2010). PRL also increases oligoden-
drocyte precursor cell proliferation, which in turn enhances the
capacity to generate new oligodendrocytes and myelination. This
process is associated with the capacity to repair white matter
damage in the maternal CNS by increasing myelin basic pro-
tein expression (Gregg, 2009). During lactation, a physiological
hyperprolactinemic state, there is a reduced sensitivity to kainic
acid-induced cell damage in the dorsal hippocampus of the dam,
showing that lactation is a natural model of neuroprotection
(Vanoye-Carlo et al., 2008; Cabrera et al., 2009) in which PRL can
participate. PRL systemic administration has been reported to
protect the dorsal hippocampus of female rats against excitotoxi-
city induced by kainic acid administration, blocking cell loss and
neurodegeneration, and diminishing the progression of kainate-
generated behavioral manifestation of seizures (Tejadilla et al.,
2010). Overall, these studies on protective effects of PRL within
the CNS draw attention to the importance of studying females,
and the relevance of neuroendocrine–immune interactions when
investigating effects of this hormone.

An interesting example of the neuroendocrine–immune inter-
actions is seen in the HP occurring in patients with autoimmune
diseases, such as rheumatoid arthritis and systemic lupus ery-
thematosus, and with organ-specific autoimmune diseases, as
celiac disease, type 1 diabetes mellitus, Addison’s disease, autoim-
mune thyroid diseases (reviewed by, De Bellis et al., 2005). In
these diseases PRL increases the synthesis of IFNγ and IL-2 by
Th1 lymphocytes. Moreover, PRL activates Th2 lymphocytes with
autoantibody production. The inhibitory effects of IL-1ß on the
tuberoinfundibular dopaminergic neurons that inhibit PRL secre-
tion could explain this HP. González et al. (2004), showed that i.c.v.
injection of LPS in rats, produces a decrease in tyrosine hydrox-
ylase (TH) activity in the medial eminence, an increase in the
serum levels of PRL, and a decrease in the number of TH- and
TH mRNA-positive cells in the arcuate nucleus, indicating that
dopamine neurons of the hypothalamus are functionally suscep-
tible to local inflammatory stimuli. Additionally, treatment with
the dopamine-agonist, bromocriptine, inhibits both PRL secretion
and the severity of acute experimental encephalomyelitis (Riskind
et al., 1991). This is an example of how molecules of the immune
system could affect the neurons in the hypothalamus increasing
the secretion of PRL, which in its turn will enhance peripheral
inflammatory responses.

CONCLUSION
In summary, during pregnancy and lactation, responses of the
HPA axis and the immune system are altered and clearly regulated

by suckling and hormone fluctuation. Pregnancy and lactation are
the most important periods for the conservation of the species, and
they represent fundamental stages at which both mother and off-
spring must be protected. The immune system is crucial to protect
the mother and the product against the environment and there
is evidence supporting the notion that immunity is suppressed
during motherhood. In this sense, the immune responses of the
mother should be adjusted to conserve defenses, but should be
tuned to preserve the developing offspring (Mor and Cardenas,
2010). Therefore, pregnancy and lactation are unique conditions
in which the immune system is modulated or adjusted, but not
fully suppressed.
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