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Abstract

Motivation: Analysis toolkits for shotgun metagenomic data achieve strain-level characterization

of complex microbial communities by capturing intra-species gene content variation. Yet, these

tools are hampered by the extent of reference genomes that are far from covering all microbial

variability, as many species are still not sequenced or have only few strains available. Binning

co-abundant genes obtained from de novo assembly is a powerful reference-free technique to dis-

cover and reconstitute gene repertoire of microbial species. While current methods accurately

identify species core parts, they miss many accessory genes or split them into small gene groups

that remain unassociated to core clusters.

Results: We introduce MSPminer, a computationally efficient software tool that reconstitutes

Metagenomic Species Pan-genomes (MSPs) by binning co-abundant genes across metagenomic

samples. MSPminer relies on a new robust measure of proportionality coupled with an empirical

classifier to group and distinguish not only species core genes but accessory genes also. Applied

to a large scale metagenomic dataset, MSPminer successfully delineates in a few hours the gene

repertoires of 1661 microbial species with similar specificity and higher sensitivity than existing

tools. The taxonomic annotation of MSPs reveals microorganisms hitherto unknown and brings

coherence in the nomenclature of the species of the human gut microbiota. The provided MSPs

can be readily used for taxonomic profiling and biomarkers discovery in human gut metagenomic

samples. In addition, MSPminer can be applied on gene count tables from other ecosystems to per-

form similar analyses.

Availability and implementation: The binary is freely available for non-commercial users at www.

enterome.com/downloads.
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1 Introduction

Metagenomics has revolutionized microbiology by allowing culture-

independent characterization of microbial communities. Its advent

has allowed an unprecedented genetic characterization of the human

gut microbiota and emphasized its fundamental role in health and

disease (Wang et al., 2015). Shotgun metagenomics where whole-

community DNA is randomly sequenced bypasses the biases and

limitations of 16S rRNA sequencing (Brooks et al., 2015; V�etrovsk�y

and Baldrian, 2013) by providing high resolution taxonomic profil-

ing as well as insights into the diverse physiological roles and the

metabolic potential of the community (Jovel et al., 2016; Ranjan

et al., 2016).

The analysis of large cohorts revealed a substantial inter-

individual microbial gene content variability (Li et al., 2014),

nucleotide polymorphism (Schloissnig et al., 2013) which reflects

that individuals are not only carriers of various species, but also of

different strains of the same species (Greenblum et al., 2015; Zhu

et al., 2015). The characterization of the accessory genes found in

individual strains is crucial in many contexts as they can provide

functional advantages such as complex carbohydrates metabolism

(Larsbrink et al., 2014), antibiotic resistance or pathogenicity

(Loman et al., 2013; Scaria et al., 2010).

Recent analysis toolkits for shotgun metagenomics data achieved

strain-level resolution when coverage is sufficient. To this end, they

either capture intra-species single-nucleotide polymorphisms (SNPs)

in pre-identified marker genes (Luo et al., 2015; Truong et al.,

2017), gene content variation (Scholz et al., 2016) or both (Nayfach

et al., 2016). However, these tools are hampered by the extent of

sequenced genomes.

Indeed, microbial variability extends far beyond the content of

available genomes making metagenomic samples an untapped reser-

voir of information. First, it has been estimated that on average

50% of the species present in the human gut microbiota of Western

individuals lack reference genome and this proportion rises to 85%

in individuals with traditional lifestyles (Nayfach et al., 2016). Even

if recent advancements of culture-based methods have proven that a

substantial proportion of these species are actually cultivable

(Browne et al., 2016; Lagier et al., 2016), the number of unknown

species is probably still important. In addition, these techniques re-

main laborious and time consuming. Second, although species of

public health interest (e.g. Escherichia coli, Salmonella enterica or

Clostridium difficile) are represented by hundreds or even thousands

of genomes in public databases, only few strains are available for

the great majority of commensal species. Consequently, accessory

genes associated with microbial phenotypic traits may be missing in

gene repertoires constructed from reference genomes.

De novo metagenomic assembly where overlapping reads are

merged into longer sequences called contigs is a powerful reference-

free technique for overcoming the limitations of reference-based

methods. However, assembly remains a computationally challenging

task and despite the many dedicated tools proposed, the process

only recovers incomplete genomes scattered in multiple contigs

(Sczyrba et al., 2017). In an attempt to obtain exhaustive references,

metagenomic assembly is performed on multiple samples to create

non-redundant gene catalogs (Almeida and Pop, 2015).

Subsequently, these catalogues are used in metagenome-wide as-

sociation studies for disease-related analyses (Wang and Jia, 2016)

or descriptive purposes (Li et al., 2014). However, testing millions

of genes is biased towards organisms with the most genes in the pool

as they have more chances of being picked up. In addition, this ap-

proach lacks statistical power because many genes have strongly

correlated abundances profiles which amounts to perform the same

test multiple times (Schwartzman and Lin, 2011).

Considering that the physically linked genes should have propor-

tional abundances across samples, binning co-abundant genes has

been proposed to organize catalogs into clusters of genes originating

from the same biological entity. However, clustering millions of

genes is a challenging task as pairwise comparison of all gene abun-

dance profiles is computationally intensive. To reduce the number

of comparisons, some authors have performed binning of the

subset of genes that were statistically significant by themselves

(Le Chatelier et al., 2013; Qin et al., 2012), which does not improve

the statistical power of the analysis. Others have proposed methods

to perform the clustering of complete gene references based either

on the Markov clustering algorithm (Karlsson et al., 2013), the

Chameleon clustering algorithm (Jie et al., 2017) or a variant of the

Canopy clustering algorithm (Nielsen et al., 2014).

Although direct proportionality is expected between co-

abundant genes, these methods rely either on Pearson’s or

Spearman’s correlation coefficients which respectively assess a linear

association with a potentially non-null intercept or any monotonic

association. Thus, these coefficients are not specific enough and

spurious associations can be discovered. In addition, they are

hampered by rare genes with many null counts (Huson, 2007), non-

normal gene counts distributions (Kowalski, 1972) and presence of

outliers (Osborne and Overbay, 2004).

Furthermore, current clustering strategies group species core

genes and highly prevalent accessory genes into the same cluster, but

miss lower prevalence accessory genes or assign them to small separ-

ate clusters (Almeida et al., 2016). Dependency between core and

accessory clusters can be evaluated downstream using the Fisher’s

exact test (Nielsen et al., 2014), which compares their presence/ab-

sence patterns across samples. Yet, this strategy does not account

for the co-abundance of genes and is poorly discriminative when

considering accessory clusters that are rare or associated with very

prevalent species. In addition, it is not suitable for detecting genes

shared between several species.

To overcome these limitations, we developed MSPminer, the first

tool that discovers, delineates and structures Metagenomic Species

Pan-genomes (MSPs) from large-scale shotgun metagenomics data-

sets without referring to genomes from isolated strains. MSPminer

presents several significant improvements over existing methods.

First, it relies on a robust measure of proportionality for the detec-

tion of co-abundant but not necessarily co-occurring genes as

expected for non-core genes. Second, genes grouped in a MSP are

empirically classified as core, accessory or shared.

We applied MSPminer to the largest publicly available gene

abundance table which is composed of 9.9 M genes quantified in

1267 human stool samples (Li et al., 2014). We show that

MSPminer successfully groups known and additional genes from

species and that this information can be used for qualitative and

quantitative analyses.

2 Materials and methods

2.1 Rationale behind MSPminer
Microbial pan-genomes are gene repertoires composed of core genes

present in all strains and accessory genes present in only some of

them (Medini et al., 2005). In a shotgun metagenomic sequencing

context, we define as shared the genes detected in some samples

where the species is not present.
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A strain found in a sample is an instance of the species pan-genome:

it is made of all the species (shared) core genes and of a subset of

(shared) accessory genes. Core genes are suitable for taxonomic profil-

ing at species-level while accessory genes can be used to compare strains

across samples. Genes tagged as shared should be used carefully as they

contain false positives counts or are subject to horizontal transfer.

We assumed that core genes of a microbial species should be

consistently detected in samples where the species is present if

sequencing depth allows (co-occurrence) and should yield directly

proportional mapped reads counts across samples (co-abundance).

Remarkably, a core and an accessory gene should have proportional

counts only in the subset of samples carrying a strain with that ac-

cessory gene (Fig. 1).

2.2 Comparison of gene count profiles
To group the core genes of a species and then identify its accessory genes,

we developed measures that detect pairs of genes with directly propor-

tional counts even if this relationship occurs in a subset of samples.

Let S ¼ s1; s2; . . . ; smf } be a set of m metagenomic samples. Let

g1 ¼ g1;s1
; g1;s2

; . . . ; g1;smð Þ and g2 ¼ g2;s1
; g2;s2

; . . . ; g2;smð Þ be the vec-

tors of the number of mapped reads on the two genes to be com-

pared. At first, the proposed method estimates a candidate

coefficient of proportionality (a) between g1 and g2. Then, propor-

tionality between g1 and g2 is assessed according to the coefficient a
previously estimated (pnr). Alternatively, proportionality is eval-

uated after outlier samples have been discarded (pr).

In this study, count data is neither normalized by gene length,

nor by read length nor by sequencing depth. Indeed, the number of

times a gene is detected, which is the result of a stochastic process, is

not accessible after normalization while it is needed for classifying

null counts. Nonetheless, raw counts that follow in a first approxi-

mation a Poisson distribution were square root transformed to sta-

bilize variance and reduce skewness (Bland and Altman, 1996).

2.2.1 Estimation of the coefficient of proportionality

Suppose there is a relationship of proportionality between g1 and g2

noted g2 ¼ a � g1; with a the coefficient of proportionality. a should

be roughly equal to the ratio of the length g2 by the length of g1.

However, this ratio is not always a good estimator, for instance

when a gene is duplicated or when its coverage is non-uniform

(Supplementary Fig. S1). Therefore, we robustly estimated a by cal-

culating the median of the gene counts ratios:

a ¼ median
g2;s

g1;s

� �
s 2 Sj g2;s � t^ g1;s � tð Þ with t ¼ 6

When estimating a, only samples where g1 and g2 had counts

greater than a threshold t were taken into account (Fig. 2). This fil-

tering has the following advantages:

1. It discards samples where both genes have null counts as they do

not provide any quantitative information.

2. It discards samples where only one of the genes is present to allow

detection of proportionality occurring in a subset of samples only.

3. It discards samples with low and scattered counts to allow a pre-

cise estimation of a.

2.2.2 Classification of zeros

In a sample, a null count for a gene can be either a sampling or a struc-

tural zero. In the former situation, the gene is not detected because of

sampling or technical artefacts, while in the latter the gene is really ab-

sent in the sample. Only accessory genes should yield structural zeros

in samples where a microbial species is present. Thus, distinguishing

these two kinds of zeros is crucial to accurately classify genes.

When a 6¼ 1, different quantification thresholds for g1 and g2, re-

spectively, named t1 and t2 where used to reflect that one gene has

higher counts than the other:

t1 ¼ max t;
t

a

� �
and t2 ¼ max t; a � tð Þ

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6

spl. 1 spl. 2 spl. 3 spl. 4 spl. 5 spl. 6

core gene 1 1 2 1 0 3 2 Co-abundant
genescore gene 2 2 4 2 0 6 4

shared core gene 2 4 2 5* 6 4
Partially co-
abundant with

core genes
accessory gene 1 3 0 3 0 0 6

accessory gene 2 0 4 2 0 6 0

1x

Shotgun
sequencing Mapping Counting

2x 1x 3x 2x

Fig. 1. Simplified model illustrating the rationale behind the method. Six sam-

ples except the fourth carry a strain of a microbial species represented by a

circle. The absolute abundance of each strain is indicated on the bottom right.

Core genes (red, blue, yellow) are present in all the strains while accessory

genes (green, purple) are found only in some. In addition, the yellow gene is

tagged as shared because it is observed in sample 4 that do not contain the

species. After shotgun sequencing, core genes yield directly proportional

mapped reads counts across samples, the proportionality coefficient being

roughly equal to the ratio of their length. In contrast, such relationship be-

tween a core and an accessory gene is observed only in the subset of sam-

ples where the accessory gene is present

Fig. 2. Method for comparing gene count profiles and classifying genes in

MSPs. The counts of a gene (g2) are compared to the counts of the core seed

(g1) with which it is associated across metagenomic samples. The coefficient

of proportionality a between g1 and g2 is estimated to be 0.75. The solid line

of slope a corresponds to expected counts. Dashed lines represent the gene

quantification thresholds before and after adjustment according to a. Black

and grey crosses are respectively structural and undetermined zeros. Only

structural zeros are taken into account to assign g2 to a given class (c.f. bra-

ces). Black and grey points are respectively inlier and outlier samples. The

distance between the unique outlier and the expected proportional count cor-

respond to the residual rs
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Finally, a gene with a null count in a sample was classified as a

structural zero if the other gene had a count greater than its thresh-

old i.e. g2;s � t2 ^ g1;s ¼ 0ð Þ or g2;s ¼ 0^ g1;s � t1ð Þ. Otherwise, it

was classified as an undetermined zero (Fig. 2).

Assuming that count data follows a Poisson distribution, the

probability of misclassifying a null count as a structural zero is

0.2% with an initial threshold t ¼ 6 (P X ¼ 0jk ¼ 6ð Þ ¼ 0:002).

2.2.3 Non-robust measure of proportionality – pnr

A modified version of the Lin’s concordance correlation coefficient

(Lin, 1989) was used to estimate the agreement between g1 and g2

with a proportional relationship of coefficient a by using only sam-

ples where both genes had non-null counts:

pnr ¼
2a � covðg1; g2Þ

a � r2
g1
þ r2

g2
þ a � g1 � g2ð Þ2

where a is coefficient of proportionality previously estimated, g1

and g2 are the means, r2
g1

and r2
g2

are the variances and covðg1; g2Þ is

the covariance of g1 and g2.

2.2.4 Robust measure of proportionality – pr

We derived a robust version of the measure to identify associated

genes despite the presence of samples with inconsistent counts, here-

after named outliers. This occurs for instance when multiple strains

of a species coexist in the same sample.

First, the coefficient of proportionality a was estimated using the

procedure previously described. Next, residuals (rs) defined as the

difference between observed and expected proportional counts were

calculated on samples where both genes had counts above their re-

spective quantification thresholds (Fig. 2):

R ¼ frs ¼ g2;s � a � g1;sg s 2 Sj g2;s � t2 ^ g1;s � t1ð Þ

Then, the outliers (O) were detected using the Tukey’s method

among the samples where both genes had non-null counts (S
0
):

Q1 ¼ 1st quartile Rð Þ and Q3 ¼ 3rd quartileðRÞ

IQR ¼ Q3 �Q1

lwr thr ¼ Q1 � 1:5 � IQR and upr thr ¼ Q3 þ 1:5 � IQR

S
0 ¼ fs 2 Sj g2;s > 0 ^ g1;s > 0ð Þg

O ¼ fs 2 S
0 j rs < lwr thr _ rs > upr thrð Þg and I ¼ S

0 nO

Finally, the robust measure of proportionality pr was computed

on inlier samples (I) using the same formula as pnr. To avoid the de-

tection of spurious associations with too many outliers, pr was not

computed if Oj j > S
0j j � 5ð Þ � 0:3 that is to say a percentage of out-

liers greater than 30%.

2.3 Reconstitution of Metagenomic Species

Pan-genomes
2.3.1 Overview of MSPminer

We developed MSPminer, a clustering method that uses the meas-

ures of proportionality to group co-abundant genes into

Metagenomic Species Pan-genomes (MSPs).

MSPminer starts by identifying sets of directly proportional and

co-occurring genes, called seeds using a split-apply-combine strat-

egy. Then, seeds corresponding to species cores are empirically iden-

tified. Finally, all the genes associated to a core seed are grouped in

a MSP where they are classified as (shared) core or (shared) acces-

sory (Fig. 3).

2.3.2 Input data and filtering

MSPminer takes as input a tab-separated values matrix giving the

number of reads mapped on genes (rows) across metagenomic sam-

ples (columns). By default, only genes with counts greater than 6 in

at least 3 samples were kept. Rarer genes were discarded because

they do not support enough quantitative information for further

processing.

2.3.3 Seed creation

2.3.3.1 Split. To avoid comparison of all pairs of genes, genes with

the greatest count in the same sample were binned. This strategy not

only decreases the number of comparisons to perform but increases

the probability that related genes are placed in the same bin com-

pared to random assignment (Supplementary Fig. S2). To achieve a

good load balancing, raw read counts were normalized prior to bin

assignment by the number of mapped reads in samples, as the pro-

cedure would be biased towards samples with high sequencing depth

otherwise (Supplementary Fig. S3). This is the only step where nor-

malized counts were used.

2.3.3.2 Apply. Seeds were created in parallel in each bin with a

greedy algorithm. First, all pairs of genes were compared and those

with pnr greater than 0.8 and no structural zeros were saved in a list.

Then, the list was sorted by decreasing pnr and the pair of genes

with the greatest pnr was selected as a centroid. Genes related to one

of the centroid genes (pnr P 0.8) were grouped together to form a

seed and removed from the list. This procedure was iterated until

the list was empty.

2.3.3.3 Combine. Related genes might have been assigned to differ-

ent bins, for instance when samples with the greatest counts had

close values. Therefore, a merging step is required to generate a set

of non-redundant seeds.

For each seed, a pseudo gene referred as representative was com-

puted to compare seeds with each other. First, the seed representa-

tive was defined as the median vector of the counts of all the seed

genes. Then, each gene of the seed was compared to the seed repre-

sentative using pnr. The final seed representative corresponded to the

median vector of the counts of the 30 genes with the greatest pnr as

these genes have the highest counts and the lowest dispersion.

ge
ne

co
un

ts
ta

bl
e

split

gene
counts

apply

apply

seeds

seeds

combine

gene
counts

non-redundant
seeds

core seeds
identification

core seed

core seed

MSP
creation

MSP 
creation

MSP

MSP

… … …

… … …

Seed crea�on

Fig. 3. MSPminer workflow
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Finally, seeds with pnr greater than 0.8 and no structural zeros

were merged. After merging, seeds with less than 150 genes were

discarded.

2.3.4 Core seeds identification

Core seeds were identified among non-redundant seeds based on the

assumption that in a set of related seeds, the largest corresponds to a

species core and the others are modules of shared or accessory genes.

To this end, seeds were sorted by decreasing number of genes.

The largest seed was defined as a new core seed. Then, the represen-

tative of the core seed was compared to the representative of all

remaining seeds. Seeds with pr greater than 0.8 when compared to

the core seed were discarded from the list of potential cores. The

procedure was iterated until there was no more seed to process.

2.3.5 Identification and classification of genes associated with a

core seed

The representatives of each core seed were compared to all the genes.

Genes with pr greater than 0.8 were considered as associated with the

core seed. On real data, we found that this threshold is a good com-

promise between precision and sensitivity (Supplementary Fig. S4).

Let g1 be the median vector of the number of mapped reads on a

core seed and g2 the vector of the number of mapped reads on a

gene associated with this core seed. The associated gene was

assigned to one of the four following classes according to the pres-

ence of structural zeros (Fig. 2):

1. Core: the gene was present in all the samples where core seed

was detected and uniquely in those.

8s 2 S j g1;s � t1 ! g2;s 6¼ 0ð Þ ^ g2;s � t2 ! g1;s 6¼ 0ð Þ

2. Accessory: the gene was present in a subset of samples where

core seed was detected.

9s 2 S j g1;s � t1 ^ g2;s ¼ 0
� �

^ 8s 2 S j g2;s � t2 ! g1;s 6¼ 0
� �

3. Shared core: the gene was detected in all the samples where the

core seed was present plus some samples where the core seed

was absent.

8s 2 S j g1;s � t1 ! g2;s 6¼ 0
� �

^ 9 s 2 S j g2;s � t2 ^ g1;s ¼ 0
� �

4. Shared accessory: the gene was detected in a subset of samples

where the core seed was present plus some samples where the

core seed was absent.

9s 2 S j g1;s � t1 ^ g2;s ¼ 0
� �

^ 9s 2 S j g2;s � t2 ^ g1;s ¼ 0
� �

2.3.6 Creation of Metagenomic Species Pan-genomes

Core, accessory, shared core and shared accessory genes associated

with a core seed were assembled in a MSP.

Core genes were compared to the core seed representative and

sorted by decreasing pnr to highlight those the most suitable for taxo-

nomic profiling. In each class except core, a clustering procedure simi-

lar to the one used to create seeds was run to identify modules of co-

occurring genes that may be interpreted as functional units, i.e. oper-

ons. Unclustered genes were saved as singleton modules.

2.4 Implementation
MSPminer is implemented in Cþþ and uses the OpenMP frame-

work to take advantage of multi-core processors. Particular atten-

tion was paid to generate reproducible results. Large datasets with

millions of genes and thousands of samples can be processed in just

a few hours on a single node server.

2.5 Simulated dataset
For evaluation purposes, we generated abundance tables simulating

the counts of genes from a single virtual species. The pan-genome of

this species consisted in 1000 core genes detected in all strains and

6000 accessory genes present only in some of them. Gene lengths

were randomly drawn between 100 bp and 5000 bp. The prevalence

of accessory genes was randomly drawn between 2.5% and 99.5%.

In a first simulation used to evaluate MSPminer ability to recover

a species pan-genome, 200 samples containing each a single strain of

the species were generated. The sequencing coverage of a strain in a

sample was drawn from a uniform law (min¼0.6, max¼20) and

read length was set to 100 bp. In a given sample, the theoretical

number of reads mapped on a gene was calculated according to the

gene length, the strain coverage and the presence or not of the gene

in the strain. Finally, the observed gene counts were drawn from

Poisson distributions with means equal to theoretical counts.

In the second simulation used to evaluate the robust measure, outliers

were added by multiplying observed counts of each gene by either 1=4, 1=3,

2, 3 or 4 in 5%, 10% and 20% of the samples were it was present.

Next, we progressively decreased the number of samples where

the species was detected (200, 100 and 50) to apprehend the impact

of this parameter on the completeness of MSPs.

Finally, we simulated samples carrying two strains of the species

where the dominant strain is 5 to 10 times more abundant than the

subdominant one as observed in fecal samples (Truong et al., 2017).

3 Results

3.1 Evaluation on simulated data
3.1.1 Evaluation of the measures of proportionality

First, we simulated the abundance table of a species across 200 sam-

ples to compare the performance of Pearson’s correlation coeffi-

cient, Spearman’s correlation coefficient and the proposed measure

of proportionality (pnr) for detecting a relation between the abun-

dance profile of the species core genome and all its genes including

accessories. Pearson’s and Spearman’s correlation coefficients

decreased with the prevalence of the tested gene, while the proposed

measure remained high, as it only uses samples where both the spe-

cies core and the tested gene are detected (Fig. 4A). Therefore, the

association between core genes and many accessory genes will be

missed using the correlation coefficients. However, accessory genes

observed in similar subsets of samples could be grouped into small

distinct clusters as their abundance profiles should be correlated.

Our simulations also show that pnr is more sensitive to species with

highly variable coverage and on long genes as their counts are higher

and less dispersed (Supplementary Fig. S5).

Then, we compared the robust measure of proportionality (pr)

against its non-robust counterpart (pnr) by adding an increasing per-

centage of outliers to the genes abundance profiles. For a given percent-

age of outliers, each of these genes was compared to the outlier-free

abundance profile of the core. This simulation showed that pnr

decreases when the percentage of outliers increases whereas (pr)

remains high, demonstrating that proportionality is still detected des-

pite the presence of samples with inconsistent counts (Fig. 4B).

3.1.2 Evaluation of the clustering algorithm

Next, we tested if the number of samples where the species was

detected had an influence on the completion of its corresponding MSP.
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Although this parameter did not impact the clustering of core and

prevalent accessory genes, rarer accessory genes were grouped in the

MSP only when the species was detected in a sufficiently large num-

ber of samples (Fig. 5A).

Finally, we explored the impact of mixture of multiple strains of

the same species in samples. When occasional, strains mixture had

little impact on clustering. If it was more frequent, many accessory

genes of low or medium prevalence were missed (Fig. 5B). However,

strains mixture might have less impact on the clustering perform-

ance. When it occurred, we considered that the presence of a gene in

one strain was independent of its presence in the other. Yet, the low

nucleotide divergence frequently observed between strains present in

the same fecal sample suggests that they may have similar gene con-

tent (Truong et al., 2017).

3.2 Application to the study of the human gut

microbiota
We applied MSPminer to the largest publicly available gene abun-

dance table provided with the Integrated Gene Catalog of the human

gut microbiome (Li et al., 2014). In this table, 9 879 896 genes are

quantified across 1267 stool samples from individuals of various

geographical origin (Europe, USA and China) and diverse health sta-

tus (healthy, obese, diabetic, with inflammatory bowel disease etc.).

6 971 229 genes (70.6%) with counts greater than 6 in at least 3

samples were kept. Among these, 3 288 928 (47.2%) were organ-

ized into 1661 MSPs (Supplementary Table S1).

3.2.1 Census of universal single copy marker genes

To check that MSPs correspond to real microbial species and evalu-

ate the completeness of their core genomes, we identified 40 univer-

sal single copy marker genes (SCM) in the gene catalog (Sunagawa

et al., 2013). 84% of the SCMs detected in at least three samples

were assigned to MSPs, indicating that MSPs capture a large propor-

tion of the biological signal at species level. 915 MSPs (55%) had at

least 30 SCM and 406 (24%) had all of them (Supplementary Table

S2). As housekeeping genes, SCMs are essential to the microbe

survival and expected among core genes. Indeed, 93% of the SCMs

were core genes in their respective MSP and 70% of non-core SCMs

were accessory genes of high prevalence (�90%). This shows that

the heuristic used for the classification of genes is reliable.

3.2.2 Precision

We evaluated the precision of MSPminer by calculating in MSPs the

fraction of genes assigned to the dominant species (Supplementary

Table S4A). Apart from unassigned genes, the taxonomic consist-

ency was very high for all gene categories (mean > 98%) except

shared accessory genes (mean ¼ 83.3%). Remarkably, some MSPs

such as those representative of Bacteroides plebeius, Ruminococcus

bicirculans and Eubacterium eligens had many unknown accessory

genes (resp. 2888, 2821 and 2399) which is coherent with the low

number of genomes available for these species. On average, 80% of

these novel accessory genes were validated by performing the taxo-

nomic annotation of the contigs they derived from. The remaining

genes were found in unassigned contigs or contigs carrying only one

gene. Conversely, 99% of the genes of the MSP representative of

Escherichia coli (msp_0005) were annotated as thousands of refer-

ences are available for this species.

3.2.3 Sensitivity

Then, we aligned 3143 genomes representative of 322 species of the

human gut microbiome against the IGC catalog. For each genome,

we defined the sensitivity as the number of its genes grouped in the

most representative MSP divided by the total number of its genes

found in the catalog (Supplementary Table S4C). Overall, the sensi-

tivity weighted by the number of genomes per species was high

(median¼77%). Interestingly, genes grouped in MSPs were signifi-

cantly longer than those that were not (median length of 975 bp ver-

sus 670 bp, Wilcoxon rank-sum test P-value ¼ 0). More specifically,

genomes of 1127 human gut-associated E. coli strains were well cov-

ered by the msp_0005 (mean ¼ 83.4%). 95% of the core genes of

A B

Fig. 4. Evaluation of the measures of proportionality. (A) Comparison of the

Pearson’s correlation coefficient, the Spearman’s correlation coefficient and

the proposed measure of proportionality to detect an association between

the median abundance vector of the core genes of the simulated species

and the abundance vectors of each of its genes. The x-axis corresponds to

the percentage of samples where a gene is detected and the y-axis corre-

sponds to the intensity of the relationship between the compared vectors.

The closer the value is to 1, the stronger the intensity of the relationship. (B)

Comparison of the performances of the robust (black) and the non-robust

(grey) measures of proportionality to detect a relationship between the noisy

abundance vector of each gene of the simulated species and the outlier-free

median abundance vector of its core genes. The proportion of outliers is

gradually increased to 5%, 10% and 20%

A

B

Fig. 5. Evaluation of the clustering algorithm. (A) Impact of number of sam-

ples where the simulated species is detected on clustering. (B) Impact of

strain mixture on clustering
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genomes were also tagged as core in the MSP which shows again

the robustness of the classification. However, 32 078 genes from

the IGC catalog detected in E. coli genomes were missing in the

msp_0005. 85% of these genes were present in less than 5% of the

metagenomic samples where E. coli was detected, indicating that

MSPminer misses rarest accessory genes which can be very

numerous.

3.2.4 Comparison to the canopy clustering algorithm

MSPminer was compared to the Canopy clustering algorithm

(Nielsen et al., 2014) which is the only gene binning tool publicly

available. Both tools were applied to the metagenomic dataset

described above using default parameters (Supplementary

Methods). In total, MSPminer grouped 17.8% more genes than

Canopy (3 288 928 versus 2 704 552) although MSPminer had a

more stringent gene selection criterion (6 971 229 versus 7 304 439

genes processed). Both tools had a very high precision (mean

>98%) but MSPminer brought a significant gain in sensitivity (me-

dian: 77% versus 62%) (Supplementary Table S4). Remarkably,

Canopy produced more objects with at least 150 genes than

MSPminer (2010 CAGs versus 1661 MSPs) as it splits some species

(e.g. E. coli) into multiple clusters. In contrast, MSPminer generated

one MSP per species which improves downstream statistical ana-

lysis. Finally, MSPminer achieved better computing performance

than Canopy (wall time: 2 h 40 min versus 42 h) while consuming

less memory (peak memory: 74Go versus 231Go).

3.2.5 MSPs taxonomy and phylogeny

642 MSPs (38.7%) could be annotated at species level, 315 (19.0%)

at genus level, 525 (31.6%) at a higher taxonomic level from family

to superkingdom and the remaining 179 (10.8%) could not be anno-

tated (Supplementary Table S3C). Among the 642 MSPs with a

species-level assignment, 303 corresponded to taxa validated by the

International Code of Nomenclature of Bacteria, 56 matched

genomes with imprecise taxonomy (e.g. sp., cf.) and 283 were

metagenome-assembled genomes. In the end, most MSPs assigned to

well-defined species matched RefSeq reference genomes. Combined

with phylogenetic analysis, these results reveal that the majority of

MSPs correspond to species that have not been isolated or sequenced

so far (Supplementary Fig. S6).

Among the annotated MSPs, one corresponded to Homo sapiens,

four were unicellular eukaryotes of the genus Blastocystis, eight were

Archaea and the remaining 99% were Bacteria represented predomin-

antly by the phyla Firmicutes (1016 MSPs), Bacteroidetes (263 MSPs),

Proteobacteria (94 MSPs) and Actinobacteria (46 MSPs).

Interestingly, 15 species were represented by multiple MSPs such as

Faecalibacterium prausnitzii (7 MSPs), Bacteroides fragilis (2 MSPs) or

Methanobrevibacter smithii (2 MSPs) (Supplementary Table S3D). In

these cases, one of the MSPs matched the species reference genome and

the other MSPs matched other genomes only. The low Average

Nucleotide Identity (ANI) between these genomes and the species refer-

ence suggests that they actually belong to distinct species.

Conversely, 8 MSPs were attributed to reference genomes of dif-

ferent species (Supplementary Table S3E). For all cases, the compari-

son of the reference genomes revealed an ANI >96%, suggesting

that they actually belonged to the same species despite distinct

names were attributed.

Among the 3813 genomes that matched MSPs annotated at spe-

cies level, 369 with imprecise taxonomy could be reassigned to well-

defined species and 581 appeared misannotated or contaminated

(Supplementary Table S3B).

3.2.6 MSPs content

Most MSPs were small (median number of genes ¼ 1821) even if 51

had more than 5000 genes (Supplementary Fig. S7 and

Supplementary Table S2). As expected, a strong positive correlation

(Pearson’s r¼0.78) between the total number of genes in a MSP and

its number of accessory genes was observed. Interestingly, four out-

liers corresponding to the unicellular eukaryotes previously

described had a high number of core genes and few accessory genes.

This suggests that Eukaryotic genomes have a larger number of

genes and a lower gene content variability than Prokaryotes. Among

the MSPs with the more accessory genes, many corresponded to spe-

cies reported as highly variable such as Klebsiella pneumoniae (Holt

et al., 2015) or Clostridium bolteae (Dehoux et al., 2016). As previ-

ously observed in population genomics studies comparing multiple

strains of the same species (Koonin and Wolf, 2008), the prevalence

of accessory genes in MSPs often follows a bimodal distribution

showing either a high or low prevalence but rarely intermediate

(Supplementary Fig. S8).

3.2.7 MSPs prevalence

Most MSPs were very rare as 596 (35.9%) were detected in less

than 1% of samples and 1110 (66.2%) in less than 5%. Only 82

MSPs (4.9%) were detected in at least half of the samples showing

that the common microbial core of the human gut microbiota is lim-

ited to a few dozen species (Supplementary Table S2). MSPs anno-

tated at species level were significantly more frequent than those

with less precise annotation (median prevalence: 5.4% versus 1.7%,

P-value¼1.4.10�21 Wilcoxon rank-sum test) indicating that non-

sequenced species are generally rarer. No clear relation between the

prevalence of the MSPs and their mean abundance was found.

However, two MSPs corresponding to Bacteroides vulgatus and

Bacteroides uniformis were both very prevalent (detected in 97.5%

and 94.0% of the samples, respectively) and very abundant (mean

relative abundance of 7.3% and 4.1%, respectively). Interestingly,

many rare MSPs assigned to the Prevotella genus were abundant in

the few samples which carried them.

3.2.8 MSPs quantification for biomarkers discovery

To demonstrate that MSPminer was useful for biomarkers discovery,

we first looked for differentially abundant MSPs according to the geo-

graphical origin of samples (Supplementary Methods). We discovered

343 MSPs differentially abundant between Westerners and Chinese

including 259 more abundant in Westerners and 84 in Chinese

(Supplementary Table S5A). Among the discriminant MSPs, all those

assigned to the Proteobacteria phylum (Klebsiella pneumoniae,

Escherichia coli and Bilophila wadsworthia) were more abundant in

Chinese which is consistent with previously published results (Li et al.,

2014). Interestingly, three MSPs assigned to Faecalibacterium prausnit-

zii were significant but two were more abundant in Westerners and the

other in Chinese. In addition, we discovered 134 MSPs differentially

abundant between Europeans and Americans of which 119 were more

abundant among Europeans (Supplementary Table S5B). This result

is consistent with previous studies showing lower gut microbiota

diversity among Americans compared to Europeans (Sunagawa et al.,

2013).

Secondly, we used MSPs for strain-level analysis. To this end, we

looked for accessory genes more frequent in samples of a given geo-

graphical origin (Supplementary Methods). We found 51 MSPs with

at least 200 such accessory genes (Supplementary Table S5C). Some

MSPs contained genes associated with sample origin while the
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abundance of their core was not, illustrating the complementarity of

the two approaches.

4 Discussion

4.1 Identification of genes with proportional counts
MSPminer relies on a new robust measure (pr) to detect genes with

directly proportional counts. This relation more stringent than those

assessed by Pearson’s or Spearman’s correlation coefficients was suc-

cessfully used to reconstitute Metagenomic Species Pan-genomes of

the human gut microbiota. In fact, most genes from sequenced

genomes were grouped into a single MSP showing that direct pro-

portionality is the most common relation between genes from the

same biological entity.

However, MSPminer misses some genes for which counts are not

ruled by this relation. Indeed, proportionality is disrupted when

gene copy number varies across samples (Greenblum et al., 2015),

when a sample contains multiple strains of the same species (Truong

et al., 2017), when a gene is subject to horizontal gene transfer

(Brito et al., 2017), or when genes from closely related species are

represented by the same reference after redundancy removal.

Nevertheless, the first two cases have most likely a limited impact as

the majority of strains tend to have the same gene copy numbers

(Greenblum et al., 2015) and samples often carry a dominant strain

(Truong et al., 2017). Regarding shared genes, their signals are a lin-

ear combination of the MSPs that carry them. Thus, they will be

identified only if these MSPs are mostly detected in separate sets of

samples.

4.2 Parameters impacting the quality of the MSPs
The quality of the MSPs is impacted by the upstream steps required

for generating the gene counts table, as well as by the biological and

ecological characteristics of the dataset. At the sequencing level, the

number of reads (sequencing depth) generated for each sample

impacts the detection and coverage of subdominant species, while

read length affects the quality of the assembly and the ability to as-

sign a read to a gene without ambiguity. At the bioinformatics level,

assembly, gene prediction, gene redundancy removal, mapping and

counting require expertise to select the most appropriate strategies,

tools and parameters. Indeed, assemblers returning chimeric contigs

which combine sequences from highly related species, inaccurate

predictors generating truncated or merged genes, redundancy re-

moval with a common threshold for all genes (95% of nucleotide

identity) lead to genes of variable quality in catalogues. When quan-

tifying genes, keeping only uniquely mapped reads underestimates

the abundance of some genes whereas considering shared reads can

generate false positives. As shown on simulated data and verified on

a real metagenomic dataset, longer genes are more likely to be clus-

tered in MSPs because they have greater and less dispersed counts.

Finally, at the biology level, a high number of samples with varied

phenotypes will improve the comprehensiveness and quality of

MSPs. Indeed, as the number of samples grows, MSPminer will be

able to identify rare species and assign rarer accessory genes to their

respective MSPs. In addition, highly prevalent accessory genes will

be reclassified from core to accessory as observed while sequencing

an increasing number of strains of a species (Touchon et al., 2009).

4.3 Applications
As illustrated in this paper, MSPs can be used for taxonomic profil-

ing of human gut metagenomes. By using a dedicated pipeline

(Kultima et al., 2012), the sequencing reads need to be mapped on

the IGC catalog to get the number times each gene was sequenced.

Then, the aggregation of the core genes abundance profiles of each

MSP allows accurate detection and quantification of microorgan-

isms in samples up to species level. New MSPs will need to be built

if those provided are not representative of the studied ecosystem.

Compared to methods relying on reference genomes (Truong

et al., 2015), information from unknown or non-sequenced species

can be exploited. In addition, our method is not impacted by conta-

minated genomes or incorrect taxonomic annotation. Compared to

methods quantifying a few dozen marker genes (Sunagawa et al.,

2013), MSPminer may improve the estimation of species abundance

by automatically detecting among hundreds of core genes those with

the greatest specificity and sensitivity.

Furthermore, in each MSP, one can build a presence/absence

table of accessory genes to compare strains carried by individuals

and discover biomarkers associated with specific functional traits

such as pathogenicity. Finally, MSPminer provides microbial popu-

lation genetics from large cohorts which can help culture-dependent

methods prioritize species of greater interest, such as those with no

reference genome available or with reference genomes distant from

the strains present in metagenomic samples (Fodor et al., 2012).

When sequencing coverage allows, genomes of these species can be

directly reconstituted from metagenomic assemblies by binning con-

tigs carrying genes of the same MSP.
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