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Abstract The stretching of a myopic eye is associ-

ated with several structural and functional changes in

the retina and posterior segment of the eye. Recent

research highlights the role of retinal signaling in

ocular growth. Evidence from studies conducted on

animal models and humans suggests that visual

mechanisms regulating refractive development are

primarily localized at the retina and that the visual

signals from the retinal periphery are also critical for

visually guided eye growth. Therefore, it is important

to study the structural and functional changes in the

retina in relation to refractive errors. This review will

specifically focus on electroretinogram (ERG)

changes in myopia and their implications in under-

standing the nature of retinal functioning in myopic

eyes. Based on the available literature, we will discuss

the fundamentals of retinal neurophysiology in the

regulation of vision-dependent ocular growth, findings

from various studies that investigated global and

localized retinal functions in myopia using various

types of ERGs.
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Introduction

The prevalence of myopia is on the rise worldwide

since a few decades [1]. Various meta-analysis studies

have predicted that approximately 5 billion of the

global population may develop myopia by the year

2050, with around 1 billion of them having high

myopia [2, 3]. The increasing prevalence of myopia

and its associated sight-threatening risks [3–9] make

myopia a major public health concern [10–12] and

demands investigation into the fundamentals of eye

growth regulation. The ocular stretching in myopia is

associated with several structural and functional

changes in posterior segment of the eye [13, 14].

Recent research highlights the role of retinal signaling

in ocular growth, and various studies have investigated

the electrophysiological responses in different types of

refractive errors. This review is aimed to provide a

summary of research work on electroretinogram

(ERG) responses in myopia and their implications in

understanding the nature of retinal functioning in

myopic eyes.
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Retinal development, photo-transduction,

and regulation of vision-dependent ocular growth

The development of neural retina usually begins on

day 26 of gestation [15], where the inner neural

ectoderm divides into 3–4 layers of cells [16]. By

week 12, the retinal layers start to form, with the inner

neuroblastic layer giving rise to the ganglion, ama-

crine, and Muller cells creating the inner retina [17].

Similarly, the outer neuroblastic layer gives rise to

photoreceptors (rods and cones), bipolar and horizon-

tal cells forming the outer retina [17]. By the end of

week 14, the ganglion cells migrate away from the

fovea toward retinal periphery and cone photorecep-

tors migrate toward the fovea [16, 18].

Retina being the only photo-sensitive neural layer

in the eye [19], incorporates about 55 types of

structurally and functionally specific neurons

[20, 21] including photoreceptors, bipolar cells, gan-

glion cells, horizontal cells, and amacrine cells

[22, 23]. The distinct arrangement of these neurons

from outer to inner retina forms a complex circuit to

capture the photons of light from an object [24–26].

These photons are converted into electrical/neuronal

signals by the photoreceptors with the help of visual

pigments present in them by a process called ‘‘photo-

transduction’’ [26, 27]. The retinal photoreceptors,

through synapses with retinal bipolar cells, transmit

signals to the retinal ganglion cells. Upon activation,

the axons of retinal ganglion cells carry neuronal

signals to the brain via optic nerve for visual

perception [28]. Evidence from animal studies sug-

gests that both inner and outer retina may influence the

detection of optical defocus and signaling for the

corresponding development of ocular growth

[19, 29–34].

Several animal species including chicks [35–44],

squid [45], tree shrews [33, 46], monkeys [47–55],

marmosets [56], guinea pigs [57], kittens [58–60],

mice [61–63], and also humans [64–68] are capable of

identifying the sign and magnitude of retinal image

defocus and make compensatory alterations in ocular

growth [69–74]. Evidence from the experiments

conducted on animal models indicates that the absence

of input from the accommodative system (cycloplegia,

ciliary nerve section, or damage to the Edinger–

Westphal nucleus) [31, 39] or higher visual center

(optic nerve section) [75] does not influence the ocular

response to imposed form-deprivation [38, 75], or

optical defocus [31, 39, 42, 75, 76], suggesting that the

visual mechanisms regulating the refractive develop-

ment are primarily localized at the retina.

Given that the fovea provides the best visual acuity

(largely attributed to cone signaling) [77, 78], it was

traditionally assumed that cone pathways may have a

greater influence on visual signaling for refractive

development [70, 79]. However, as the foveal area

corresponds to only a small part of the visual field, it is

reasonable to assume that the peripheral retinal areas

might also be important in driving refractive status.

There is growing evidence involving animal models

indicating the presence of ocular growth pathways

mediated by signals from the peripheral retina. The

normal response to a) form-deprivation in monkeys

treated with laser ablation at the cone-rich fovea [52],

b) similar myopic responses in monkeys with form-

deprivation [48, 53] and hyperopic defocus [51, 54]

imposed on the rod-dominated peripheral regions or

the entire visual field, and c) recent work on Gnat1-/-

mice with rod dysfunction [63] indicate that the

peripheral rod pathways may be equally critical for

visually guided eye growth. Blocking the functions of

photoreceptors [19, 80], ON and OFF pathways

[60, 81–83] by pharmacological means (neurotoxins)

[30–32, 34] or genetic means (such as in mouse

models) [84–88] is known to affect both normal

refractive development and response to form-depri-

vation myopia (FDM) showing the importance of

various retinal neurons, neuronal pathways, and

neurotransmitters in the refractive development of

eye [89, 90]. Overall, these studies support the

hypothesis that refractive development occurs through

a cascade of local and regionally selective mecha-

nisms in the retina [55, 70, 73, 74, 79].

Electroretinogram (ERG)

The retinal function can be assessed by electrophys-

iological tests that study the electrical properties of the

biological cells and tissues, driven by the flow of ions

(ion current) [26, 91–93]. Of various electrophysio-

logical tests, the electroretinogram (ERG) with the

standard protocol by the International Society for

Clinical Electrophysiology of Vision (ISCEV) is

widely used to determine the global and localized

retinal responses [94–97]. When a bright flash of light

illuminates the retina, changes in membrane potentials
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across the neuronal and non-neuronal retinal cells

simultaneously and instantaneously with a high tem-

poral resolution (milliseconds) [94–97] give rise to an

extracellular current, which forms the basis of ERG

[98–100]. Hence, the ERG test provides a unique

opportunity to investigate changes in retinal electrical

activity to several inherited and acquired retinal

diseases [94–97] and several disorders or ocular

conditions including refractive errors [101]. The most

commonly used ERG techniques are full-field flash

ERG (ffERG), multifocal ERG (mfERG), and pattern

ERG (PERG).

Full-field flash electroretinogram (ffERG) and its

responses in myopia

A flash ERG measures the average response of retinal

cells from a relatively broad retinal region to a full-

field luminance stimulation [94]. By varying the

background illumination, the light- or dark-adapted

state of the eye, and the intensity of stimulus flash, one

can elicit and isolate responses from different retinal

cells. A standard ERG waveform is usually biphasic,

with an initial cornea-negative response (a-wave),

followed by a cornea-positive response (b-wave), and

an additional slower positive wave or c-wave (Fig. 1a:

scotopic and Fig. 1c: photopic) [97, 102]. In general,

electrical activity in the photoreceptors, ON-bipolar

cells, and retinal pigment epithelium initiate the

a-wave [103], b-wave [104], and c-wave [102],

respectively. The oscillatory potentials (OPs) that

indicate the activity of amacrine cells in inner retina

are represented by a small high-frequency wavelet

component on the ascending limb of b-waves [94].

The results from several studies that investigated

ffERG responses in myopia are given in Table 1. The

overall incidence of abnormal electrophysiological

findings in myopes younger than 18 years of age was

reported to be 29%, with a higher proportion of ERG

abnormalities reported in higher ametropias (spherical

equivalent refractive error, SER worse than ± 6.00

D; 52%) compared to individuals with emmetropia

(SER: - 0.75 D to ? 1.50 D; 26%) or low ametropia

(SER lower than ± 6.00 D) [101].

Since the first report of conventional ERG in

myopes by Karpe in 1945 [105], various studies have

reported impairment of retinal function in myopia.

Several studies reported a significant reduction of

b-wave amplitude in myopia that closely correlated

with the degree of myopia and the axial length of eye

[106–115]. For every 1-mm increase in axial length,

the dark-adapted 3.0 ERG showed a reduction of

15.7 lV and 23.4 lV in a-wave and b-wave ampli-

tude, respectively, in an absence of a myopic retinal

degeneration [109]. Significant differences in both a-

and b-wave amplitudes of ffERG have been reported

in high myopia (SER: - 6.00 D to - 14.50 D),
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AL < 23 mm                AL: 23-24 mm AL: 24-25 mm              AL: 25-26 mm         AL: 26-27 mm AL: 27-28 mm             AL > 28 mm

Fig. 1 Normal waveforms and parameters of A dark-adapted

3.0 ERG and C light-adapted 3.0 ERG of full-field elec-

troretinogram (ffERG). Average ffERG responses from B dark-

adapted 3.0 ERG and D light-adapted 3.0 ERG from 100 eyes

with axial length (AL) ranging from 21.79 to 30.55 mm and

spherical equivalent refractive error (SER) ranging from ? 0.50

to - 18.00 D. All participants were divided into seven different

groups based on their mean AL: Group 1 (22.40 mm), Group 2

(23.10 mm), Group 3 (24.26 mm), Group 4 (25.51 mm), Group

5 (26.34 mm), Group 6 (27.5 mm), and Group 7 (29.55 mm).

The two values listed for each group under latencies and values,

respectively, indicate the change (D) in latencies (D ms) and

amplitudes (D lV) of a ffERG a-wave (negative values) and

b-wave (positive values). Adapted with permission from

Sachidanandam et al. (2017) [109]
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moderate myopia ( - 3.00 D to - 5.00), and low

refractive error (? 0.75 D to - 2.75 D) [108, 110]

with a significant reduction in the b-wave amplitude

under both scotopic (Fig. 1b) and photopic (Fig. 1d)

conditions for individuals with high myopia (Fig. 2)

[106, 107, 110, 111]. Scotopic responses (dark-

adapted 3.0 ERG) were, however, reported to be more

significantly affected than the photopic responses

(light-adapted 3.0 and 30 Hz flicker ERG) [109, 110].

Studies have shown significantly lower short (S),

long (L) and middle (M) wavelength-sensitive cone

ERG b-wave amplitudes in high myopic eyes than the

non-myopic eyes [116]. Significant reduction of cone

and rod responses (mostly cones) in individuals with

Table 1 Summary of studies on full-field flash ERG (ffERG) and myopia

References Participants Outcomes

Blach et al.

[119]

25 emmetropes and 30 high myopes with degenerative

fundus changes

Increased a-wave and reduced b-wave amplitude with

increased degree of myopia

Malik

et al.[112]

43 myopes with degenerative fundus changes and 37

myopes with normal fundus

Reduced a- and b-wave amplitudes as the degree of

myopia increased. Decreased ffERG responses in the

eyes with degenerative fundus changes, irrespective

of the degree of myopia

Perlman et al.

[107]

31 high hypermetropes ([? 5.00 D), 7 high myopes

(\ -6.00 D), and 7 unilateral or bilateral aphakics

Reduced scotopic a-and b-wave and photopic b-wave

amplitudes in high myopes

Ishikawa et al.

[120]

66 high myopes and 76 emmetropes Reduced a-and b-wave amplitudes in tigroid fundus.

Reduced a- and b-wave, and OPs’ amplitudes and

increased implicit time in posterior staphyloma

involving the macula

Westall et al.

[108]

33 high myopes (- 6.00 to - 14.50 D), 8 mild myopes

(- 3.00 to - 5.00 D), and 19 small SER (? 0.75

to - 2.75 D)

Reduced rod-cone a-and b-wave, cone b-wave, and

OPs’ amplitudes in high myopes, which was

proportional to increased AL

Yoshii et al.

[113]

14 emmetropes (- 0.50 to - 3.50 D) and 16 high

myopes (- 7.00 to - 11.50 D)

Reduced nonlinear component of the ERG amplitudes

from the posterior pole of the fundus in high myopes

Flitcroft et al.

[101]

15 high myopes (B - 6.00 D), 19 low myopes (- 0.75

to - 6.00 D), 35 emmetropes (- 0.75 to ? 1.50 D),

44 low hyperopes (? 1.50 to ? 6.00 D), and 10 high

hyperopes (C ? 6.00 D)

Abnormal ffERG responses in high ammetropia

Shamshinova

et al. [111]

46 myopes with moderate-to-high congenital myopia Reduced b-wave amplitude with increased degree of

myopia and AL

Kader et al.

[106]

40 emmetropes (± 0.25 D), 20 mild myopes (- 0.50

to - 3.00 D), 28 moderate myopes (- 3.25 to - 6.00

D), 40 high myopes (- 6.25 to - 15.00 D), and 40

pathological myopes (- 7.00 to - 22.00 D with 7

posterior staphyloma)

Reduced scotopic, photopic, and combined b-wave,

OPs’, and 30 Hz flicker amplitudes as well as delayed

latencies in high myopes, which was proportional to

increased AL

Wang et al.

[117]

64 early-onset high myopes and 20 late-onset high

myopes

Reduced scotopic b-wave, photopic a- and b-wave, and

combined a- and b-wave amplitudes in early-onset

high myopes

Koh et al. [110] 32 myopes (B - 6.00 D) Reduced scotopic b-wave, photopic a- and b-wave, and

30 Hz flicker b-wave amplitudes with increased

degree of myopia and AL

Sachidanandam

et al. [109]

100 eyes with axial length ranging from 21.79 to

30.55 mm and SER ranging from ? 0.50 to - 18.00

D

Reduced both scotopic and photopic a- and b-wave

amplitudes and minimal delayed corresponding IT

with increased AL

Wan et al. [122] 19 emmetropes (± 0.25 D), 18 low myopes (- 0.50

to - 3.00 D), 23 moderate myopes (- 3.25 to - 6.00

D), and 16 high myopes (B - 6.25 D)

Increased scotopic a- and b-wave amplitudes as well as

rod-driven OPs’ peak frequency with increased

degree of myopia

AL Axial length, ERG Electroretinogram, ffERG full-field flash electroretinogram, IT implicit time, OPs oscillatory potentials, SER
spherical equivalent refractive error
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Fig. 2 Mean b-wave amplitudes for scotopic (A–D), photopic
(E, F), and combined response (G, H) of full-field flash ERG

(ffERG) reported by each study in emmetropia (Emm) and

various grades of myopia (LM: low myopia, MM: moderate

myopia, HM: high myopia, SM: severe myopia, and PM:

pathological myopia)
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early-onset of high myopia (onset age, B 5 years)

than those with late-onset of high myopia (onset age,

12.4 ± 2.5 years) suggests that cone-rod dysfunction

may be a sign for early onset of high myopia

[117, 118]. The ffERG [119] and focal macular ERG

[120] findings in pathologic myopes (presence of

myopic retinal degeneration caused by progressive

stretching and thinning of posterior segment of eye

due to excessive axial length elongation which can

result in reduced best-corrected visual acuity

[12, 121]) showed a significant reduction in the

amplitude of a- and b-wave in high myopic eyes with

tigroid fundus appearance when compared to emme-

tropic eyes, whereas the implicit time was within the

normal range. Similarly, there was a significant

reduction in the amplitude of a-wave, b-wave, and

OPs and delay in implicit time in high myopia with

posterior staphyloma involving the macula compared

to early myopia with tigroid fundus [120]. The reduced

amplitude with normal implicit time in high myopia

with tigroid fundus was related to a significant

reduction in the macular cone density (focal macular

ERG), which is considered to be an early macular

change in high myopia [119, 120]. Furthermore, it was

suggested that the reduced amplitude with delayed

latency in high myopia associated with macular

pathologies such as posterior staphyloma involving

the macula could further reduce macular cone pho-

toreceptors [120]. Likewise, chorioretinal vascular

changes, retinal pigment epithelium degeneration, and

receptor changes found in degenerative myopia may

also play a major role in altering the ERG responses

[119].

In contrast, Wan et al. (2020) recently reported an

increase in the amplitude of a- and b-wave of the

scotopic/dark-adapted 3.0 ERG (combined responses

arising from the photoreceptors and ON-bipolar cells

of both the rod and cone systems; rod-dominated) with

the degree of myopia [122]. In addition, the average

peak frequency of the rod-driven dark-adapted OPs

arising from amacrine cells and the inner plexiform

layer also showed a significant positive correlation

with the magnitude of myopia [122]. The authors

argued that these inconsistencies in comparison with

other studies reflected the composition of the partic-

ipants in their study, being young adults without any

sign of pathological myopia (i.e., myopic retinal

degenerations). In addition, the responses obtained

from previous studies reflected combined

contributions of the rod- and cone-driven OPs, inter-

fering with each other [123–126], while Wan et al.

isolated the rod-driven OPs by subtracting the light-

adapted ERG from the dark-adapted ERG [127, 128].

Their findings indicate an alteration in the rod and ON-

bipolar cell function in myopia, with minimal effect on

the cone system. It is hypothesized that changes in the

rod-mediated retinal function may be related to the

changes in the retinal dopaminergic pathways (dopa-

mine D2 receptors) [122, 129]. The variation in the

dark-adapted 3.0 ERG OP amplitudes in myopes

indicates an imbalance of the ’ON’ and ’OFF’ retinal

activity, which may be associated with the develop-

ment of myopia and its progression [130].

Multifocal electroretinogram (mfERG) and its

responses in myopia

A conventional ffERG measures the global electrical

response of the entire retina, but it does not provide a

localized response [131]. A mfERG is applicable for

objectively studying local retinal health as well as

characterizing and monitoring focal retinal lesions in

various pathological conditions [132–134]. The

mfERG uses a specific hexagonal stimulus pattern to

obtain a topographic map of retinal electrophysiolog-

ical activity over a restricted retinal region

(* 40–50�), unlike ffERG, that reflects light-induced
electrical activity from almost the entire retina [95].

This specific hexagonal pattern stimulus illuminates

the retina using a pseudo-random binary m-sequence

algorithm and gives rise to a continuously recorded

signal from individual retinal locations [95]. All the

localized responses can be averaged to compare

quadrants, hemi-retinal areas, normal and abnormal

regions of the two eyes, or successive rings from

center to periphery [95]. Routinely, the stimulus

pattern (array) with 61 or 103 hexagons is used within

a field diameter of 40–50� (20–25� radius from the

point of fixation to the edge of display) [95]. In the

case of 61 hexagons, they are grouped from center to

periphery into five rings (R1–R5), where R1 is the

central ring and R5 is the peripheral ring. The

approximate eccentricity from R1 to R5 is\ 2�,
2–5�, 5–10�, 10–15�, and[ 15� (* 23�), respectively
[135]. A similar grouping for 103 hexagons display

would have a total of six rings within the same field

diameter.
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A typical mfERG waveform (also called the first-

order response, or first-order kernel) is analogous to

the conventional ffERG response as it is biphasic, with

an initial negative component (N1), followed by a

positive peak (P1) (Fig. 3a) [95]. There is another

second negative deflection (N2) after the positive peak

(P1). In humans, the N1 component primarily origi-

nates from the cone photoreceptors with minimal

contribution fromON- and OFF-cone bipolar cells, the

P1 component arises from the activity of ON- and

OFF-cone bipolar cells, and the N2 component is

derived from inner retinal cells (amacrine and gan-

glion cells) [94, 95, 136, 137].

The results from several studies that investigated

mfERG responses in myopia are given in Table 2.

Previous investigations on early changes in retinal

function using the first-order kernel responses in low,

medium, and high myopes showed a significant

reduction of N1, P1 [106, 109–111, 138–143], and

N2 amplitude density [139] with a greater effect on P1

amplitudes than N1 amplitudes (Fig. 3b and Fig. 4)

[109, 143, 144]. The reduction in N1 and P1 amplitude

density and significant delay in corresponding laten-

cies [145, 146] in all rings, as well as four retinal

quadrants, was significantly correlated with axial

length and the degree of myopic refractive error

[106, 109–111, 138–144]. The delayed implicit time

was attributed to the possible altered synaptic trans-

mission between the ON- and OFF-bipolar cells or

structural changes in the inner plexiform layer of

retina [147].

Previous studies have found that the mfERG

amplitude density are maximum, and the latencies of

P1 and N2 waves are the longest at the central R1

(fovea), which progressively decreased with the

increase in retinal eccentricity [135, 138, 142, 148].

However, P1 amplitude density reduction in case of

children with progressive myopia (\- 1.00D/

2 years) was reported to be significantly smaller than

stable myopes at central 5 degrees (R1) [149].

Progressive myopes also showed significantly shorter

implicit times for OPs arising from inner retina

compared to emmetropes and stable myopes, with

similar implicit times for stable myopes and emme-

tropes [150]. These findings collectively indicate that

progression of myopia may lead to inner retinal

changes and alter the electrophysiological responses at

both center and periphery of the retina [150].

There are various other factors such as optical,

electrical, and retinal factors that contribute to the

reduced mfERG responses. For optical factors, the

degraded mfERG responses are associated with the

decreased retinal image size and retinal illuminance

due to elongated axial length in myopes. Electrical

factors such as increased electrical path and ocular

resistance from the electrical sources (at retinal plane)

and the ERG electrodes [151] and lower retinal cell

responsivity are proposed to be linked with reduced

mfERG responses in myopes [152]. Retinal factors

attributing to the reduced mfERG responses in myopes

are increased sub-retinal space and morphological

alterations in retinal cells due to axial elongation

[153, 154]. Morphological changes include decreased

N1 N2

P1

N1 IT

P1 
amp.

P1 IT

N1 
amp.

Group 1 (n = 16)             Group 2 (n = 14)           Group 3 (n = 17)           Group 4 (n = 16)                 Group 5 ( n = 17)                Group 6 (n = 7)             Group 7 (n = 13)
AL < 23 mm                    AL: 23-24 mm AL: 24-25 mm               AL: 25-26 mm                     AL: 26-27 mm AL: 27-28 mm                AL > 28 mmA B

Fig. 3 A Normal multifocal electroretinogram (mfERG)

waveform and parameters. B Average six mfERG ring

responses from 100 eyes with axial length (AL) ranging from

21.79 to 30.55 mm and spherical equivalent refractive error

(SER) ranging from ? 0.50 to - 18.00 D. All participants were

divided into seven different groups based on their mean AL:

Group 1 (22.40 mm), Group 2 (23.10 mm), Group 3

(24.26 mm), Group 4 (25.51 mm), Group 5 (26.34 mm), Group

6 (27.5 mm), and Group 7 (29.55 mm). The two values listed for

each group under latencies and under values, respectively,

indicate the change (D) in latencies (D ms) and amplitude

density (D nV/deg2) of a mfERG N1 (negative values) and P1

(positive values) wave. Adapted with permission from Sachi-

danandam et al. (2017) [109]
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Table 2 Summary of studies on multifocal ERG (mfERG) and myopia

References Participants Outcomes

Kawabata et al.

[138]

10 emmetropes/low myopes (? 1.00 to - 3.00 D), 10

moderate myopes (- 3.25 to - 6.00 D), 10 high

myopes (B - 6.25 D)

Reduced N1, P1 amplitudes and delayed corresponding

latencies with increased degree of myopia and retinal

eccentricity

Sun et al. [148] 20 emmetropes, 20 mild myopes, 20 moderate myopes,

and 20 high myopes

Reduced N1, P1, N2 amplitudes and corresponding

response density with increased degree of myopia and

retinal eccentricity

Chan et al.

[158]

30 subjects with axial length ranging from 23.72 to

28.13 mm and SER ranging from 0.00 to - 10.50 D

Reduced P1 amplitude in the central (R1) and reduced

N1, P1 amplitudes in the paracentral region (R3) with

increased degree of myopia and AL. The mfERG

amplitude reduced by about 6–10% per 1-mm

increase in AL

Luu et al. [139] 104 children and 31 adults with SER ranging from 0.00

to - 10.00 D

Reduced N1, P1, N2 amplitudes and delayed

corresponding IT with increased degree of myopia in

adults

Luu et al. [149] 12 myopes with a high myopia progression rate

(\- 1.00 D/2 years), 44 myopes with a moderate

progression rate (- 0.25 to - 1.00 D/2 years), and

25 myopes with no progression or a low progression

rate (- 0.25 D/2 years)

Reduced P1 amplitude within the central 5 degrees (R1)

in the children with high myopia progression

Chen et al.

[146]

10 emmetropes (± 0.75 D) and 18 myopes (- 0.75

to - 9.50 D) with 9 stable and 9 progressive myopes

(B - 0.50 D/2 years)

Reduced P1, N2 amplitudes and P1 implicit time within

the paracentral retina (R2) in myopes. AL contributed

to 17% of the variance in mfERG responses

Chen et al.

[150]

11 emmetropes (± 0.75 D) and 18 myopes (- 0.75 to -

9.50 D) with 9 stable and 9 progressive myopes

(B - 0.50 D/2 years)

Reduced OPs’ IT in progressive myopes

Chen et al.

[145]

10 emmetropes (± 0.75 D) and 20 myopes (- 0.75

to - 9.50 D) with 10 stable and 10 progressive

myopes (B - 0.50 D/2 years)

Delayed P1 IT in stable and progressive myopes. AL

contributed to 15% of the variance in IT, while SER

accounted for 27%

Wolsley et al.

[160]

14 emmetropes (± 0.50 D), 14 mild myopes (- 0.75

to - 2.75 D), 14 moderate myopes (- 3.00 to -5.75

D), and 14 high myopes (B -6.00 D)

Reduced P1 amplitude and delayed P1 IT, with

increased retinal eccentricity in high myopes

Ying et al. [144] 12 pathological myopes (AL C 30.00 mm) and 24

pathological myopes (AL\ 30.00 mm)

Reduced P1 amplitude, which was proportional to the

neural retinal thickness in all quadrants and rings with

increased AL

Shamshinova

et al. [111]

46 myopes with moderate-to-high congenital myopia Reduced P1 amplitude in all rings with increased

degree of myopia and AL

Kader et al.

[106]

40 emmetropes (± 0.25 D), 20 mild myopes (- 0.50

to - 3.00 D), 28 moderate myopes (- 3.25 to - 6.00

D), 40 high myopes (- 6.25 to - 15.00 D), and 40

pathological myopes (- 7.00 to - 22.00 D with 7

posterior staphyloma)

Reduced P1 amplitude and delayed P1 IT with

increased degree of myopia, AL, and retinal

eccentricity

Azad et al.

[135]

222 emmetropes (± 0.50 D) Maximum N1, P1, N2 amplitudes, and longest P1, N2

latencies at the fovea, which progressively decreased

with increased retinal eccentricity

Park et al. [141] 30 mild myopes (- 0.50 to - 2.75 D), 25 moderate

myopes (- 3.00 to - 5.75 D), 17 high myopes

(- 6.00 to - 9.75 D), and 18 super high myopes

(- 10.0 to - 15.0 D)

Reduced N1, P1 amplitudes and delayed P1 IT with

increased degree of myopia and retinal eccentricity

Koh et al. [110] 32 myopes (B - 6.00 D) Reduced P1 amplitude in the outer rings (R3–R5) with

increased AL
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retinal thickness, decreased retinal photoreceptor

density [155], structural changes in photoreceptor

outer segment [19], and photoreceptor dysfunction

[156]. The prolonged implicit times/delayed latency

may also be due to altered synaptic transmission from

retinal photoreceptors (primarily rods) to ON and OFF

pathways [157].

Influence of axial length on mfERG responses

Similar to ffERG, the mfERG amplitude density also

shows a better correlation with axial length compared

to refractive error [109, 110], which is the most

important determinant of myopic mfERG responses

across all five rings [140]. For every 1-mm increase in

axial length, the mfERG at R1 (fovea) showed a

reduction of 2.4 nV/deg2 and 7.4 nV/deg2 in N1 and

P1 amplitude density, respectively, in an absence of a

myopic retinal degeneration [109]. High myopes with

longer axial length had decreased mfERG responses

across central, paracentral [158], and outer rings (R3–

R5) [110]. The central retina shows higher rates of

reduction in both N1 and P1 amplitude density

[109, 158]. The mean N1 and P1 mfERG amplitude

density responses were reported to decrease by 6–10%

per mm of axial length elongation [158]. Axial length

accounted for 15% of the total variance in implicit

time, while refractive error accounted for 27% [145].

Given that the mfERG responses primarily arise

from retinal bipolar cells and nuclear layer, any

physical or mechanical alterations to these cells will

have an impact on mfERG responses [147]. Hood et al.

indicated that an extensive global loss of bipolar cells

essentially abolishes the overall mfERG response,

whereas a localized loss exhibits a selective and

localized reduction in the mfERG amplitudes with a

mild-to-moderate increase in the implicit time and

delayed latency [147].

Influence of myopic retinal changes on mfERG

responses

The mfERG responses gradually decline toward the

periphery [159] and correlate with peripheral retinal

thinning in moderate and high myopes

[135, 141, 144, 160, 161]. Retinal thinning in mod-

erate and high myopes, due to reduced middle to inner

retinal (MIR) layer (from outer plexiform layer to

retinal nerve fiber layer (RNFL)) thickness, was

correlated with decreased spatial resolution, reduced

Table 2 continued

References Participants Outcomes

Song et al. [142] 31 emmetropes (? 0.75 to - 0.50 D; AL: 22 to

24 mm), 26 low-to-moderate myopes (- 0.50

to - 6.00 D; AL: 24 to 26 mm), 34 high myopes

(- 6.00 to - 10.00 D; AL: 26 to 28 mm), 22 super

high myopes (\- 10.00 D; AL:[ 28 mm)

Reduced P1 amplitude, P1 amplitude density, and

delayed P1 IT with increased degree of myopia, AL,

and retinal eccentricity

Sachidanandam

et al. [109]

100 eyes with axial length ranging from 21.79 to

30.55 mm and SER ranging from ? 0.50 to - 18.00

D

Reduced N1, P1 amplitudes and minimal delayed

corresponding IT with increased AL

Ismael et al.

[140]

20 emmetropes (± 0.50 D), 20 mild myopes (- 0.50

to - 3.00 D), 20 moderate myopes (- 3.00 to - 6.00

D), and 20 high myopes (\- 6.00 D)

Reduced P1 amplitude, delayed P1 latency in all rings

as well as reduced N1, P1 amplitudes, delayed N1

latency in all quadrants with increased degree of

myopia, AL, retinal eccentricity, and RNFL thinning

El-Gamal et al.

[143]

30 emmetropes (± 0.25 D) and 30 high myopes

(B - 5.00 D and AL[ 26 mm)

Reduced N1, P1 amplitudes and corresponding IT at

almost all rings and quadrants in high myopes, which

was proportional to increased AL. P1 responses were

more affected

Nebbioso et al.

[162]

24 emmetropes, 24 high myopes (\- 8.00 D and

AL[ 26 mm) with MF, and 24 high myopes without

MF

Reduced P1 amplitude and delayed P1 IT with

increased macular thickness in high myopes with MF

AL axial length, ERG electroretinogram, IT implicit time, mfERG multifocal electroretinogram, MF myopic foveoschisis, OPs
oscillatory potentials, R1–R5 ring 1 to ring 5 from center to periphery, RNFL retinal nerve fiber layer, SER spherical equivalent

refractive error
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P1 amplitude density, and delayed latency in the

retinal periphery [160]. Significant correlations were

observed between MIR thickness and N1, P1 ampli-

tude density, as well as N1, P1 implicit time in the

perifoveal retina corresponding to R4 [141]. However,

no such significance was noted between central R1

parameters and central macular thickness [135]. The

P1 amplitude density was also significantly correlated

with the mean RNFL and outer macular thickness in

R2, R4, R5, and R2 to R5, respectively [110].

Previous studies have shown an increase in the

central subfield macular thickness (CST) [142] and a

reduction in neural retinal thickness [144] with an

increasing degree of myopia. The changes in CST

were negatively associated with P1 amplitude

[142, 162], P1 amplitude density [142], and

microperimetry (MP-1) sensitivity [162]. In addition,

the P1 amplitude density was found to decrease in all

quadrants and rings with an increasing axial length

[144]. The increase in CST in high myopes also led to

an increase in P1 implicit time [142]. This shows that

retinal morphological changes are closely associated

with the retinal functional changes in high myopia

[142, 144, 162]. Hence, the correlation between

structural and functional changes is crucial for inter-

preting retinal health in myopes, especially in high

myopia [142, 144, 161, 162].

Pattern electroretinogram (PERG) and its

responses in myopia

The PERG is a contrast-based response, driven by

macular photoreceptors and originating from retinal

ganglion cells [94]. It is a measure of both central

retinal function and retinal ganglion cell function
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[163]. In macaque monkeys, both ON and OFF

pathways equally contribute to the transient PERG

amplitudes [164]. Clinically, transient PERG response

has two main components: P50 (positive peak at

50 ms from stimulus onset) is an inner retinal com-

ponent driven by macular photoreceptors and N95

(negative peak at 95 ms from stimulus onset) is the

second component which is contrast-related and is

generated by the retinal ganglion cells [96].

The P50 and N95 wave amplitudes of the transient

PERG response were reduced in high myopes with

longer axial length compared to that of emmetropes

and low myopes [101, 165–167]. The amount of loss

in P50 amplitude was proportional to the degree of

myopia, i.e., 8% in low myopes (- 1.00 to- 3.00 D),

16% in moderate myopes (- 3.25 to - 6.00 D), and

36% in high myopes (- 6.25 to - 10.00 D), when

compared with emmetropes or myopes up to - 0.75

D [166]. Similarly, the amount of loss in N95

amplitude was also proportional to the degree of

myopia, i.e., 7% in low myopes, 21% in moderate

myopes, and 43% in high myopes, when compared

with emmetropes [166]. Although P50 wave latencies

show no difference, N95 wave latencies were reported

to significantly increase in high myopia [166]. The

reduced P50 and N95 amplitudes in higher degrees of

myopia may indicate early macular and ganglion cell

dysfunction even in eyes with normal vision and a

healthy appearance of the macula [165–167].

Global-flash multifocal electroretinogram

(gmfERG) and its responses in myopia

A further refinement of mfERG is the gmfERG, in

which a successive insertion of a full-field or global-

flash stimulus between consecutive focal flashes of a

standard mfERG stimulus enhances the adaptive

response, isolating the outer and inner retinal

responses into two major components [168, 169].

The direct component (DC) is predominantly derived

from the outer retinal cells (photoreceptors and bipolar

cells), whereas the induced component (IC) is derived

from the inner retinal cells (ganglion and amacrine

cells) [168, 170–172].

The results from several studies that investigated

gmfERG in myopia are given in Table 3. Evaluation of

neural response from outer to inner retina in emme-

tropes and myopes using the gmfERG showed that

both the DC and IC responses gradually decreased

from R1 to R5. The IC responses were more affected

as compared to the DC responses, indicating that the

inner retina was greatly affected in myopes [173].

Both the DC and IC amplitude densities were signif-

icantly correlated for retinal mid-peripheral regions

corresponding to R2 to R3 in myopic refractive error

[173]. It is hypothesized that these gmfERG responses

are mediated by light-adapted changes in the retinal

dopaminergic system.

The gmfERG on myopic children with different

contrast levels exhibited a significant reduction in

central macular (R1) DC amplitude density at 96%

contrast, while the IC amplitude density was unaf-

fected [174]. But myopic adults showed a significant

reduction in the paracentral DC amplitude density for

29% and 49% contrasts [175]. The IC amplitude

density in myopic adults is reduced for all measured

contrast levels in both central and peripheral retinas

[175]. There were no significant changes for both DC

and IC implicit times in children and adults [174, 175].

Overall, these findings suggest that gmfERG-derived

inner and outer retinal function in myopes vary

significantly with age and retinal eccentricity.

A similar contrast-based gmfERG setup was used

to determine whether myopia progression measured

over 1 year was associated with changes in retinal

function. At 49% contrast, both the DC and IC

amplitude densities at the macula (central R1) were

significantly reduced with the progression of myopia

[176–178]. The DC and IC implicit times were also

reduced considerably in the paracentral retinal region

[176, 177]. However, the high-contrast responses

remained unaffected by the myopia progression

[176–178]. The findings indicate that myopia progres-

sion in children alters the inner retinal function at

central retina, along with partial involvement of

paracentral retina [176, 177]. The retinal electrophys-

iological functions seem not only differentially

affected in children and adult myopes, but also in

outer and inner retina that differentially process the

spatial details [179].

Electroretinogram responses to anti-myopia

strategies

Given an alarming rise in the prevalence of myopia

worldwide, various optical, pharmacological, and
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environmental strategies are being incorporated to

prevent the development of myopia [180] as well as to

slow down the rate of myopia progression in children

[181, 182]. One of the popular optical anti-myopia

strategies includes orthokeratology [183, 184], which

decreases the hyperopic defocus at the peripheral

retina in myopic eyes [185–187]. A recent investiga-

tion on the effect of 60 days of orthokeratology

treatment on PERG reported significantly delayed

implicit time of P50 and N95 wave, but no effect on

PERG amplitudes [188]. Because the blur induced by

orthokeratology and other peripheral defocus inducing

anti-myopia strategies is not the same across all retinal

eccentricities, it would be useful to use the mfERG to

investigate how ERG responses vary in different

retinal regions.

Besides optical anti-myopia strategies, pharmaco-

logical management of myopia progression with

atropine eye drops has also been one of the most

effective strategies to control myopia progression in

children [181, 189–193]. The majority of previous

ERG studies that investigated different concentrations

of atropine eye drops (0.01%, 0.1%, 0.5%, and 1%) on

retinal signals reported no significant effect of atropine

on retinal function as demonstrated by ffERG

[194–196], mfERG [194, 197], or PERG [198] in

young myopic children (\ 14 years of age). However,

there are a few studies that report contradictory results.

Firstly, Khanal et al. [199] reported that 0.1% atropine

eye drops resulted in a 14% reduction of dark-adapted

3.0 OP amplitudes and 4% delay in the a-wave implicit

time of dark-adapted 10.0 ERG (stronger ffERG),

indicating that atropine could alter neural activity in

inner retina and activity of photoreceptors, respec-

tively [199]. Secondly, Kothari et al. [194] reported a

reduction in the P50 amplitude of PERG with 0.01%

atropine eye drops, indicating that the induced optical

blur due to cycloplegia and mydriasis may alter signal

transmission in inner retina (amacrine cells) [194].

Lastly, it was reported that gmfERG responses

increased with 0.1% atropine eye drops in the presence

of optically induced myopic defocus, suggesting that

the atropine may enhance the effects of myopic

defocus in the inner layers of the peripheral retina in

controlling the eye growth for potential anti-myopia

effects [200]. Overall, the literature related to the

influence of atropine eye drops on altering retinal

signals and regulating ocular growth is sparse and

Table 3 Summary of studies on global-flash mfERG (gmfERG) and myopia

References Participants Outcomes

Chen et al.

[173]

10 emmetropes (± 0.75 D) and 14 myopes

(\ - 0.75 D)

Increased DC, IC amplitudes in the paracentral retina (R2 to

R3) with increased degree of myopia

Ho et al.

[175]

54 myopes (SER: 0.00 to - 8.13 D) Reduced paracentral DC amplitude for the 29% and 49%

contrasts in myopes. Reduced paracentral and peripheral IC

amplitudes at all contrasts measured and for the 49% contrast,

respectively, in myopes. SER contributed to about 14% and

16% of the variance in DC and IC amplitude, respectively

Ho et al.

[177]

22 myopic children (mean age: 11 ± 1 years) Delayed DC (R3) and IC (R2 to R5) IT at 49% contrast in

children with myopia progression. Delayed IC IT (R1) at 96%

contrast in children with myopia progression

Ho et al.

[176]

26 myopic children (9–13 years) with varying

degrees of myopia

Reduced central DC, IC amplitudes, and paracentral IT at 49%

contrast in children with myopia progression

Ho et al.

[174]

52 children (9–14 years) and 19 young adults

(21–28 years) with SER ranging from 0.00

to - 5.50 D

Reduced central DC amplitude at 96% contrast in myopic

children. Reduced paracentral IC amplitude at 49% contrast

in myopic adults

Chin et al.

[179]

23 emmetropes to low myopes (? 1.00 to - 3.25 D) Reduced DC amplitude at a low SF, which increased with

increasing SF, and decreased with increasing eccentricity

Increased IC amplitude at all SF, which decreased with increasing eccentricity

Li et al.

[178]

56 emmetropic children (± 0.50 D) Reduced central IC amplitudes at 49% contrast with the myopic

changes in SER and AL after 1 year

AL axial length, DC direct component, ERG electroretinogram, gmfERG global-flash multi-focal electroretinogram, IC induced

component, IT implicit time, R1–R5 ring 1 to ring 5 from center to periphery, SER spherical equivalent refractive error, SF spatial

frequency
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warrants further in-depth investigations to improve

understanding of this important relationship and

mechanism.

Conclusions

To summarize, there are significant changes in retinal

function, as assessed from ERG testing in myopes, and

these changes strongly correlate with axial length and

the degree of myopia. Although some investigations

with the ffERG show significantly reduced dark-

adapted and light-adapted a- and b-wave amplitudes

with increasing degree of myopic refractive error,

there is some evidence that dark-adapted responses are

further attenuated than the light-adapted responses.

These findings suggest that myopia may be associated

with reduced photoreceptor (mainly rod response) and

ON-bipolar cell activity. Several studies with the

mfERG show reduced P1 amplitude density in

myopes, suggesting alterations in retinal ON-and-

OFF cone bipolar cells in myopia. The mfERG

amplitude density associated with refractive error

varies significantly with retinal eccentricity (larger

reduction in peripheral retina than in the fovea), axial

length, and the degree of myopia. Finally, studies have

reported reduced PERG amplitudes and gmfERG

amplitude density in both the central and paracentral

retina in high myopia. While these studies illustrate

important associations between myopic refractive

error and changes in retinal electrical activity, there

has been limited work to understand the longitudinal

changes in the ERG and how they relate to myopia

progression in younger eyes. Future work investigat-

ing electrophysiological responses in combination

with the measurements of retinal structural changes

(using optical coherence tomography) will provide

valuable insights into how retinal electrical changes

may influence ocular growth and refractive error

development in humans. Given the availability and

wide use of optical and pharmacological anti-myopia

management strategies that are known to act at retinal

level (such as orthokeratology, multifocal contact

lenses, and atropine), it would also be interesting for

future studies to examine how these anti-myopia

interventions interact with retinal signals to prevent

myopia.
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