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Abstract

Background: Screening with low-dose computed tomography (LDCT) is an effi-
cient way to detect lung cancer at an earlier stage, but has a high false-positive rate.
Several pulmonary nodules risk prediction models were developed to solve the
problem. This systematic review aimed to compare the quality and accuracy of
these models.

Methods: The keywords “lung cancer,” “lung neoplasms,” “lung tumor,” “risk,” “lung
carcinoma” “risk,” “predict,” “assessment,” and ‘“nodule” were used to identify rele-
vant articles published before February 2021. All studies with multivariate risk models
developed and validated on human LDCT data were included. Informal publications
or studies with incomplete procedures were excluded. Information was extracted from
each publication and assessed.

Results: A total of 41 articles and 43 models were included. External validation was
performed for 23.2% (10/43) models. Deep learning algorithms were applied in 62.8%
(27/43) models; 60.0% (15/25) deep learning based researches compared their algo-
rithms with traditional methods, and received better discrimination. Models based on
Asian and Chinese populations were usually built on single-center or small sample
retrospective studies, and the majority of the Asian models (12/15, 80.0%) were not
validated using external datasets.

Conclusion: The existing models showed good discrimination for identifying high-
risk pulmonary nodules, but lacked external validation. Deep learning algorithms
are increasingly being used with good performance. More researches are required
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INTRODUCTION

Lung cancer causes a significant burden on health care systems.
In 2020, lung cancer resulted in the death of 1.8 million people
worldwide. In China, lung cancer remains the most commonly
diagnosed cancer and the leading cause of cancer death."

The overall 5-year survival rate of lung cancer ranges
from 10% to 20% in most countries.”> However, the prognosis
of lung cancer largely depends on the stage of the disease at
diagnosis. Although the 5-year survival rate of lung cancer at
stage I is above 80%, it is close to 0% for stage IV disease.’
Therefore, early diagnosis and treatment are important to
reduce mortality from lung cancer, improve the quality of life
and reduce the economic burden from this disease.

Screening with low-dose computed tomography (LDCT)
has been shown to be an efficient way to detect lung cancer at
an earlier stage and reduce lung cancer mortality.* Several lung
cancer screening trials have been conducted worldwide.*” The
national lung cancer screening trial (NLST) of the
United States has shown that early LDCT screening can detect
potentially cancerous lung nodules at an early stage leading to
a reduction in lung cancer mortality by 20%. Nevertheless, the
false-positive nodule detection rate by LDCT was extremely
high at 96.4%," eventually leading to unnecessary radiation
exposure from further follow-up imaging tests, invasive biop-
sies, medical expenses, and anxiety among patients.® Therefore,
it is of paramount importance to identify the individuals at
higher risk of developing lung cancer based on the pulmonary
nodules identified on LDCT scans to recommend appropriate
examination and management.

Further examinations in current lung cancer screening
programs are recommended solely based on the nodule sizes
on the LDCT scans. However, although this method of cate-
gorizing pulmonary nodules is easy to implement clinically,
it may lead to a high rate of false-positive results. On the
contrary, risk prediction models based on pulmonary nodule
size, calcification, density, and other relevant imaging infor-
mation may facilitate the identification of high-risk groups,
significantly reduce the false positive rate, and improve the
screening program’s efficiency.” Therefore, this method is
now recommended by several clinical guidelines to reduce
the high false-positive rate of LDCT screening.*’

As a result, several statistical models have been devel-
oped in recent years to predict the risk of developing lung
cancer based on the identification of pulmonary nodules on
LDCT. However, without a systematic evaluation of the rele-
vant models, it remains unclear which, if any of these
models should be used clinically. Therefore, in this study,
we reviewed the contemporary published literature to iden-
tify current multivariable statistical models used to predict

the risk of developing lung cancer from the pulmonary nod-
ules identified on LDCT. In addition, the effectiveness, reli-
ability, bias, and extrapolation of the different models used
in these studies were also compared.

METHODS
Search strategy

A literature search was conducted using the PubMed,
Cochrane, Embase, and Web of Science electronic databases.
The keywords “lung cancer” or “lung neoplasms” or “lung
tumor” or “lung carcinoma” and “predict” or “assessment” or
“risk” and “nodule” were used to identify all relevant articles
published in English from January 1960 to February 2021. We
also hand-searched the reference lists of eligible studies to iden-
tify additional relevant publications. Further detail about the
search strategy used in this study is available in Table S1.

Review methods and selection criteria

Two reviewers independently screened all titles and abstracts
and made decisions regarding the potential eligibility of the
research articles for full text review. Discrepancies in judg-
ment were resolved by a third reviewer. Studies were eligible
if they reported on the development of multivariable risk pre-
diction models for the development of lung cancer based on
the pulmonary nodules identified on LDCT and included a
detailed description of the procedures used to evaluate and
validate the model. Studies with an incomplete description of
the procedures used to develop, validate, and evaluate the
model were excluded. Informal publications such as confer-
ence abstracts were also excluded.

Data extraction

The models used in the studies were divided into two cate-
gories; traditional and deep learning models. In the tradi-
tional models, raw data (i.e., original image features) were
translated into a finite number of feature descriptors
(i.e., size, type, or density of nodules) that could be used as
predictors for lung cancer. The association between lung
cancer risk and each descriptor was tested, quantified, and
subsequently developed into an appropriate statistical risk
model. In the deep learning algorithm-based models, the use
of raw data was allowed and representations needed for
detection or classification were automatically discovered,
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and the association between lung cancer risk and descriptors
is partly unexplainable.'®!"

For each of the included studies, basic information about
the research methodology, variables used to develop the
models, and the methods used to evaluate the models were
extracted. The basic information included the first author,
publication year, study design, study method, target popula-
tion, inclusion criteria of participants and nodules, and the
number of normal and lung cancer cases used for modeling.
The model variables extracted from the studies included:
basic information about the clinical and epidemiological
characteristics, such as age, sex, smoking, family history,
occupational exposure, or history of chronic respiratory dis-
eases; and imaging nodule characteristics, like size, density
or shape; other tumor biomarkers like neuron-specific eno-
lase (NSE), or carcinoembryonic antigen (CEA). For the
studies based on the deep learning algorithm, it was not pos-
sible to extract these variables because of the method used to
develop the risk model. The model evaluation criteria
included the type of validation (external or internal), the
sample size used for verification, the area under the curve
(AUC), model calibration slope results, sensitivity, specific-
ity, and the risk threshold. The findings of either the
Hosmer-Lemeshow test or the expected to observe ratio
(excellent, poor, or uncalibrated) were also recorded. Fur-
thermore, we used the same dataset to compare the perfor-
mance (AUG, sensitivity, or specificity) of all deep learning
models with existing prediction methods or clinically based
guidelines published by professional bodies such as the
American College of Radiology Lung Imaging Reporting
and Data System (ACR Lung-RADS) based on the conclu-
sion in the original text.

Quality assessment

The Grading of Recommendations, Assessment, Develop-
ment and Evaluation (GRADE) method'? was used to evalu-
ate the quality of evidence in traditional models. This
method assesses the quality of the publication based on the
risk of bias, consistency, accuracy, directness, and
publication bias.

Data synthesis

The sample size used in each study was recorded when
available and estimated for evaluation purposes when not
available. If several models were used to train the algorithm
on the same data set, the model with the highest AUC was
selected.

Limited statistical power may lead to insufficient power
to detect a significant association, resulting in unstable
models. To overcome this problem, we calculated the events
per variable (EPV) for traditional models. EPV was defined
as the number of events divided by the number of predictor
variables included in the multivariable model. An EPV value

<10 suggests limited statistical power."> Because it was not
possible to record and name the variables used in the deep
learning models,"" the EPV could not be calculated.

RESULTS
Study characteristics and quality assessment

The literature search revealed a total of 3230 publications, of
which 630 were found to be duplicated and were, therefore,
removed from the evaluation. A total of 2293 articles that
did not meet our criteria were excluded from the screening.
After evaluating the full texts of the remaining 307 articles,
41 articles met the eligibility criteria and were included for
further analysis (Figure 1).

After evaluating the articles, 43 models were identified.
Overall the models were based on more than 20 000 Asian,
North American, and European participants (Figure 2(a)).
After 2018, the number of relevant studies grew rapidly. As
a result, over half (67.4%, 29/43) of all models were released
after 2018 (Figure 3).

Most models (58.1%, 25/43) were developed based on
deep learning algorithms, and the remaining (41.9%, 18/43)
were developed using traditional models (Figure 2(b)) such
as logistic regression. However, in recent years, the use of
deep learning algorithms increased significantly (Table 2).

Only 23% (10/43) of the models were externally vali-
dated (Figure 2(c)). Data from multiple sources were used to
develop the models in half of the studies (Figure 2(d)).
Thirty-three studies used data from cohort studies to
develop the models, whereas in eight studies, the models
were constructed using the data from screening trials
(Tables 3 and 4). Almost all studies (97.6%, 40/41) had

Total articles identified<’
N=3,230¢

Articles for title <
and abstract review<
N=2,600<

Excluded: 2,293¢ E
*Prognosis study: 158¢ :
i

r

1

*Other cancers: 89¢
*Cell/animal experimental <
study: 33¢
*Not relevant: 2,013<

1
E Articles for full text review<
1

_________________________ N=307¢
o :
1 Excluded: 266¢ |
i *dbstract/letter/editorial: 60< |
' *Incomplete modeling: 27¢ E‘—
d *Unable to get full text: 2¢' 1
i *Not relevant: 177¢ ]
1
Fmmmmmmmmmmmmommm s Articles included<
N=41¢

FIGURE 1 Flow chart of literature search
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FIGURE 2 Characters of existing models; (a) size and distribution of training sets used for modeling; (b) number and distribution of existing models;
(c) number and distribution of models seeking validation in different ways; (d) number and distribution of models from different regions and data sources;
and (e) frequency of risk factors used in traditional final models

AUCs and Confidence Intervals of Models(Classification by Region) AUCs and Confidence Intervals of Models(Time Trend)
First author Region AUC First author Year AUC
Traditional Models Traditional models
Annette McWilliams{14] North American 0970 - Stephen. Swensen[25] 1997 0833 -
Barbara North Americanemesure[15]  North American 0.860 = Michael K. Gould(22] 2007 0790 —.—
Martin T ammemagi (17 North American 0.947 - Yo i) 012 o874 -
Vlr‘m K 't’ghu[‘l 8l North Ame’!can 0882 Annette McWilliams[14] 2013 0.970 .
Michal Reid[21] North American 0.810 .
Michael K. Gould[22] North American 0790 —-— Jingsi Dong[28] 2014 0935 -
StephenJ. Swensen[25] North American 0833 - Man Zhang(26] 2015 0910 —
Bin Zheng 1(27) 2015 0808 —-—
Michael W Marcus[16] Europe 0.882 - Bin Zheng 2[27] 2015 0.845 ——
Joan e Walter[19] Europe 0850 Xianfeng Li{20] 2017 0921 -
Li Yang[30] 2017 0784 -
Xianfeng Li[20] Asian 0921 Martin T ammemagi [17] 2018 0947 -
Sungmin Zo[23] Asian 0.952 | Joan e Walter{19] 2018 0.850 —.—
Xiao-Bo Chen[24) Asian 0.848 - Barbara Nemesure[15] 2019 0860
Man Zhang(26] Asian 0910 .- Michael W Marcus{16] 2019 0.882 -
Bin Zheng 1(27) Asian 0808 - Vineet K raghu[18] 2019 0882
Bin Zheng 2(27) Asian 0845 - Michal Reid[21] 2019 0810
Jingsi Dong(28] Asian 0843 -
Yun Li[29] Asian 0874 - Xiao-Bo Chenl24] 2018 0848 -
i vang(30] adan 0784 - Sungmin Zo[23] 2020 0952 ——
Deep-Learning Models Deep-Learning Models
Yoganand Balagurunathan(31] North American 0850 —a Shaun Daly(54] 2013 0676
Gerard A. Silvestri{32] North American 0760 G. A. Soardi{41] 2015 0893 ——
Johanna Uthoff(34] North American 0965 Samuel Hawkins 1(39] 2016 0830
Ilaria Bonavita[35] North American  Unspecified Samuel Hawkins 2[39] 2016 0790
Parnian Afshar(36] North American 0.964 Gerard A. Silvestri(32] 2018 0760 -
Huafeng Wang(37] North American 0970 Huafeng Wang(37] 2018 0970 -
Jason L. Causey(38] North American 0993 Jason L Causey38] 018 0993
Samuel Hawkins 1(36] North American 0830 Yoganand Balagurunathan(31] 2019 0850 —
Samuel Hawkins 2[39] North American 0.790
Andrew V . Kossenkov[40] North American 0825 —.— Chao Zhang[33] 2019 0855 H
G. A. Soardif41] North American 0.893 - Johanna Uthoff{34] 2019 0.965 bl
Shulong Li44] North American 0931 Andrew V . Kossenkov[40] 2019 0825 ——
Rekka Mastouri[45] North American 0.920 Shulong Li[44] 2019 0931 =
Rahul Paul[48] North American 0.960 - Subba R. Digumarthy[51] 2019 0708 —
Muahammad Bilal Zia[49] North American  Unspecified Yangwei Xiang[52] 2019 0890 [
Yi-Ming Xu[50] North American  Unspecified Liting Mao[53] 2019 0970
Subba R. Digumarthy[51] North American 0708 —— laria Bonavita35] 2020 Unspecified
Shaun Daly(54] North American 0676 Parnian Afshar(36] 2020 0964
i Stéphane Chauvie[43] 2020 Unspecified
Zuohong Wul42) Asian 0851 - Yin-Chen Hsu[46] 2020 0873 ——
Stéphane Chauvie[43] Asian  Unspecified Jabao Luia7] 2020 003 .
Yin-Chen Hsu[46] Asian 0873 —a g
Jiabao Liu[47] Asian 0938 Rahul Paul(48] 2020 0960 -
Yangwei Xiang(52] Asian 0890 - Muahammad Bilal Zia[49] 2020 Unspecified
Liting Mao[53] Asian 0970 Yi-Ming Xu[50] 2020 Unspecified
Zuohong Wu[42] 2021 0851 —a—
Chao Zhang33 Americangsian 0sss . . i - Rekka Mastouri[45] 2021 o520 - - - - =
0 02 04 06 08 1 0 02 04 06 08 1

FIGURE 3 AUCs and confidence intervals of existing models by regions and time periods
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TABLE 3 Validation of traditional models
First author Year Type of validation Calibration Sample size AUC* Thresholds Sensitivity Specificity
Annette McWilliams™® 2013 External Excellent 1090 0.970 0.05 0.71 0.96
Barbara Nemesure® 2019 Internal Not calibrated 1455 0.860 0.73 0.81
Michael W. Marcus* 2019 Internal Excellent 1013 0.882
Martin T. ammemagi*' 2018 External Excellent 3680 0.947
Vineet K. Raghu*? 2019  External Not calibrated 126 0.882 0.61 0.28 1.00
Joan E Walter®® 2018 Internal Excellent 809 0.850
Xianfeng Li** 2017 Internal Not calibrated 39 0.921
Michal Reid*® 2019 External Excellent 45 0.810
Michael K. Gould* 2007 Internal Excellent 375 0.790
Sungmin Zo*’ 2020 Internal Excellent 157 0.952
Xiao-Bo Chen® 2019 External Excellent 216 0.848
Stephen J. Swensen*® 1997 Internal Excellent 210 0.833 0.10 0.93 0.47
0.40 0.51 0.90
Man Zhang™ 2015 Internal Not calibrated 120 0.910 0.55 0.87 0.85
Bin Zheng 1°! 2015 Internal Not calibrated 198 0.808
Bin Zheng 2°! 2015 Internal Not calibrated 84 0.845
Jingsi Dong> 2014 Internal Not calibrated 1679 0.935
Yun Li* 2012 External Not calibrated 145 0.874 0.46 0.95 0.70
Li Yang™ 2017 Internal Not calibrated 344 0.784 0.70 0.79
*AUC, area under curve.
TABLE 4 Validation of models based on the deep learning algorithm
First author Year Sample size Type of validation AUC* Threshold Sensitivity Specificity
Yogan and Balagurunathan'* 2019 235 Internal 0.850 0.54 091
Gerard A. Silvestri'® 2018 178 Internal 0.760 0.05 0.97 0.44
Chao Zhang'® 2019 Unspecified External 0.855 0.84 0.83
Johanna Uthoff'’ 2019 100 External 0.965 0.38 1.00 0.96
Ilaria Bonavita'® 2020 Unspecified Internal Unspecified
Parnian Afshar" 2020 1010 Internal 0.964 0.95 0.90
Huafeng Wang?® 2018 1018 Internal 0.970
Jason L. Causey”" 2018 1018 Internal 0.993
Samuel Hawkins 1*° 2016 600 Internal 0.83
Samuel Hawkins 2*° 2016 600 Internal 0.79
Andrew V. Kossenkov*® 2019 158 External 0.825 0.69 0.84
G. A. Soardi** 2015 311 Internal 0.893
Zuohong Wu?® 2021 995 Internal 0.851 0.88 0.64
Stéphane Chauvie®® 2020 234 Internal Unspecified 0.90 1.00
Shulong Li*’ 2019 1010 Internal 0.931 0.83 0.92
Rekka Mastouri*® 2021 Unspecified Internal 0.92 0.92 0.92
Yin-Chen Hsu™ 2020 836 Internal 0.873 0.75 0.85
Jiabao Liu* 2020 879 Internal 0.938 0.58 0.84 0.91
Rahul Paul® 2020 261 Internal 0.960
Muahammad Bilal Zia** 2020 1010 Internal Unspecified 0.91 0.91
Yi-Ming Xu® 2020 1109 Internal Unspecified 0.93 0.89
Subba R. Digumarthy>* 2019 36 Internal 0.708
Yangwei Xiang® 2019 588 Internal 0.890 0.90 0.80
Liting Mao®® 2019 294 Internal 0.970 0.81 0.92
Shaun Daly*’ 2013 81 External 0.676 0.95 0.25

2AUC, area under curve.
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medium to very low credibility, largely because of publica-
tion bias, indirectly, and imprecision (Table S2).

Development and performance of traditional
models

The model from the Mayo clinic in the United States publi-
shed in 1997*° was the first model used to predict the risk of
developing cancer from pulmonary nodules. Since then,
18 traditional models have been developed to predict the
pathological characteristics of pulmonary nodules. Seven of
these models were based on the North American population;
two models were based on the European population, and
nine models were based on the Asian population. Of the
nine Asian models evaluated in this review, eight models
were based on the Chinese population (Table 1).

Traditional models included numerous imaging features
such as nodule size, type, location, shape, and margin to
determine the pathological characteristics of the pulmonary
nodules. In addition, basic information such as age, gender,
family history of cancer, and smoking status was also

commonly used. However, biomarkers were used in only
seven models (Figure 2(e)).

Logistic regression analysis was used to develop most
(16/18) traditional models. The models in the other two
studies were developed using either Cox regression analysis
or Fisher linear discriminant analysis. Most models (14/18)
were cohort studies, and the remaining four were con-
structed using screening test results (Table 1). Based on the
regression analysis, the size, margin of the nodules, smoking
status, and age of patients were statistically significant in
more than half of all models. The addition of biomarkers to
tumor markers improved the AUC and statistical signifi-
cance in three of the seven evaluated models, as shown in
Table 5. These findings suggest that although biomarkers
were not widely used to develop traditional models, they
may have an important role in improving the accuracy of
these models.

The AUCs of the models ranged from 0.676 to 0.970.
Most models (77.8%, 14/18) performed well on discrimina-
tion, with an AUC higher or equal to 0.8. Calibration was
assessed in nine models, and the results indicated a good fit.
Most studies (61.1%, 11/18) had an EPV higher than

TABLE 6 Comparison between existing methods and models based on the deep learning algorithm

First author Objects for comparison

Indicators for comparison Superior methods

Yogan and Balagurunathan'* None

Gerard A. Silvestri'” Traditional models

Gerard A. Silvestri' Clinician
Chao Zhang'® Clinician
Johanna Uthoff'” None

Ilaria Bonavita'® Clinician
Parnian Afshar'® None
Huafeng Wang® None

Jason L. Causey”" Clinician
Samuel Hawkins 1,2*° Lung-RADS

Samuel Hawkins 1,2*° Traditional models
Andrew V. Kossenkov?>®
G. A. Soardi** None

Zuohong Wu*®

Traditional models

Traditional models
Stéphane Chauvie®® Lung-RADS

Stéphane Chauvie®® Traditional models

Shulong Li*’ None

Rekka Mastouri*® None

Yin-Chen Hsu* Lung-RADS
Jiabao Liu*® Clinician

Rahul Paul®’ None
Muahammad Bilal Zia* None

Yi-Ming Xu®? Clinician

Subba R. Digumarthy** None

Yangwei Xiang™® Traditional models
Liting Mao® ACR-lung RADS*
Shaun Daly®” Traditional models

AUC Deep learning
AUC Deep learning

Accuracy, sensitivity, and specificity Deep learning

F1 score Deep learning
AUC Similar
AUC Deep learning
AUC Similar
AUC Deep learning
AUC Deep learning

PPV?, sensitivity, and specificity Deep learning

PPV, sensitivity, and specificity Deep learning

AUC Deep learning
AUC Deep learning
Sensitivity Deep learning

AUC Deep learning
Accuracy, sensitivity, and specificity Deep learning

AUC Deep learning

?AUC, area under curve; ACR-Lung-RADS, American College of Radiology Lung Imaging Reporting and Data System; PPV, positive predictive value.
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10, suggesting sufficient statistical power. Only six of the
18 models were validated using external datasets. However,
five of these models were validated using external data from
a similar population from the same countries, and only one
model®® was verified using data of participants from differ-
ent origins. The latter model achieved good discrimination
with an AUC of 0.970 (Tables 1 and 3).

Compared with the European and American models, the
Chinese models lack external validation. Most of the data
used to develop the Chinese models were obtained from a
single-center or small sample retrospective cohort studies
and only two of these studies were validated using an exter-
nal dataset. However, the discrimination ability of the Chi-
nese models was good, with seven of eight models achieving
an AUC higher than 0.8, whereas two models reported
excellent calibration. In addition, all Chinese models had an
EPV higher than 10. More details can be found in Tables 1,
3, and Figures 2 and 3.

Development and performance of the deep
learning algorithms

The first study reporting on the development and perfor-
mance of a deep learning algorithm for the discrimination of
pulmonary nodules was published in 2013.*” Only bio-
markers were included in the development of this model, and
the prediction ability was limited, with an AUC of 0.676. The
majority of the deep learning models (84%, 21/25) were
developed after 2018 and were based on the imaging features
of the nodules. This improved the models’ prediction ability,
especially when the model was supplemented by epidemio-
logical parameters and biomarkers (Figure 3).

The AUC of the deep learning models was reported in
21 of 25. However, only half of these models (12 of 21)
reported the confidence intervals (Table 4). The reported
AUCs ranged from 0.676 to 0.970. Most of the deep learning
models (68.0%, 17/25) had a good discrimination ability
with an AUC higher than 0.8, whereas the other four models
(16.0%) had an AUC below 0.8. The majority of the models
(84.0%, 21/25 were not validated externally [Table 2]).

Only seven of 18 deep learning models were developed
in Asia. Furthermore, all Asian models achieved high dis-
crimination with an AUC above 0.8. However, the sample
size of the Asian models was generally small, and only one
of these models was validated using an external dataset
(Tables 2 and 4).

Comparison of deep learning models with
traditional models

The discrimination ability of 60.0% (15/25) of the deep
learning models was compared with traditional methods. All
deep learning models achieved higher or similar discrimina-

tion abilities when compared with traditional methods
(Table 6).

DISCUSSION

LDCT can be used to diagnose lung cancer at an early stage
via the identification and classification of pulmonary nod-
ules into different risk categories. However, current pulmo-
nary nodules classification guidelines are based solely on
nodule size and density. Other important biomarkers and
patient characteristics are mostly ignored, resulting in a very
high false-positive rate, over diagnosis, and unnecessary
treatment.””>™>’ Various traditional and deep learning
models based on clinical, biological, and epidemiological
factors have been developed to overcome this problem. To
our knowledge, in this manuscript, we present the first sys-
temic review comparing the development, validation, and
performance of these models in the characterization of pul-
monary nodules identified on LDCT.

In this systemic review, we evaluated the performance of
43 models derived from 41 research articles based on over
20 000 subjects. Our findings indicate that the majority of
the traditional and deep learning models achieved an AUC
higher than 0.8, suggesting that these models can be used to
identify the high-risk population effectively and hence,
reduce the false-positive rate and the harms of over diagno-
sis and treatment.

Since 1997, the development of pulmonary nodule risk
prediction models has increased rapidly. Most early models
were developed using statistical methods such as regression
analysis. Although imaging features such as nodule size,
type, location, shape, and margin provide valuable informa-
tion on the pathological characteristics of the nodules, our
findings indicate that the incorporation of clinical character-
istics such as age and smoking status can significantly
improve the performance of these models. The first study
confirming this finding was performed at the Mayo Clinic.*®
Since then, various traditional statistic-based models incor-
porating both imaging and patient characteristics have been
developed. Subsequent models also incorporated clinical
indicators such as forced vital capacity (FVC) and forced
expiratory volume (FEV)1, and serum biomarkers such as
CEA and NSE, to further improve the prediction efficacy on
the models.’*****">> Variables including age, size of the
nodules, and margin of the nodules should be considered as
a priory in machine-learning analyses, as they were consis-
tently considered as predictors of lung cancer in traditional
studies.

A limited number of studies incorporated other risk fac-
tors such as exposure of asbestos, satellite lesions, bronchus
sign, and volume of nodules (Table 5). However, the main
limitation of these risk factors is the limited sample size that
limits the generalizability of the model. A large number of
models were based on single-center and retrospective studies
with small sample sizes or data obtained from old studies.
Biomarkers were not commonly used in the development of
the predictive risk factor model (Table 5, Figure 2(e)). Nod-
ule volume might have been an effective predictor,**** but
was generally not taken into consideration by current
models. Because most studies were retrospective, it was not
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possible to incorporate time-dependent variables such as
variations in biomarkers and nodule size over time into the
model. Therefore, time-dependent factors, such as the nod-
ule volume growth rate, were also ignored by most studies.

Deep learning models can learn from various heteroge-
neous variables to generate homogeneous groups with simi-
lar features. These features can be mapped with similar
survival models to obtain accurate predictions. Various
studies'>*”*>*° also suggest that compared with the tradi-
tional pulmonary nodule prediction models or expert judg-
ment by clinicians, the use of deep learning algorithms has
obvious advantages on discrimination (Table 6). However,
although pulmonary nodule risk models based on deep
learning algorithms have been used as early as 1993,>® they
have not been widely used to predict pulmonary nodules
until recent years as they still have several limitations. One
of the main limitations of deep learning algorithms is that
they require large amounts of data, advanced imaging equip-
ment, top-ranked statisticians, and research funds to
develop. Despite the high discrimination ability of the deep
learning algorithm models evaluated in our systemic review,
the GRADE scores of these models were generally low
because of their limited sample size, high level of bias, inac-
curacy, and indirectness (Table S2). Furthermore, it is diffi-
cult to identify the specific variables used to develop the
deep learning prediction model, potentially limiting the
quality and authenticity of these models.

Few studies were based on the Asian population. The
majority of the Asian studies were based on a single center,
had a limited sample size, and lacked external validation,
which limited the quality of evidence (Tables 3 and 4,
Figure 2). It is important to note that the accepted European
and United States models may not be suitable for the Asian
and Chinese populations because of large population differ-
ences, as suggested by Uthoff et al.*” and Nair et al.*°

Our systemic review has several limitations that have to
be acknowledged. First of all, variations between studies,
including sample size, research design, data source, and
imaging acquisition criteria, made it difficult to quantify,
integrate, and extrapolate the results of the different studies.
Some of the studies included in our analysis had high publi-
cation bias, particularly those that lacked external validity.
Additionally, cultural and social risk factors were ignored by
most models. Studies evaluating a single risk factor were also
excluded from this analysis although these variables were
highly predictive of lung cancer and represent the latest
trend in the field.

Furthermore, most of the existing models were based on
the entire population. Therefore, subgroup analysis based on
important risk factors such as smoking status and tumor
histology is recommended to improve the prediction perfor-
mance of current models and adapt these tools according to
the specific characteristics of the population being studied.
However, this type of research requires large datasets,
highlighting the need for further large-scale multicenter pro-
spective studies. Future studies should also focus on devel-
oping deep learning based models based on decentralized

and deparametric data.®’ These methods process the raw
data directly and therefore, reduce the heterogeneity while
improving the models’ performance compared with tradi-
tional models.

CONCLUSION

The incidence of lung cancer is increasing, particularly in
developing countries. The models evaluated in our study
were all developed in Europe, Asia, and the United States.
These models showed good discrimination for identifying
high-risk pulmonary nodules, particularly when these
models combined imaging features with clinical, behavioral
characteristics, and other biomarkers. This highlights the
need to develop models based on the unique characteristics
of different populations, particularly those in developing
countries, to reduce the global lung cancer burden. The use
of deep learning algorithms increased significantly during
the last few years and generally performed better than tradi-
tional models. However, more research is required to
improve the quality of the deep learning models, particularly
for the Asian population, because these models were often
based on single-center studies and lacked external valida-
tion. Further research should also focus on improving the
quality of current screening guidelines by incorporating clin-
ical and epidemiological factors into the evaluation of pul-
monary nodules.
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