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ABSTRACT

We study the algorithmic problem of finding the most ‘‘scale-free-like’’ spanning tree of
a connected graph. This problem is motivated by the fundamental problem of genomic epide-
miology: given viral genomes sampled from infected individuals, reconstruct the transmission
network (‘‘who infected whom’’). We use two possible objective functions for this problem
and introduce the corresponding algorithmic problems termed m-SF (-scale free) and s-SF
Spanning Tree problems. We prove that those problems are APX- and NP-hard, respectively,
even in the classes of cubic and bipartite graphs. We propose two integer linear programming
(ILP) formulations for the s-SF Spanning Tree problem, and experimentally assess its perfor-
mance using simulated and experimental data. In particular, we demonstrate that the ILP-based
approach allows for accurate reconstruction of transmission histories of several hepatitis C
outbreaks.

Keywords: computational complexity, genomic epidemiology, integer linear programming,

scale-free network, transmission network.

1. INTRODUCTION

V iral outbreaks continue to be major causes of morbidity and mortality. The ongoing pandemic of the

coronavirus SARS-CoV-2 (Huang et al., 2020) is a vivid example, but long-standing epidemics of HIV,

hepatitis B virus, and hepatitis C virus (HCV) are hardly less damaging (Kilmarx, 2009; Hajarizadeh et al.,

2013). Viral epidemics are complex processes defined by evolutionary dynamics of pathogens and social

dynamics of susceptible populations (e.g., individual behaviors, social interactions, and mobility patterns).

Recent advances in sequencing technologies invigorated the field of genomic epidemiology (Armstrong et al.,

2019; Knyazev et al., 2020) that aims to use viral genomic data to understand the epidemiological dynamics of

pathogens. The fundamental algorithmic problem of genomic epidemiology could be formulated as follows:

� Given viral genomes sampled from n infected individuals, infer a transmission network indicating who

of them infected whom (Knyazev et al., 2020). If each individual is supposed to be infected only once,

then a transmission network is a tree called a transmission tree.
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This problem has been approached by a variety of methods ( Jombart et al., 2011, 2014; Sledzieski et al.,

2019; Wertheim et al., 2014; Campo et al., 2016; De Maio et al., 2016; Klinkenberg et al., 2017; Skums

et al., 2018). One family of methods is based on the so-called network approach. It is particularly popular

among researchers of HIV and HCV and has been adopted as a standard methodology for outbreak

investigations carried out by the CDC (Wertheim et al., 2014; Campo et al., 2016; Campbell et al., 2017;

Kosakovsky Pond et al., 2018; Ramachandran et al., 2018; Ragonnet-Cronin et al., 2019). This approach

usually consists of two stages. First, a weighted relatedness graph GR is constructed. Its vertices represent

infected hosts, and edges connect the hosts whose viral populations are close to each other according to a

selected population genetics measure. Often GR itself supplies enough information for epidemiologists and

provides a fast and scalable alternative to phylogenetic trees when applied to next-generation sequencing

(NGS) data (Wertheim et al., 2014; Campo et al., 2016; Ragonnet-Cronin et al., 2019). However, usually it

contains many edges that do not represent actual transmissions. Thus, at the second stage, the transmission

tree is inferred as the spanning tree of GR.

Under the maximum parsimony criterion, the most likely transmission network is a minimum spanning

tree of GR ( Jombart et al., 2011). However, experiments demonstrated that this approach is not accurate

( Jombart et al., 2014). Furthermore, genomic data alone often do not allow to resolve ambiguities in

transmission tree inference, and incorporation of additional evidence is necessary ( Jombart et al., 2014;

Villandre et al., 2016; Jha et al., 2017). Such evidence usually comes in the form of epidemiological

information, such as sample collection times and exposure intervals. However, HIV, HCV, and many other

infections tend to be initially asymptomatic, and consequently, sampling times may not accurately reflect

the infection times. In addition, in outbreaks with high transmission rates (e.g., HIV/HCV among injection

drug users), susceptible hosts are almost constantly exposed to the virus, which makes exposure intervals

useless. Another important drawback of many existing methods is their implicit assumption that trans-

mission tree edges are independent. In reality, it is not the case, as, for example, certain hosts (so-called

superspreaders) infect more people than an average person (Galvani and May, 2005).

Skums et al. (2018) proposed an alternative approach. It is known that for viruses, whose transmissions are

associated with behavioral risk factors, their transmission trees have properties of so-called scale-free graphs

(Leigh Brown et al., 2011; Wertheim et al., 2014). Those graphs have specific features, including power-law

degree distribution, small diameter, and the presence of high-degree vertices (hubs). This observation gives

rise to the following informally defined algorithmic problem (scale-free spanning tree problem): find the

most ‘‘scale-free-like’’ spanning tree T of the graph GR. In addition, constraints on the weight of T could be

imposed. This approach was the basis of the Bayesian framework and the Markov Chain Monte Carlo

algorithm for the transmission network inference described by Skums et al. (2018) and implemented as a tool

called QUENTIN. Although QUENTIN is efficient in practice, it is a heuristic, and the questions about

computational complexity and possibility of the exact solution of the problem were left open.

In this article, we present the first detailed study of the scale-free spanning tree problem. Our major

contributions are as follows.

(1) We propose two rigorous formulations of the scale-free spanning tree problem further referred to as

m-SF Spanning Tree and s-SF Spanning Tree problems. They are based on two related objective

functions and, to the best of our knowledge, have not been previously studied.

(2) We establish the computational complexity of both problems by demonstrating that they are NP-hard

or APX-hard, even when restricted to cubic graphs and bipartite graphs.

(3) We propose two integer linear programming (ILP) formulations for the problems, and perform

computational experiments to assess their performance using simulated data. Then we apply an ILP

approach to real genomic data from several epidemiologically curated HCV outbreaks investigated

by the CDC (Campo et al., 2016; Skums et al., 2018) and demonstrate that it allows for accurate

inference of transmission trees.

2. PRELIMINARIES

2.1. Problem formulations

We consider only finite undirected simple graphs and use standard graph-theoretic terminologies, see, for

example, Chartrand et al. (2016). Let G = (V‚ E) be a connected graph. For a vertex x 2 V(G), the

neighborhood NG(x) of x is the set of all vertices that are adjacent to x in G. The degree of x is defined as
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degG x = jNG(x)j. Several definitions of scale-free graphs of different degrees of mathematical rigor are

known in a literature. We utilize the rigorous combinatorial characterization that has been introduced by Li

et al. (2005) using the so-called s-metric of a graph. This graph invariant is defined as follows:

s(G) =
X

uv2E(G)

degG u degG v: (1)

The same parameter is known in mathematical chemistry as second Zagreb index (Das and Gutman, 2004;

Borovicanin et al., 2017). Li et al. (2005) demonstrated that a higher s-metric indicates with high probability

the presence of most of the expected properties of scale-free graphs. The intuition behind these results is that

in a graph with a high s-metric, a large number of edges should be incident to high-degree vertices, thus

forcing them to resemble preferential attachment graphs—a standard Barabási and Albert (1999) model for

scale-free networks. Therefore, another mathematical chemistry parameter called the first Zagreb index

(Borovicanin et al., 2017) or m-metric also can serve as a measure of ‘‘scale-freeness’’ of a graph:

m(G) =
X

uv2E(G)

( degG u + degG v) =
X

u2V(G)

( degG u)2: (2)

Thus, we can formulate m-SF Spanning Tree and s-SF Spanning Tree problems: given a connected

graph G, find the spanning tree T of G such that m(T) (respectively, s(T)) is maximal. The respective

maximum values of m(T) and s(T) are called first and second SF-dimensions of G and denoted by s1(G) and

s2(G). By Tsopt and Tmopt, we denote an s-optimal tree and an m-optimal tree of G, respectively.

A somehow related problem has been studied by Kincaid et al. (2016): find a spanning subgraph with

prescribed vertex degrees such that its s-metric is maximum. This problem is polynomially solvable in

general, but becomes NP-hard, when the output spanning subgraph is required to be connected.

2.2. Mathematical preliminaries

2.2.1. Subgraph counting. Here we establish the characterizations for the m-metric and s-metric in

terms of numbers of small subgraphs in a graph. This technique is used to establish complexity results in

Section 3 and ILP formulations in Section 4.

Proposition 1. For any graph G,

m(G) = 2c2(G) + 2c1(G)‚ s(G) = 3cD(G) + c3(G) + 2c2(G) + c1(G)‚

where cD(G) is the number of triangles and ct(G) is the number of paths of length t in G, respectively.

Proof. We prove only the second equality, the first one can be proved similarly. Let A = [aij] be the

adjacency matrix of G and d be its degree vector. We have s(G) = 1
2

dT � A � d and d = A � 1, where

1 = (1‚ . . . ‚ 1)T 2 Rn. Therefore

s(G) =
1

2
1T � A3 � 1 =

1

2

Xn

i = 1

Xn

j = 1

a(3)
ij ‚

where a(3)
ij denotes (i‚ j)-entry in the matrix A3.

It is known that a(3)
ij equals the number of walks of length 3 between vertices i and j. Thus, s(G) is equal

to one-half of the total number of three-walks in G. An edge v1v2 produces exactly two such walks:

W11 = (v1‚ v2‚ v1‚ v2) and W12 = (v2‚ v1‚ v2‚ v1). Each 2-path fv1v2‚ v2v3g produces four 3-walks:

W21 = (v1‚ v2‚ v3‚ v2), W22 = (v2‚ v3‚ v2‚ v1), W23 = (v2‚ v1‚ v2‚ v3), and W24 = (v3‚ v2‚ v1‚ v2). Each 3-path

fv1v2‚ v2v3‚ v3v4g produces two 3-walks: W31 = (v1‚ v2‚ v3‚ v4) and W32 = (v4‚ v3‚ v2‚ v1). Finally, each tri-

angle with vertex set fv1‚ v2‚ v3g produces six 3-walks: WD1 = (v1‚ v2‚ v3‚ v1), WD2 = (v1‚ v3‚ v2‚ v1),

WD3 = (v2‚ v3‚ v1‚ v2), WD4 = (v2‚ v1‚ v3‚ v2), WD5 = (v3‚ v1‚ v2‚ v3), and WD6 = (v3‚ v2‚ v1‚ v3). As every three-

walk of G has one of these forms, the statement of the lemma follows. ,

2.2.2. Neighbor switching. This is a tree rearrangement technique that is used for obtaining struc-

tural and complexity results. Let T be a tree and (u‚ v) be a pair of distinct vertices u‚ v 2 V(T), where

degT u = p � 2 and degT v = t � 2. We denote the unique u - v path in T by PT (u‚ v), and neighbors of u and
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v laying on PT (u‚ v) by u + and v - , respectively. In case u and v are not adjacent, the neighbor of u +

distinct from u and laying on PT (u‚ v) is denoted by u + + . Let A = NT (u)nfu + g = fa1‚ . . . ‚ ap - 1g, and let the

set NT (v)nfv - g be partitioned into two subsets B = fb1‚ . . . ‚ bqg and C = fc1‚ . . . ‚ crg, where B 6¼ �.

Furthermore, let degT u + = a and degT v - = b. Define numbers DA, DB, and DC as follows:

DA =
Xp - 1

i = 1

degT ai‚ DB =
Xq

j = 1

degT bj‚ DC =
Xr

k = 1

degT ck: (3)

Given the pair (u‚ v), the neighbor switch SB
v!u is a transformation producing a new tree eT from T by

replacing the edges vb1‚ . . . ‚ vbq with new edges ub1‚ . . . ‚ ubq (Fig. 1). This operation changes only

degrees of the vertices u and v, namely degeT u = p + q, degeT v = r + 1.

Lemma 2. Suppose that SB
v!u(T) = eT. If p � r + 1, DA > DC and, in case u and v are not adjacent,

additionally a � b, then s(eT) > s(T).

Proof. We prove lemma when u and v are not adjacent, that is, u 6¼ v - and v 6¼ u + (the proof for the

other case is similar). Define by X (resp., Y) the set of edges of T (resp., eT) incident to u or v. Let us denote

by k(X) (resp., ek(Y)) the contribution to s(T) (resp., s(eT)) from the edges of X (resp., Y). Then

s(eT) - s(T) = ek(Y) - k(X): (4)

Using Equation (3) one can easily calculate

k(X) = degT u degT u + + degT v - degT v +
Xp - 1

i = 1

degT u degT ai +
Xq

j = 1

degT v degT bj

+
Xr

k = 1

degT v degT ck = pa + bt + pDA + tDB + tDC:

After substituting t = q + r + 1, we obtain

k(X) = pa + bq + b(r + 1) + pDA + qDB + (r + 1)DB + qDC + (r + 1)DC: (5)

Similarly,

ek(Y) = pa + qa + b(r + 1) + pDA + qDA + pDB + qDB + (r + 1)DC: (6)

Using equalities (4)–(6) we obtain

s(eT) - s(T) = ek(Y) - k(X) = qa + qDA + pDB - bq - (r + 1)DB - qDC

= q(a - b) + DB(p - r - 1) + q(DA - DC):
(7)

Since a � b and p � r + 1, it follows that q(a - b) + DB(p - r - 1) � 0. On the contrary, since q � 1 and

DA > DC, we have q(DA - DC) > 0 and therefore s(eT) - s(T) > 0. ,
If B = NT (v)nfv - g, then the neighbor switch produces a tree eT with v being a leaf. In this case SB

v!u is a

total neighbor switch. For our goals it suffices to prove the following corollary.

Corollary 3. If eT is obtained from T by a total neighbor switch SB
v!u and, in case of u and v not being

adjacent, additionally a � b or p � b, then s(eT) > s(T).

FIG. 1. Neighbor switch.
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Proof. We check that all conditions of Lemma 2 are satisfied for the total neighbor switch. Indeed, since

DA � p - 1 � 1 (recall degT u = p � 2) and DC = r = 0, we have DA > DC and p � r + 1. If u and v are not

adjacent, we still require that a � b, as in Lemma 2. However, this condition can be replaced if we rewrite

Equation (7) as follows:

s(eT) - s(T) = q(a - b) + DB(p - 1) + qDA = q(a + DA - b) + DB(p - 1):

Note that the latter expression is positive in case of p � b, since a � 2 and DA � p - 1 � 1.

In the same way we can compare the trees T and eT =SB
v!u(T) in terms of their m-metrics.

Lemma 4. Suppose that SB
v!u(T) = eT and p > r + 1. Then m(eT) > m(T).

Proof. The idea is similar to the proof of Lemma 2. Since the neighbor switch changes only degrees of

vertices u and v, m(eT) - m(T) = deg2eT u + deg2eT v - deg2
T u - deg2

T v = 2q(p - r - 1), which proves the lemma,

since q � 1. ,
For further results we need weaker modifications of Lemmas 2 and 4 for the case degT u = p � 1 (and

therefore DA � 0). Recall degT v = t � 2 since we still require at least one vertex to switch.

Lemma 5. Suppose eT is obtained from T by a total neighbor switch SB
v!u, then the following propositions

hold:

(a) m(eT) � m(T);

(b) s(eT) � s(T) (unless u and v are not adjacent with a < b).

Now we consider a special case, when u is a vertex of maximum degree in T and all vertices in

NT (v)nfv - g are leaves. In addition, let B‚ C 6¼ �. We introduce a double neighbor switch

SB‚ C
v!u‚ u + (T) =SC

v!u + (SB
v!u(T)). The reason to treat this two-step switch as a single operation is that the first

switch itself might cause the descend of s-metric, however, the decrease would be compensated by the

second switch.

Lemma 6. If bT is obtained from T by a double neighbor switch SB‚ C
v!u‚ u + (T), then s(bT) > s(T).

Proof. In case u and v are adjacent, that is, u + = v, a double switch SB‚ C
v!u‚ u + (T) gets reduced to the first

neighbor switch SB
v!u(T), which produces a tree with a higher s-metric due to Lemma 2. Therefore, assume

u and v are not adjacent. Consider the first switch and let eT =SB
v!u(T). From Equation (7), since DB = q and

DC = r, we obtain

s(eT) - s(T) = q(a + DA - b) + q(p - r - 1) - qr: (8)

Next let bT =SC
v!u + (eT) be obtained by the total neighbor switch. To avoid reassigning of notations we

denote DE =
P

w2NeT (u + )nfu + + g degeT w and c = degeT u + + . Other notations stay the same from the first switch.

Again from Equation (7) we get

s(bT) - s(eT) = r(c - b) + r(c - 1) + rDE: (9)

Summation of Equations (8) and (9) gives

s(bT) - s(T) = q(a + DA - b) + q(p - r - 1) + r(c + DE - b - q) + r(c - 1)‚

where DA � p - 1, a � 2, c � 2, and DE � degeT u = p + q. Furthermore, since u is a vertex of maximum

degree in T, p � b and p � q + r + 1 > r + 1 (recall q‚ r > 0), which proves the lemma. ,

2.3. Bounds in terms of the maximum degree

There exist bounds for both SF-dimensions of a graph in terms of its order only (de Caen, 1998; Das,

2003; Das and Gutman, 2004). However, they are not particularly efficient, when used as ILP cuts. Here we

provide the adjusted upper bounds that turned out to be more useful for that purpose. Let D(G) denote the

maximum vertex degree of G and Sm‚ k denote a double star, that is, a tree obtained from two disjoint stars

K1‚ m and K1‚ k with m and k leaves, respectively, by adding an edge joining their central vertices.
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Theorem 7. For any graph G of order n � 2,

s1(G) � m(SD(G) - 1‚ n -D(G) - 1) = 2D2(G) + n2 - 2nD(G) + n - 2‚

s2(G) � s(SD(G) - 1‚ n -D(G) - 1) = n(n -D(G) - 1) +D2(G):

Proof. We provide the proof for the second SF-dimension only (the other proof is similar). Suppose Tsopt

is an s-optimal tree of G and Tsopt 6¼ SD(G) - 1‚ n -D(G) - 1. We prove the statement by performing a sequence

of neighbor switches on Tsopt, with each of them increasing s-metric, so that the resulting tree is

SD(G) - 1‚ n -D(G) - 1.

Let u be a vertex of maximum degree in Tsopt. Then for every v in Tsopt follows

degTsopt v � degTsopt u � degG u � D(G). Let T : = Tsopt. We divide the sequence of neighbor switches into

three stages.

Stage 1: For each vertex v with all vertices in NT (v)nfv - g (where v - 2 PT (u‚ v)) being leaves, we

either perform the total neighbor switch T : =SB
v!u(T) or double neighbor switch T : =SB‚ C

v!u‚ u + (T) until

the degree of u is not equal to D(G):
One can observe that a double neighbor switch is needed to ensure that degT u can be increased exactly to

D(G). Since degT u increases after each switch, only the finite number of switches is required. In case the

tree T obtained after the first stage differs from SD(G) - 1‚ n -D(G) - 1, we perform the second stage if there exist

at least two vertices w1 and w2 in NT (u) with degT w1 � degT w2 � 2 or jump directly to Stage 3 otherwise.

Stage 2: For each distinct w1 and w2 in NT (u) with degT w1 � degT w2 � 2 perform a total neighbor

switch T : =SB
w2!w1

(T).

After each iteration, the number of vertices in NT (u) with degree at least two decreases by one. Thus,

Stage 2 terminates after a finite number of switches leaving at most one vertex w 2 NT (u) with degree at

least two. Finally if T still differs from SD(G) - 1‚ n -D(G) - 1, the third stage is required.

Stage 3: While there exists vertex v in NT (w)nfug with degT v � 2 perform a total neighbor switch

T : =SB
v!w(T).

Since the number of neighbors of w with degrees at least two decreases after each switch, Stage 3

terminates after finite number of steps with all neighbors of w‚ except for u, being leaves, that is,

T = SD(G) - 1‚ n -D(G) - 1. Note that each iteration of Stages 1–3 produces a tree with a higher s-metric due to

Lemmas 2, 6 and Corollary 3. ,

3. HARDNESS RESULTS

In this section, we study the computational complexity of both the m-SF and the s-SF Spanning Tree

problem. The following known fact is used:

Theorem 8 (Kleitman and West, 1991). Any connected graph of order n with minimum vertex degree at

least 3 has a spanning tree with at least n=4 + 2 leaves.

We start by investigating the complexity of our problems for cubic graphs.

Theorem 9. The m-SF Spanning Tree problem is APX-hard for cubic graphs.

Proof. Let G be a cubic graph on n vertices and T be a spanning tree with ‘ = ‘(T) leaves and ni = ni(T)

vertices of degree i, i 2 f2‚ 3g. Then

m(T) = ‘ + 4n2 + 9n3‚ (10)

with the numbers ni satisfying the equalities ‘+ n2 + n3 = n and ‘+ 2n2 + 3n3 = 2(n - 1): Deriving n2 and n3

from these equalities gives us

n2 = n + 2 - 2‘‚ n3 = ‘ - 2: (11)

After substituting these expressions into Equation (10), we get

m(T) = 2‘ + 4n - 10: (12)

Thus, finding a spanning tree with maximum m-metric in this case is polynomially equivalent to finding a

spanning tree with maximum number of leaves (MaxLeaf problem). For cubic graphs, the latter problem
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was shown to be APX-hard by Bonsma (2012). Thus, we prove the APX-hardness of the m-SF Spanning

Tree problem by providing an L-reduction (Papadimitriou and Yannakakis, 1991) from MaxLeaf.

Given an optimization problem P and an instance I of this problem, we use optP(I) to denote the

optimum value of I, and valP(I‚ S) to denote the value of a feasible solution S of instance I. Let A and B be

two optimization problems. The problem A is said to be L-reducible to B if there exist polynomial-time

computable functions f, g and constants a‚ b > 0 such that

(L1) f maps any instance I of A to an instance f (I) of B such that optB(f (I)) � a � optA(I);

(L2) for any instance I of A and a solution S0 of the instance f (I), g maps S0 to a solution S for I such that

jvalA(I‚ S) - optA(I)j � b � jvalB(f (I)‚ S0) - optB(f (I))j.
Let Tmopt be an m-optimal spanning tree of G and ‘� be the maximum number of leaves in spanning trees

of G. Note that ‘� � n=4 + 2 by Theorem 8, and therefore, n � 4‘� - 8. Then using Equation (12) we get

s1(G) = m(Tmopt) = 2‘(Tmopt) + 4n - 10 � 2‘� + 16‘� - 32 � 18‘�:

Moreover, for every spanning tree T of G we have 1
2
jm(T) - m(Tmopt)j = j‘(T) - ‘�j. As a result, Equation

(12) implies an L-reduction with identity mappings f and g and constants a = 18 and b = 1
2
, thus proving the

theorem.

Theorem 10. The s-SF Spanning Tree problem is NP-hard for cubic graphs.

Proof. For the reduction, we use the following problem proved to be NP-complete by Lemke (1988):

Instance: A connected cubic graph G of order n.

Question: Is there a spanning tree of G without vertices of degree 2?

According to Equation (11), n2 = n2(T) = n + 2 - 2‘(T). Thus, the answer for the problem’s question is

negative if n is odd. Hence, we concentrate only on the case when n � 4 is even, thus n2 is even as well. We

show that among all trees T of order n with D(T) � 3, the trees without vertices of degree 2 have the highest

s-metric. Indeed, the following claim holds:

Claim 11. If D(T) � 3 and n � 4 are even, then s(T) � 6n - 15. The equality holds if and only if T has no

vertices of degree 2.

Proof. If T has no vertices of degree 2, then Equation (11) implies ‘ = ‘(T) = n + 2
2

. Furthermore,

s(T) = 3m1 + 9m3, where m1 is the number of edges incident to a leaf and m3 is the number of edges with

both ends of degree 3. Obviously, m1 = ‘ and m3 = n - 1 - ‘, thus yielding s(T) = 6n - 15.

Now suppose that T has n2 � 2 vertices of degree 2. Let u and v be two vertices of degree 2 lying on a

path PT (u‚ v) and degT u + � degT v - . Iteratively applying a total neighbor switch SB
v!u for all pairs of

vertices u and v of degree 2, we obtain a tree with higher s-metric (due to Corollary 3) and without vertices

of degree 2. This proves the claim. ,
Thus, s2(G) = 6n - 15 if and only if G has a spanning tree without vertices of degree 2. This concludes

the proof. ,
Next, we consider bipartite graphs.

Theorem 12. The m-SF Spanning Tree and s-SF Spanning Tree problems are NP-hard for bipartite

graphs.

Proof. We present a polynomial-time reduction from the NP-complete 3-Dimensional Matching

(3-DM) problem (Garey and Johnson, 1979):

Instance: Pairwise disjoint sets X, Y, Z of cardinality n, and a collection M of m three-element sets,

where each M 2M includes exactly one element from each of X, Y, and Z.

Question: Is there a set of pairwise disjoint members of M (a perfect 3-dimensional matching), whose

union is X [ Y [ Z?

Let Q = (X‚ Y‚ Z‚M) be an instance of 3-DM. We construct a graph G = GQ on 3n + m + 1 vertices as

follows. The vertex set of G is the disjoint union frg [ A [ B, where A =M, B = X [ Y [ Z, and r is the

special root vertex. The edge set includes all edges ra, a 2 A, as well as the edges Mx, My, and Mz for each

M = fx‚ y‚ zg 2 A (Fig. 2). We may assume that G is connected. Note also that G is a bipartite graph with

the parts A and frg [ B.
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For a vertex v of G and a subset W � V(G) let us denote by (v : W) the set of edges connecting v to

vertices in W.

Lemma 13. There are spanning trees T1 and T2 in G, both containing all edges of (r : A), with

m(T1) = s1(G) and s(T2) = s2(G).

Proof. We provide the proof for the s-metric, the proof for the m-metric is similar. Among the optimal

spanning trees of G, let T2 be the one with the maximum number of edges from (r : A). We claim that T2

contains all these edges.

Suppose for a contradiction that the set C � A of all vertices that are adjacent to r in T2 differs from A.

Then there must be a vertex b 2 B with PT2
(r‚ b) having two edges, such that set D = NT2

(b) \ fAnCg is

nonempty. By Lemma 5, since degT2
r + = degT2

b - and degT2
r � 1, we can apply total neighbor switch

SD
b!r to construct a spanning tree T 02 from T2 with s(T 02) � s(T2), and the root r having more neighbors in

T 02 than it has in T2. ,
Any spanning tree T of G containing all edges of (r : A) has m + 3n edges, 3n(m - 1) paths of length three

(each of the 3n edges of the tree connecting A and B induces exactly m - 1 such paths), and m(m - 1)=2 + 3n

paths of length two that are not formed by a pair of edges between A and B. There are 3d4 + d3 remaining

paths of length two, where di is the number of vertices in A that have degree i in the tree. Indeed, a vertex

v 2 A with j 2 f0‚ 1‚ 2‚ 3g neighbors from B in the tree contributes no such path in case of j 2 f0‚ 1g, one

such path in case of j = 2, and three such paths in case of j = 3. Thus by Proposition 1

m(T) = m2 + m + 12n + 6d4 + 2d3‚ s(T) = m2 + 3mn + 6n + 6d4 + 2d3:

Since jBj = 3n, we have 3d4 + 2d3 � 3n and 6d4 + 2d3 � 6d4 + 4d3 � 6n. Hence, 6d4 + 2d3 � 6n with

equality holding if and only if d3 = 0 and d4 = n.

A perfect 3-DMM� = fM1‚ . . . ‚ Mng induces the spanning tree TM� that contains all edges from (r : A)

and edges ax‚ ay‚ az for each a = fx‚ y‚ zg 2 M�. For this tree we have d4 = n and

m(T) = m2 + m + 18n : = t1(n‚ m)‚ s(T) = m2 + 3mn + 12n = : t2(n‚ m):

Conversely, every spanning tree T that contains all edges from (r : A) and m(T) = t1(n‚ m) or

s(T) = t2(n‚ m) (and thus d4 = n) arises from a perfect 3-DM.

By Lemma 13, the graph G satisfies s1(G) � t1(n‚ m) (resp., s2(G) � t2(n‚ m)) if and only if there is a

spanning tree T of G that contains all edges from (r : A) and whose m-metric (resp., s-metric) is equal to

t1(n‚ m) (resp., t2(n‚ m)). The latter is true if and only if Q has a perfect 3-DM. ,

4. ILP FORMULATIONS

Here we describe two ILP models for the s-SF Spanning Tree problem (for the m-SF Spanning Tree

problem the approach is similar). For a given spanning tree T of a graph G = (V‚ E) of order n, consider the

indicator variables (xe)e2E:

xe = 1‚ e 2 E(T);
0‚ otherwise:

�
(13)

FIG. 2. An example of the graph G for n = 3,

X = fx1‚ x2‚ x3g, Y = fy1‚ y2‚ y3g, Z = fz1‚ z2‚ z3g, and

M = ffx1‚ y2‚ z1g‚ fx3‚ y2‚ z3g‚ fx2‚ y1‚ z1g‚
fx1‚ y2‚ z3g‚ fx3‚ y1‚ z2g‚ fx2‚ y3‚ z1gg. Here each vertex

labeled fp‚ q‚ rg represents a set fxp‚ yq‚ zrg.
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Using Proposition 1, we can represent s(T) as

s(T) =
X

fei‚ ej‚ ekg2G3(G)

xei
xej

xek
+ 2

X
fei‚ ejg2G2(G)

xei
xej

+
X

e2E(G)

xe‚ (14)

where Gi(G) denotes the set of all paths of length i in G. To linearize (14), we introduce Boolean variables

yijk and yij and the following constraints:

yijk � xei
‚ yij � xei

‚

yijk � xej
‚ yij � xej

‚

yijk � xek
‚ yij � xei

+ xej
- 1‚

yijk � xei
+ xej

+ xek
- 2‚

(15)

for every fei‚ ej‚ ekg 2 G3(G) and fei‚ ejg 2 G2(G), which are equivalent to yijk = xei
xej

xek
and yij = xei

xej
.

Thus the objective function (14) can be rewritten as

s(T) =
X

fei‚ ej‚ ekg2G3(G)

yijk + 2
X

fei‚ ejg2G2(G)

yij +
X

e2E(G)

xe: (16)

We use two types of constraints to describe the spanning trees. The first type is the extended formulation

of Martin (1991), which uses auxiliary variables

zr
(v‚ w)‚ zr

(w‚ v) � 0 for every r 2 V(G)‚ vw 2 E(G)‚ (17)

where zr
(v‚ r) = 0 for every r 2 V(G) and vr 2 E(G). A 0/1-vector x describes a spanning tree of G if and only

if these variables satisfy the constraints

xvw - zr
(v‚ w) - zr

(w‚ v) = 0‚ r 2 V(G)‚ v w 2 E(G)‚X
vw2E(G)

zr
(v‚ w) = 1‚ r‚ w 2 V(G)‚ r 6¼ w‚

X
vr2E(G)

zr
(v‚ r) = 0‚ r 2 V(G):

(18)

The second type exploits the Miller–Tucker–Zemlin (MTZ) constraints (Miller et al., 1960). We in-

troduce the auxiliary variables

z(v‚ w)‚ z(w‚ v) 2 f0‚ 1g for every v w 2 E(G)‚

tv 2 [0‚ n - 1] for every v 2 V(G)‚
(19)

and constraints

xvw - z(v‚ w) - z(w‚ v) = 0‚ vw 2 E(G)‚X
vw2E(G)

z(v‚ w) = 1‚ w 2 V(G)nfrg‚

X
vr2E(G)

z(v‚ r) = 0‚

tv - tw + nz(v‚ w)� n - 1‚ v‚ w 2 V(G)‚ vw 2 E(G)‚

(20)

where r 2 V(G) is some fixed vertex. Finally we add the additional constraint

s(T) =
X

fei‚ ej‚ ekg2G3(G)

yijk + 2
X

fei‚ ejg2G2(G)

yij +
X

e2E(G)

xe � n(n -D(G) - 1) +D2(G)‚ (21)

defined by Theorem 7, which turns out to significantly improve the algorithm running times. Max-

imization of the objective (16) subject to the constraints (15), (18), (21) is further referred to as

Martin formulation, while maximization of Equation (16) subject to Equations (15), (20), (21) as MTZ

formulation.
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5. EXPERIMENTAL RESULTS

In this section, we investigate the practical aspects of scale-free spanning tree problems by conducting

computational experiments for various simulated and experimental data sets to evaluate the performance of

the ILP models. All computations below were performed on a standard laptop with 2.0 GHz dual core

processor and 16 GB of RAM, and ILP problems were solved using Gurobi 8.1.

5.1. Synthetic data

5.1.1. Synthetic graphs. We used graphs from the following synthetic data sets:

Erd}os-Rényi graphs constructed by adding each possible edge uniformly and independently with the

probability p = 4:25=n. The number of nodes n in our experiments varied from 10 to 40 (corresponding to

the sizes of HCV outbreaks analyzed later).

n · m grid graphs (Cartesian products of paths Pn and Pm) with n‚ m = 4‚ . . . ‚ 7.

Scale-free graphs of two types generated using NetworkX library (Hagberg et al., 2008): those based on

the classical Barabási and Albert (1999) model and those constructed with NetworkX default parameters.

The latter graphs are usually denser.

For all synthetic data sets except for grid graphs, we generated 10 graphs per node number. Figures 3 and

4 illustrate the running times of the ILP solver on both the MTZ formulation and the Martin formulation

compared with the published tool QUENTIN (Skums et al., 2018) runtimes for all four simulated graph

classes.1 The results demonstrate that for those graph classes, the ILP algorithms in average perform much

better than in the worst case and are able to produce optimal results in a reasonable amount of time.

Moreover, for considered graph sizes, they outperform QUENTIN. For Erd}os–Rényi graphs and grids

(Fig. 3), which are characterized by relatively large sets of feasible solutions, the Martin formulation was

superior to MTZ and QUENTIN, while for Barabási–Albert scale-free graphs (Fig. 4a), the MTZ formu-

lation was leading to the faster algorithm. In general, the ILP approach allows to solve the problem within

minutes or few hours for small-to-medium-sized problems (up to several dozens of vertices) on Erd}os–

Rényi graphs and grids, and for medium-sized problems (several hundred vertices) on scale-free graphs.

5.1.2. Simulated outbreaks. We simulated outbreaks over scale-free Barabási–Albert contact net-

works of n = 10 - 30 nodes using the following model. The infection spreads over each network according

to the susceptible infected (SI) model (Newman, 2010) with the transmission rate q = 10 - 2. Each infected

individual is assumed to carry a viral sequence of length m = 13200, and at each transmission event, the

source’s sequence is transmitted to the recipient. Sequence evolution is described by a skyline model with

the piecewise constant decreasing mutation rate, that is, viral sequences mutate at the basic rate of l = 10 - 5

changes/position/time unit, and the mutation rate is decreasing by 30% every s = 100 time units. This model

captures the decrease of the speed of intrahost evolution as the infection progresses from an acute to a

persistent stage (De Maio et al., 2016; Icer et al., 2020).

For each simulated outbreak, we compared the performance of the ILP algorithm for the Martin for-

mulation, with the standard approach based on the phylogenetic trait inference (Sagulenko et al., 2018).

First, we constructed a maximum likelihood phylogeny using MEGA (Kumar et al., 2018). Each patient

was encoded by a discrete trait, and the marginal likelihood ancestral traits were reconstructed using the

Felsenstein pruning algorithm (Felsenstein, 2004) with the pairwise between-trait transition rates equal to

q. Inferred transmission links then correspond to trait changes along the phylogeny branches. The genetic

relatedness network GR used as an input for the ILP was constructed using a threshold-based approach

suggested by Kosakovsky Pond et al. (2018). A pair of vertices of GR are adjacent, if the Hamming distance

between the corresponding sequences does not exceed a threshold t that was estimated as the minimal

integer such that the graph GR is connected. The obtained graph was further sparsed out by applying the

same procedure to each of its biconnected component.

1Running times for MTZ formulation on grids and Martin formulation on Barabási–Albert scale-free graphs are
plotted only for smaller n, since for large values they are significantly higher than for the other formulation. In
particular, Martin formulation on Barabási–Albert scale-free graphs works * 150 seconds for 1000 vertices, * 480
seconds for 1500 vertices, and exceeds 1800 seconds for 2000 and more vertices. QUENTIN running times are not
plotted in Figure 4, since they already exceed timeout of 3600 seconds for 50 vertices for both scale-free graphs.
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The results of algorithms’ comparison are shown in Figure 5. We measured algorithm accuracy by the

proportion of correctly inferred transmission links and transmission ancestries (i.e., pairs, ancestor/

descendant). s-SF-based ILP clearly outperformed the phylogenetic approach: the average transmission link

detection accuracy was 82:44% for the former and 72:61% for the latter, while the average transmission

ancestry detection accuracies were 97:48% and 73:96%, respectively.

5.2. Data from hepatitis C outbreaks

We applied the concept of scale-free spanning trees to the graphs arising from the benchmark data set

consisting of several epidemiologically curated HCV outbreaks investigated by the CDC (Campo et al.,

FIG. 3. Running times of ILP solver and QUENTIN on Erd}os–Rényi graphs (a) and grids (b). ILP, integer linear

programming.
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2016; Glebova et al., 2017; Skums et al., 2018). This data set comprises HCV quasispecies populations

sampled from 81 infected individuals involved in 10 viral outbreaks. Each population consists of RNA

sequences of HCV hypervariable region 1 (HVR1) of length 264 bp. Transmission histories of the out-

breaks (‘‘who infected whom’’) are known as a result of epidemiological investigations. In this case, we are

dealing with intrahost viral populations rather than single sequences, and therefore, we compared the

proposed approach with QUENTIN, which has been specifically designed to handle such data (Skums et al.,

2018).

For each outbreak, the genetic relatedness network GR was constructed using the threshold-based ap-

proach suggested by Campo et al. (2016). The vertices of GR are adjacent, if the minimal Hamming distance

FIG. 4. Running times of ILP solver on Barabási–Albert (a) and NetworkX (b) scale-free graphs.
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between the sets of sequences sampled from these patients does not exceed the threshold t. The threshold

value was estimated as described in Subsection 5.1.2. Next, the ILP algorithm for the Martin formulation

has been applied to GR. For all outbreaks, the ILP problem has been solved to optimality.

We tested the accuracy of inference of transmission links and identification of the superspreaders (the

sources of majority of infections). The results are reported in Table 1. The superspreaders correspond to

vertices of highest degrees in s-optimal and m-optimal trees for 9 out of 10 outbreaks. It should be noted

that all algorithms incorrectly identified a superspreader for the same outbreak. It is the only outbreak

where the virus was transmitted via a nonsocial interaction (namely, through blood transfusions), while all

other outbreaks were associated with unsafe injection practices or sexual contacts. For those outbreaks,

both ILP approaches correctly recovered 92% of transmission links and all ancestor/descendant pairs, thus

outperforming QUENTIN.

6. DISCUSSION

In genomic epidemiology, reconstruction of viral transmission histories from genomic data is funda-

mental for the investigation of outbreaks and understanding of epidemic spread. Genomic analysis has

become one of the major tools for the investigation of outbreaks and surveillance of transmission dynamics

(Armstrong et al., 2019; Knyazev et al., 2020). Naturally, graphs are the primary models used in such

studies (Wertheim et al., 2014; Campo et al., 2016; Ragonnet-Cronin et al., 2019). In many settings, graph-

based methods have been shown to be more efficient to ascertain transmission links compared with

methods based on binary phylogenies (Wertheim et al., 2014), as phylogenetic clades are not easily

resolvable into transmission clusters and pairs (Lewis et al., 2008; Hughes et al., 2009; Kouyos et al.,

2010), while the statistical support for a clade does not necessarily indicate the statistical support for a

FIG. 5. Accuracy of s-SF ILP model compared with the phylogenetic trait inference algorithm.

Table 1. Results on Experimental Data with Different Models

Methods

Evaluation metric

(A) (B) (C)

QUENTIN 0.9 0.78 0.98

s-SF 0.9 0.92 1.0

m-SF 0.9 0.92 1.0

(A) Superspreader inference accuracy, (B) accuracy of transmission link inference, and (C) accuracy of transmission ancestry

inference.
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relationship between individual genomes inside a clade (Volz et al., 2012; Wertheim et al., 2014). How-

ever, in many cases, transmission links cannot be inferred using the genomic data alone ( Jombart et al.,

2014; Villandre et al., 2016). It leads to the need to introduce additional constraints on the reconstructed

transmission networks or utilize more complicated objectives.

As a result, the associated algorithmic problems become harder. In this article, we studied one such

problem—scale-free spanning tree problem—that arises in epidemiological studies of viruses whose spread

is highly influenced by social networks of contacts between susceptible individuals. This includes HIV,

HCV, and other pathogens transmitted through sexual contact or needle sharing. We demonstrated that this

problem in its two possible algorithmic formulations is NP-hard, even if restricted to relatively simple

graph classes. However, it admits an ILP formulation allowing to efficiently solve the problem for small-to-

medium networks. It is often enough for the vast majority of outbreaks of HIV and HCV that involve

dozens of infected individuals.

However, some outbreaks involve hundreds or even thousands of hosts, and in such cases, more scalable

algorithmic solutions are needed. Thus, an important open problem is to establish whether constant or

logarithmic approximation exists for the m-SF Spanning Tree and s-SF Spanning Tree problems. In this

context, it would be interesting to explore the relationships between scale-free spanning tree problems and

max-leaf spanning tree problems. The latter is a well-studied combinatorial problem (Griggs et al., 1989;

Galbiati et al., 1994), which seems to be the closest to our problem. Indeed, both problems aim to find a

‘‘star-like’’ spanning tree; furthermore, several reduction schemes for the proof of NP-completeness used

by us exploit this relationship. Importantly, Lu and Ravi (1998) and Reich (2016) showed that the max-leaf

spanning tree problem is approximable within a constant factor. Although the problems are far from being

equivalent, it may seem reasonable for future studies to try to adopt algorithmic machinery developed for

the max-leaf spanning tree problem to the scale-free spanning tree problem.
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